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Abstract

Computer Animation has become more and more popular, outpacing traditional animation

in feature-length films. These films use virtual cameras to represent the viewer’s perspective in a

virtual world. In addition, many visual effects rely on reproducing a physical camera’s position,

orientation, and properties in a virtual space. While these virtual cameras can be moved manually

through techniques such as key-framed animation, this technique can produce, rigid, unnatural

movement without careful operation. Virtual Production is a technique where a real-world camera

is tracked with multiple degrees of freedom, producing more realistic, natural camera movement.

This project aims to create a simple virtual production system with widely available consumer

software and hardware.
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Chapter 1

Introduction

The movie-making industry has had several significant breakthroughs over the past few

years. Leaps in computer graphics mean that films created with computers can now look more

realistic than ever before while giving movie-makers artistic control that would be impossible with

practical effects. More recently, improvements in real-time graphics rendering processes, fueled by

the gaming industry, have allowed many graphical effects that once took weeks to process to be

generated almost instantaneously. Similarly, motion tracking and augmented reality advances are

also applied to film-making. As a result, a new type of film-making has emerged: Virtual Production.

1.1 Virtual Production

Virtual Production is a process used in the film and television industries that use motion

tracking and augmented reality to combine visual effects with live performances on set, often allowing

for viewing a final or near-final shot at the time of filming. Virtual Production is an ongoing field

and encompasses many different types of production technologies. However, the three aspects that

these technologies typically share include the recording of a live performance, the use of a virtual

set, and the use of film-making interfaces (usually a camera) that resemble the interfaces used in

traditional film-making.

Virtual Production techniques originally reached mainstream recognition in the film Avatar,

in which it was used to view the actions of performers in the context of digital characters in the

fictional world of Pandora, in which the movie takes place (see figure 1.1). Using virtual Production,
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Figure 1.1: Virtual production techniques being used on the set of Avatar (Image ©Weta Digital)

director James Cameron was able to use an interface similar to a traditional film camera to record

and view performances by live actors replicated on virtual characters. [1]

More recently, effects companies such as Industrial Light and Magic have created Stagecraft,

a virtual production system used on the Disney+ series The Mandalorian (see figure 1.2). Stagecraft

uses a series of bright LED panels to recreate virtual environments around the actors on set. It

can recreate backgrounds from the camera’s perspective and reproduce the lighting that would be

experienced in the replicated environment on the physical stage[2]. Virtual production systems such

as these drastically reduce the amount of time used to create visual effects, as many elements can

be adjusted and captured on set instead of painstakingly reproducing the nuances of motion and

visuals to match the filmed content after the fact.

This paper explores one particular aspect of Virtual Production: the virtual camera.

1.2 Virtual Cameras

As referred to in this paper, a virtual camera system refers to a type of virtual production

system that tracks and records the motion of a physical camera in real-world space and applies

that motion to a camera in a virtual world. Additionally, the system must render a scene from
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Figure 1.2: Virtual production techniques being used on the set of The Mandalorian (Image
©Industrial Light and Magic)

the view of the virtual camera and provide the rendered images as feedback to the camera person.

A virtual camera system allows users to film a virtual world as if they were recording a real-life

scene with a traditional camera. The virtual camera is typically an essential part of any virtual

production workflow, as the camera view is the root of any visual effects shot. Even in virtual

production systems that use traditional cameras such as Stagecraft, the camera’s view must always

be considered to place virtual elements in the set correctly and accurately project the perspective of

the set’s virtual background. Without this, the illusion of the virtual world is immediately broken.

In addition to being an integral part of many virtual production systems, a virtual camera

alone can be considered one of the simplest forms of virtual Production. The three aspects of virtual

Production are all present. A virtual camera records the live performance of the camera person. It is

used to view a virtual set and is meant to resemble the cameras used in traditional film-making. Even

so, it only requires the tracking of the position and orientation of a single point on the camera itself

and does not require complex and potentially expensive technologies like facial and body motion

capture or the large, power-hungry, and costly screens of a system like Stagecraft.

Modern mobile devices contain enough sensors and processing power to host a simple virtual

camera on their own. However, this system would be severely limited by such a device’s rendering

and power restrictions. Conversely, modern consumer desktop systems are powerful enough to render

complex scenes in real-time but lack the sensors and portability needed for a virtual camera system.

As a result, this project will attempt to combine the benefits of both platforms, using the mobility

and sensors of mobile devices in combination with the power of desktop systems to produce an
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effective consumer virtual camera system.

1.3 The purpose of this project

While virtual production systems are widely used throughout the movie-making industry,

these technologies are expensive, hard to maintain, and often created specially for the companies

or productions that use them. Independent filmmakers and students outside of these companies

often do not have access to these technologies. This project attempts to assess the current state

of technologies available to such filmmakers by constructing a simple yet effective virtual camera

system using consumer technologies.
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Chapter 2

Related Work

Virtual production is an active field of research explored by many groups worldwide. This

section features a few projects related to virtual camera systems and describes how they relate to

this project.

Genesis is a pipeline designed by production company MPD for Virtual Production work-

flows. [6] This pipeline includes many aspects of the virtual production process, including asset

creation, set design, and recording. While this system integrates several tracked devices for use as

virtual cameras, it does not describe how such a system is designed. [6]

VPET or Virtual Production Editing Tools [5], is a system developed by German film pro-

duction company Filmakademie Baden-Wuerttemberg to assist in virtual production environments.

The system features the ability to use multiple mobile devices to view and edit virtual production

scenes in real-time. However, unlike this project, these devices are only used for on-set scene changes,

not as the primary scene camera. In addition, the project uses on-device rendering for the display

on these devices and not the full-quality scene as rendered by the central server. As a result, more

expensive and extensive virtual production equipment is needed to provide tracking for the main

camera view. [5]

Finally, the project that is likely closest to this project in functionality is FXHome’s Cam-

TrakAR application for iOS-based mobile devices. This application integrates camera tracking,

recording, keying, and many other aspects of virtual production into an iOS application. Unlike this

project, however, this application renders pre-visualizations on the device and is thus subject to the

rendering limitations of handheld devices. [3]
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Chapter 3

Research Design and Methods

The virtual camera system created during this project consists of two major components: a

mobile application that runs on an android phone and a Unity Engine-based program that runs on

a Windows computer. The two applications are connected with a simple TCP-based protocol in a

client-server relationship, with the android application as the ”client” and the desktop program as

the ”server.” The RTSP streaming protocol is used to transfer video information from the server.

Finally, the motion data is saved to the hard disk, and a specially written extension for the 3D

software Blender is used to import the data to allow it to be exported to other formats. Each of

these components is described in its own section below.

3.1 Client System

The client system is written in Java using the Android SDK. This application handles several

essential tasks: It must use the Android device’s sensors to track the environment around it and

generate position coordinates. It must be able to open a video stream from the server and display

it onscreen. It must communicate position data and start and stop events (from an onscreen record

button) to the computer via TCP.

The application flow is as follows. First, the user opens the application on their android

device. It prompts the user for the IP address of the server. After the user enters the IP address,

the app connects to the server and displays a camera view of the environment. The user is told to

move the camera around to start tracking the environment. Once the tracking begins, the user can
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place a marker in the environment. The marker serves as a ”scene root” and gives the application a

reference point to derive the camera’s location. After the marker is placed, a video stream showing

the contents of the server’s display appears on the phone, and it is ready to start the recording

process. A record button is provided on the device for convenience.

To track the environment, the Google ARCore SDK was used. The ARCore SDK is typically

used to create Augmented Reality applications for Android devices. It is a comprehensive system that

combines input from several sensors, including the camera, gyroscope, and accelerometer. Under

the hood, ARCore uses Simultaneous Localization and Mapping[4] to generate a comprehensive

understanding of the environment around your device and, more importantly, the location of your

device relative to the environment.

The result is robust 6-degree of freedom tracking that continues to work, even when the

camera observes previously unseen parts of the environment, a crucial feature for a virtual camera

system.

The stream is displayed using the ExoPlayer Framework. Once the IP address is picked,

the video stream is opened using ExoPlayer and rendered over the camera view for the remainder

of the session.

An asynchronous TCP client system manages other TCP communications. The client itself

runs in a separate thread from the rest of the application and uses the Android Socket API to manage

the connection. Messages to be sent are added to a FIFO (First-In, First-Out) Queue structure in

the main application thread and then asynchronously sent by the messaging thread soon after.

Received messages undergo the reverse process, being placed into a queue by the messaging thread

to be retrieved from the main application thread.

3.2 Server System

The server system has several functions for which it is responsible. First, it must accept

connections from a client application. Second, it must retrieve camera data from the client and

render frames with the given camera position and location in 3D space. Next, it must stream these

frames over the network using RTSP. Finally, on command, it must write received camera data to

a file on disk to be imported by another application later. In addition, it must allow a user to load

a custom scene from a file on disk, including any material information that the scene may require.
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Figure 3.1: A screenshot of the server software, with an example scene loaded.

The Server System is implemented within the Unity Game Engine. Unity provides a high-

quality real-time rendering system and an editing environment that allows for scene customization.

Scenes are imported from GLTF files on program startup, using a system dialog. GLTF was chosen

because it enables the application to import scenes at run-time, it is open-source and portable, and

it can store models, textures, physically-based materials, and more within the same file.

Once this file is imported, the TCP server is started alongside the RTSP stream. FFmpeg

is used to capture the screen and stream the video data in MPEG-4 format to the RtspSimpleServer

application, which manages the incoming connections from the client. If available, FFmpeg is

told to use the NVidia NVENC hardware video encoder to reduce streaming latency. The TCP

communication server is structured very similarly to the TCP client in the Client application, with

the added functionality of accepting new TCP connections.

Once the server portion of the application has started, the user is presented with a 3D view

of the loaded scene (see figure 3.1). At the top of the scene, the server’s local IP address is listed to

facilitate the connection. In addition, Start Recording and Stop Recording buttons are provided in

the lower-left corner, though it is expected that the user will use the record button on the client.
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3.3 Communication System

A simplified TCP protocol is used to communicate camera data and events to the server.

RTSP is used to stream video data back to the mobile device. The details of these systems are as

follows.

A single TCP connection is used to transfer data about the camera’s pose and events such

as the record button being pressed. A message in this stream is formatted in ASCII as follows:

[Message Type] Message Data

There are three major message types: ”locrot,” ”start,” and ”stop.” ”Locrot” is used to

transfer camera pose information from the Android device to the server. Information is transferred

in 7 values, x,y, and z location, and w,x,y, and z quaternion data. This data is represented as

comma-separated ASCII values.

”Start” and ”stop” signals have no message data. They are both interpreted the same way:

by toggling the recording state of the server. While ”start” is intended to start the recording, and

”stop” is meant to stop it, the client and server can become out-of-sync. In this case, it appears

more responsive to the end-user if any ”start” message received while the system is recording is

interpreted as a ”stop” message and vice-versa.

An additional message is included in the server but goes unused. This message is the

”matrix” message. The ”matrix” message is used to define the camera’s fundamental distortion

matrix. It could be helpful if you intend to duplicate the camera’s field of view and other properties

in the virtual environment. However, while this value is applied to the camera in the server itself, it

is not recorded and thus cannot be reproduced in the final output.

3.4 Pairing process

Each time the system is put to use, a simple pairing process is required to link the client

and server. First, the user must start the server software and select a scene to be viewed. Next, the

client software is started. The user must then type the IP address of the server (listed at the top of

the main screen of the server software) into the client app. Once this occurs, the client establishes

a TCP connection with the server application and prompts the user to select a location to be used

as the root of the viewed scene.
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Figure 3.2: An example of a csv file generated by the virtual camera server

The user must now use the cell phone to establish tracking and select the root of the scene.

Once this occurs, the client application will begin streaming rendered video frames from the server.

3.5 Using produced camera data

Once data is recorded, it is written to disk as a CSV (comma-separated values) file. An

example file can be seen in figure 3.2. The file contains camera position and rotation data as well

as relative timestamps. Timestamps are sent from the client application and represent the time in

milliseconds since the start of the application rather than seconds since the epoch. As a result, they

are intended to only be used in reference to one another rather than in reference to a certain zero

point.
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As a part of this project, an add-on was written for the Blender 3D software package that

can be used to import CSV data exported from the server application. This motion data is applied to

an empty object in the scene, using the relative timestamps to determine keyframe placement. From

Blender, a variety of formats can then be exported, including popular formats such as BVH, Collada,

or FBX, to use in other professional software packages such as Autodesk Maya and MotionBuilder.

3.6 Latency Evaluation system

In addition to the systems that make up the project itself, a specialized system was used

for the evaluation of video streaming latency from the server to the client. This system uses visual

QR (quick-response codes) to measure complete system screen-to-screen latency between devices.

3.6.1 Evaluation system setup

The evaluation system consists of a few different components. First, a Python script is used

to generate a series of sequential QR codes, each containing a number in ASCII format increasing

at a rate of 1 integer value for every 1
5 of a second. The QR codes are generated at a resolution of

290 by 290 pixels. These frames are then compiled into an h.264 encoded MPEG-4 video file.

For testing, the system is first set up as it would be for normal use (see section 3.4 above).

Instead of streaming rendered video frames from the server, however, the previous encoded video

file is both displayed on the server screen as well as streamed to the client device.

Finally, a third video capture device records the displays of both the client and the server

devices (see figure ??). This is recorded for the duration of the previously encoded video file. The

recorded data is then processed using the OpenCV library. Both devices are cropped from the entire

video and are scanned with a QR code reader. The numeric values are then decoded and recorded

to a CSV (comma-separated values) file. The format of this file is such that each row corresponds

to a frame for the video capture device, and they contain two values: the recognized value for the

client device for that frame and the recognized value for the server device. Some frames are dropped

through this process due to glare on the client and server device screens, as well as other interference.

However, enough frames are captured to generate a good picture of the screen-to-screen latency of

the device.
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Chapter 4

Results

The Virtual Camera system produced by this project has the ability to record camera

motions at about 30 frames per second while rendering a scene and streaming the scene to the

mobile device. There are, however, a few shortcomings of the system in the current iteration. While

the latency of the camera’s position and rotation is relatively low, video streaming can have up to

a few seconds of latency (see Figure 4.1).

4.1 Recording Performance

Recording performance is measured using the number of frames captured for each second

of time. Four trials were recorded. Each trial consisted of a camera motion one minute in length.

Trials were then divided into non-overlapping second-long segments, and the number of frames in

each segment was totaled. The average and standard deviation for each trial were calculated from

the set of frame counts among all segments in a trial. The overall average and standard deviation

were then calculated for the set of all segments for all trials. Results can be seen in table 4.1.

Trial Average Frames per Second Standard deviation
Trial 1 40.000 9.392
Trial 2 31.029 6.101
Trial 3 23.737 6.354
Trial 4 24.581 7.116
Overall 29.788 9.658

Table 4.1: Recording performance, measured in average and standard deviation of the number frames
recorded in a second, for each of four trials, as well as for all datasets combined.
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4.2 Streaming Latency

Streaming latency in this context is measured in a manner consistent with that described

in section 3.6. A total of 4 trials were run, completely stopping and restarting the system between

each trial. All trials were completed in succession using the same hardware and network and thus

were performed in similar network conditions.

The results of the four trials can be seen in Figure 4.1. All trials were conducted over a

wireless network. From these results, a dataset was constructed from the differences between the

first frames in the footage in which a specific QR code is recognized on both devices. Taking a mean

of this dataset results in an average latency of 123.75 frames in the capture device, with a standard

deviation of 85.63 frames among all four tests. Assuming that the camera is consistently running at

its set frame rate of 30 frames per second, this calculates to an average latency of 4.12 seconds with

a standard deviation of 2.85 seconds.
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Figure 4.1: The above graphs represent the results from four tests using the evaluation system
described in section 3.6. Orange points represent frames recognized from the server machine, and
blue points represent frames recognized from the client device
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Chapter 5

Conclusions and Discussion

This project shows that a low-cost system such as this can emulate the function of more

expensive virtual cameras. The tracking, transmission, and recording of the camera’s position and

orientation in three-dimensional space perform adequately to produce a smooth camera motion

at close to 30 frames per second with little to no need for correction by the artist (see table 4.1).

Additionally, the system allows for a cameraperson to operate it wirelessly, using a lightweight phone

instead of a heavy camera rig. It has been shown that rendered data can be wirelessly transmitted

over the network, and rendered scenes can be transmitted back from a more powerful device. It

has also been shown that modern handheld augmented reality tracking technologies are sufficient to

provide the tracking data for a virtual camera system of this variety.

The greatest barrier to the project in its current state is the video streaming latency in

sending rendered frames back to the handheld device. As shown in section 4.2, the system was

determined to have an average screen-to-screen latency of about 4.12 seconds, which is much too

high to provide real-time feedback to a camera operator. The latency can vary wildly, with an

experimental standard deviation of 2.85 seconds in latency. However, once the system is initialized,

latency remains relatively constant (as seen in Figure 4.1). This suggests that something in the

connection process could be changed to improve or reduce latency. However, further research is

required to determine what exactly could be done to improve latency.
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Chapter 6

Future Work

While this project demonstrates the basic functionality of a virtual camera system, there

are many ways that the system can be improved upon in future research.

6.1 Video Latency

As discussed in Chapter 5, the greatest barrier to the usefulness of this project is the high

latency between an image being rendered and the display of that image on the client device. Low-

latency is a difficult problem, but many solutions have been created to make low-latency streaming

easier on consumer hardware.

For example, as the system is currently implemented, it is locked to streaming at 720p and

30 frames per second. However, the system could instead make use of adaptive streaming, where

video resolution, frame rate, and other quality factors are changed dynamically by the client due to

factors like network traffic, bandwidth, and decoding speed.

Additionally, most stream playback libraries keep a buffer between the latest received frame

and the frame currently being displayed, so it can ensure smooth playback and prevent audio dis-

tortion. Since no audio is being transmitted, audio distortion is not a problem, and lower latency is

much more desirable for this application than smooth playback. As a result, it may help latency to

reduce or completely remove the buffer entirely.

Finally, the stream uses the H.264 format for video compression, which consists of ”I-

Frames,” which are static images, and ”P-Frames,” which are frames constructed by referencing
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other frames. The initial source of latency may be due to the client waiting for the server to send an

initial I-Frame before beginning playback, resulting in playback beginning later than it should. As

a result, increasing the frequency of I-Frames, while it could increase the bandwidth requirement,

could assist in lowering latency.

6.2 Additional Functionality

In addition to improving the functionality of the core project, there are many ways the

project could be expanded in future works to provide additional virtual production capabilities.

One idea would be to allow the client to stream the video feed captured by the camera back

to the server to be combined with the CGI elements. Other data can also be streamed from the

device to the server, such as camera projection matrices and real-world depth information, both of

which can be queried using the ARCore API.

Finally, the system could integrate elements of motion capture technology to allow live

performances to be mirrored by animated characters in the camera view. This would mimic virtual

production systems used in the movie Avatar, among others, and allow a user to film a motion-

capture performance much in the same way that a live performance would be captured, yet still

retain the benefits of a computer-animated scene.
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