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Figure 1: Rendered maritime scene, including the whitecap opacity map, with
whitecap fraction W = 0.15, windspeed is 20.4 m/s, and rms waveheight is 2.6
m.

Abstract

In many computer graphics applications involving rendering of mar-
itime scenes, ocean whitecaps are generated via a minimum eigenvalue
threshold and decay process. The few parameters involved are typi-
cally set by a user for visual impact, without regard to knowledge of
oceanograpic phenomenology. Here a process is described for the threshold
parameters by (a) establishing a ensemble-averaged relationship between
the threshold and the whitecap fraction, (b) selecting a phenomenological
model for whitecap fraction in terms of wind speed and possibly other
parameters, and (c) using simulation data to estimate the Probability
Density Function for the ocean surface minimum eigenvalue ensemble to
create a Cumulative Distribution Function (CDF) for the threshold value.

1 Introduction

The simulation of an ocean surface as a height field is a part of many applications
in graphics, maritime operations, games, and films. The height field represen-
tation is compact and efficient to compute, and is anchored in oceanographic
phenomenology. Complex random surfaces derive from statistical models of
the spatial and temporal spectra of waves under a variety of geographic and
oceanographic conditions. As an effectively 2D data set, height fields can be
manipulated toward stylized surface designs and artistic user goals.
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While the height field representation captures spatial and temporal motions
that are physically realistic, it cannot capture many fluid phenomena that occur
on and near the surface. For example, wave breaking has not been represented as
a height field, although detailed nonlinear simulations have demonstrated height
fields becoming very sharp leading up to the transition to breaking [9, 11] before
becoming numerically unstable. The “cuspy displacement” algorithm [13] allows
horizontal displacements of the height field while remaining stable, can lead to
arbitrarily sharp peaks on the waves, and can even cause nonphysical passage
of the surface around the wave peak through itself when and where it is natural
for the wave surface to break. Fully three dimensional water simulation systems
can achieve a much more accurate representation of wave breaking [6].

Turbulence and spray during wave breaking produce long-lasting patches of
foam and bubbles on and just below the surface. Generically referred to as
whitecaps, the detailed phenomena of its optical properties, emission and tem-
poral persistence involve air-sea interface physics, and chemical and biological
content of the water. Whitecaps have two key properties that make it useful to
characterize them phenomenologically: (1) they persist for long periods of time,
from seconds to minutes depending on environmental conditions; (2) the fine
detail bubbles and structure inside whitecaps, and the spatial size of individ-
ual whitecap spots, give them high contrast with adjacent water regions across
a broad spectrum of wavelengths, from ultraviolet through infrared bands, and
even in microwave bands. The combination of these two properties have allowed
a number of observations – using instruments at sea, airborne, and overhead –
to characterize whitecaps with phenomenological models of their spatial dis-
tribution. Many such studies relate the fraction of surface area occupied by
whitecaps (Whitecap Fraction, or W ), to the wind speed above the ocean sur-
face (U). A collection of these phenomenological relationships are summarized
in [15, 10], and they typically have the form

W = a (U − U0)b (1)

where a, b, and U0 are model parameters that are fit to observational data.
Of course W is dependent on many more factors than just the wind speed U ,
which is reflected in variance of model parameter values across the analyses of
the various data sets in [3], for example. Equation 1 acts as an organizational
tool for further studying the fuller, complex relationship. Models expressing
W in terms of ocean spectral model parameters in [15, 8] are recent attempts
to explore more deeply. In this paper, we adopt the outlook that any of these
models could be of interest, and a practitioner of ocean surface simulation should
have the option to select any specific one that best matches the goals of their
simulation efforts.

Whitecaps generated in the context of height field ocean surface simulations
are stored as 2D textures that represent the opacity of the whitecaps in a given
location. Several methods to initiate whitecap formation at a location on the
ocean surface are (1) compute the vertical acceleration and increase the value of
the whitecap texture map when the vertical acceleration exceeds a user-decided
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fraction of g (the constant of gravity), assuming that threshold exceedance hap-
pens on or near the wave peak[14] (note that [14] used a whitecap fraction
model to set the value of the fraction of g); (2) compute the local curvature,
and increase the value of the whitecap texture when the curvature magnitude
exceeds a user-decide threshold value; (3) for “cuspy displaced” waves, use a
user-selected threshold to test the minimum eigenvalue, λmin, of the local 2D
Jacobian of the cuspy displacement[13, 2]. In this paper we focus on this eigen-
value test. The two eigenvalues of the Jacobian are dimensionless. Where the
displacement is zero, the minimum eigenvalue is 1, and where the cuspy dis-
placement produces a sharp peak the minimum eigenvalue approaches zero. A
negative-valued minimum eigenvalue corresponds to the unphysical case of the
surface passing through itself, a case we exclude. The test checks for locations
where λmin drops below a threshold value λT . This mechanism does not con-
nect in a direct way with the observed phenomenology for whitecap fraction W .
In order to produce whitecaps consistent with the known phenomenology, the
choice of threshold should be related to the ocean surface parameterization, the
whitecap texturemap generation model, and the phenomenology of whitecap
fraction.

A specific approach for selecting the threshold is described in algorithm 1.
The reasoning for this algorithm is presented in section 3. The realized whitecap
map produced from an ocean surface simulation and this algorithm will have
a whitecap fraction that is close to the value of W from the phenomenological
model, but not guaranteed to be equal to W . There are many parameters
– such as the water salinity, particulate matter and dissolved organic matter
concentrations, and water depth – that determine the actual whitecap fraction
in a specific ocean surface realization, in addition to wind speed and minimum
eigenvalue threshold. The other remaining parameters also have an impact, as
does the set of random numbers used to create the random realization. But
many realizations generated with this algorithm will have whitecap fractions
clustered around the model prediction. This is shown in section 5.

This paper describes the novel set of steps for data generation, data anal-
ysis, and model creation to assign a value to the threshold in terms of the
whitecap fraction and the cumulative distribution function of the random field
of minimum eigenvalues, following algorithm 1. The steps are illustrated with
a simulation data set that produces specific results, but the intent is to de-
scribe and illustrate the overall method so that it could be applied in cases with
different phenomenology models.

The next section considers previous work in creating computer graphic white-
cap textures for particular game and feature film situations. Section 3 discusses
a model for whitecap texture generation from the minimum eigenvalue thresh-
old test and half-life decay, based on the methods described in section 2. This
model also provides a method for computing whitecap fraction in any simulation
frame. Procedures for extracting a λT using the probability density function
and cumulative distribution function of λmin produced by a realization, and
the chosen whitecap fraction model are presented in section 4. Section 5 show
that the whitecap fraction realizations are reasonably close to the chosen phe-
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nomenological whitecap fraction model, and give visual demonstrations of the
whitecap textures. Finally we summarize the paper and mention some addi-
tional potential approaches in section 6.

2 Previous Work

Simulation of an ocean surface as a height field with dispersive time evolution has
been in use for a variety of computer graphic applications for some time[4, 7, 13].
The height at any horizontal location x and time t is represented in terms of a
Fourier amplitude h̃:

h(x, t) =

∫
d2k

2π
h̃(k, t) eik·x (2)

where k is the two-dimensional wave vector Fourier integration variable, and h̃
is decomposed at

h̃(k, t) = h̃0(k) eiω(k) t + h̃∗0(−k) e−iω(k) t (3)

using the dispersion relationship ω(k) for frequency in terms of the magnitude
of the wave vector k ≡ |k|. The complex amplitude h̃0 is a random realization of
amplitudes drawn from an ensemble that is driven by the directional wave power
spectral density P (k) provided by oceanographic phenomenology. This scheme
is typically implemented on a rectangular horizontal spatial grid of points x, a
complementary grid of wave vectors k, and the Fast Fourier Transform (FFT)
operation to perform the transform for any user-specified time t.

A Gerstner-like horizontal displacement at each horizontal point derives from
the wave height expression via a Fourier Transform

D(x, t) = i

∫
d2k

2π

k

k
h̃(k, t) eik·x (4)

and is also typically evaluated via FFT. This displacement moves the location
of the wave height h(x) to the horizontal location

xcusp = x + fcusp D(x, t) (5)

where the cusp scale factor fcusp is a user-decided value to select how much
horizontal displacement to apply. This horizontal displacement is a change of
variables that effectively alters the two-dimensional area of the surface, with the
amount of change measured by the determinant of the Jacobian matrix of the
change of variables

J(x, t) = 12D + fcusp∇D(x, t) (6)

where 12D is the 2D identity matrix. The determinant of J is decomposable as
the product of its two eigenvalues, λmax and λmin, where λmin ≤ λmax. Note
that in the absence of displacements, e.g. for fcusp = 0, both eigenvalues and
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the determinant are 1. As the displacement becomes stronger, the determinant
of J becomes smaller, the peaks of the waves become sharper and the troughs
become rounded and broad. In the limit that the determinant of J is zero, the
peak is singularly sharp. For det J < 0, the wave peak passes through itself
and is an undesireable artifact. The situation det J ≤ 0 is equivalent to the
statement λmin ≤ 0, so it is reasonable to focus on the miminum eigenvalue as
a marker of the amount of cuspiness caused by the displacement, and hence a
marker for the onset of whitecaps. This also has the benefit of interpreting the
minimum eigenvector as the horizontal direction in which the wave is “trying
to break”.

Using the determinant of the Jacobian, [5] built a method of computing the
presence of whitecaps for a lighting model. Their approach considers whether
the determinant drops below a threshold value at any given location and pro-
duces an effective Lambertian reflectivity depending on how far beyond the
threshold that the determinant has fallen, based a gaussian model for the prob-
ability distribution function of the determinant, and a cumulative distribution
for the threshold value. This framework bears some similarity to the model in
section 4, except that section 4 employs the minimum eigenvalue, rather than
the determinant, as a more sensitive measure of peak sharpness, section 4 does
not assume gaussian statistics, and section 4 applies the analysis to fix the
threshold based on whitecap fraction, whereas [5] fix whitecap fraction based
on threshold value. Physically, whitecaps persist at a given location for seconds
to minutes after favorable conditions have passed for the Jacobian determinant
to cross the threshold, which is not accounted for by [5]. The persistence over
time is modeled by [12, 2] by tracking a whitecap value at any location using
a texture map, with the value of the map decaying over time with a half life
T . As waves pass over a location with decaying whitecap value, the value can
be recharged if the wave minimum eigenvalue is favorable for the formation of
whitecaps. This produces a spatially and temporaly extended history of white-
caps. While rendering, this whitecap texture may not have sufficient spatial
resolution for aesthetically desireable foam patterns and dynamics, and so the
texture is sometimes used as a opacity with which to “pull through” a separately
created (dynamic) artistically crafted detailed whitecap pattern. The opacity
model discussed in detail in section 3 is essentially this one.

3 Whitecap Opacity and Fraction Model

The model used here for whitecaps is a basic description which could be extended
in many ways and still be applicable in the section 4. The essential ingredient
is that the whitecaps are representated by a spatial map O(x, t) that varies in
value from 0 to 1, with 0 representing no whitecaps present, to 1 representing full
whitecaps present. The simulation process is initalized by setting O(x, 0) = 0
at all locations. The map is updated by two processes: (1) reseting the value to
1 at locations where whitecaps are being generated, and (2) decay the value of
the map at locations where no generation is taking place. The update process
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from time t to t+ ∆t is:

O(x, t+ ∆t) =


1 λmin(x, t+ ∆t) < λT

O(x, t) e−∆t/T λmin(x, t+ ∆t) ≥ λT
(7)

This can also be expressed as a simple update process using the Heaviside step
function Θ(x) as

O(x, t+ ∆t) = O(x, t) e−∆t/T (8)

+ Θ (λT − λmin(x, t+ ∆t))
(

1−O(x, t)e−∆t/T
)

In this model, the amount of whitecaps produced at any location over an
extended period of time is sensitive to the spatial spectrum P (k), the random
numbers in the realization, the magnitude of the horizontal displacement (which
in turn follows from the magnitude of wave heights), the cusp scale parameter
fcusp, and the decay half life T . Figure 2 shows two examples of whitecap
texures from this algorithm. All of the parameters except the threshold λT are
the same between them, showing the very wide range of whitecap conditions
that can be generated.

A value for whitecap fraction at time t follows directly from this construction
of the whitecap texture. The value of O at any location can be interpreted as
the amount of whitecaps at that location, and a value W (t) for the whitecap
fraction across the simulation grid is

W (t) =
1

Nx Ny

∑
x

O(x, t) (9)

which is summed over the Nx×Ny rectangular grid of points. This quantity is 1
when every grid point is full on, and zero when all grid points are empty. Figure
3 shows the whitecap fraction as a function of frame (time) for four different
simulation conditions. The fraction grows for a period of time roughly equal to
the half life T , undergoes some fluctuation for another half life, then roughly
reaches a statistically steady state beyond two to three half lives.

Predicting the amount of whitecap fraction W (t) from the set of simulation
parameters is not practical or useful, because any value of W can be obtained
in multiple ways from them. For example, even for a very calm ocean surface,
which would not be predicted to have whitecaps based on physical experience,
whitecaps can be produced by setting the threshold λT very close to 1. Alter-
natively, even for very large waves at high wind speed, the model can produce
W = 0 simply by setting fcusp = 0. An algorithm that produces physically
reasonable whitecap fraction must allow for variations of all of these parame-
ters in the recommended a value for λT , which can be made to agree with the
empirically observed whitecap fraction models.
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(a)

(b)

Figure 2: Whitecap textures at frame 1000 of a simulation, generated using
equation 7. All parameters are the same for each, except the minimum eigen-
value threshold. (a) λT = 0.71, with W = 0.011. (b) λT = 0.81 and W = 0.15.
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Figure 3: Whitecap fraction W (t) computed for each frame, evolving from the
start of the simulation to a statistically steady state, for several sets of simulation
parameters. The 1000 frames represents 33.33 seconds of time. The half life is
8 seconds.

4 Threshold From Cumulative Statistics

To establish a procedure for obtaining λT for any particular ocean surface re-
alization and phenomenological whitecap fraction model, the whitecap fraction
update process can be used to estimate an ensemble averaged whitecap fraction,
〈W 〉. It is this ensemble-averaged whitecap fraction that we identify with the
whitecap fraction in phenomenological modelslike equation 1. The ensemble
average is driven by random fluctuations in minimum eigenvalue, which in turn
has it own ensemble of values drawn from a probability distribution. Further,
we assume that both ensembles are statistically stationary and spatially homo-
geneous, so that 〈W 〉 and the PDF of λmin are time- and space-independent.
Taking the ensemble average of equation 8, the connection between the whitecap
fraction ensemble and the minimum eigenvalue ensemble is

〈W 〉 = 〈W 〉 e−∆t/T + 〈Θ (λT − λmin)〉 − 〈W Θ (λT − λmin)〉e−∆t/T (10)

The coupled moment term 〈WΘ〉 mixes the whitecap fluctuations – which fluc-
tuate over a time scale of many seconds to minutes – with fluctuations of the
minimum eigenvalue, which has a much shorter timescale for fluctuations. Be-
cause of the separation of these time scales, the moment is modeled as ap-
proximately separating into the product of the individual ensemble averages,
〈WΘ〉 ≈ 〈W 〉〈Θ〉. With this assumption, the ensemble averaged whitecap
fraction is

〈W 〉 =
〈Θ〉

1 − α (1 − 〈Θ〉)
(11)

where α ≡ exp(−∆t/T ) is the temporal decay factor. During frame-by-frame
simulation of the whitecap map, using the update in equation 7, the time step
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Figure 4: Probability Distribution Functions (PDFs) for the minumum eigen-
value for multiple ocean surface simulations with the indicated windspeeds U .

∆t is the time separation between frames. For ensemble averaging, this is not
necessarily an appropriate value to use. The onset and growth of whitecaps can
have a time scale of their own, shorter than the decay time, but independent
of our simulation step time. In the ensemble averaged model, the parameter
∆t, or equivalently α, is chosen from the analysis to achieve agreement with the
whitecap phenomenology in equation 1.

Given a probablity density function for the minimum eigenvalue, P (λmin),
the ensemble averaged Heaviside function is

〈Θ (λT − λmin)〉 =

∫ λT

0

dλ P (λ) (12)

Here we exclude negative values of the minimum eigenvalue as unphysical. This
is a Cumulative Distribution Function (CDF) for the PDF, and is a function of
the threshold value λT . A very similar quantity appeared in [5], with two differ-
ences: (1) the full Jacobian was used there, whereas here we use the minimum
eigenvalue, and (2) the PDF was assumed to be gaussian in [5], whereas here it
is obtained from simulation data.

The process for obtaining the PDF and the CDF is based on sampling values
of the minimum eigenvalue from frames of ocean surface simulation to assemble
a histogram of λmin. The PDF is the histogram after normalizing the histogram
values so that the area under the histogram is 1. Figure 4 shows the PDF for
several simulations of ocean surfaces. The similations differ by making random
selections of spectral model parameters for the TMA spectrum, and random
choices for the physical size of the simulation patch. Each PDF is labelled
according to its windspeed. Several properties of the PDFs are apparent from
this figure.

1. The PDFs have significant non-gaussian tails, and so it is important to
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Figure 5: PDFs for two ocean surface simulations, both with windspeed U =
11.1m/s but with other spectral parameters differing.

calculate the CDF directly rather than from an assumed PDF model form.

2. For a given windspeed, the width (and corresponding peak) can vary
greatly. Figure 5 shows two PDF curves with similar windspeeds but
with very different width and peak. Consequently, estimating the PDF
directly from the simulation data is very important for capturing an ac-
curate CDF.

From the data-driven PDF, a CDF is obtained by direct summation, as illus-
trated in figure 6.

This framework relating the whitecap fraction to the CDF can be restated
as an implicit procedure for selecting of a threshold λT such that

CDF(λT ) ≡ 〈Θ〉 =
〈W 〉(1− α)

1− α〈W 〉
. (13)

Because the CDF is monotonic in λT , it is accurately inverted by a simple
bounds test. This enables algorithm 1, which obtains a value for a threshold for
any value of the whitecap fraction.

5 Results

Random realizations of ocean whitecap maps were generated using the TMA
spectrum and spectrum parameters chosen at random in ranges displayed in
table 1. The PDF of the minimum eigenvalue, and the CDF were generated
from samples of a single frame of ocean surface. Generating the PDF from
multiple frames of minimum eigenvalues produced little impact on the PDF.
Following algorithm 1, the randomly chosen windspeed produced an average
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Figure 6: Cumulative Distribution Function (CDF) 〈Θ〉 for several ocean surface
simulations.

Algorithm 1 Algorithm for obtaining the minimum eigenvalue threshold for a
particular ocean surface realization and a whitecap fraction model. The factor
α is a model parameter equal to e−0.15

1. User-selected Spectrum parameters, including wind speed U .

2. Create random ocean surface realization

3. Estimate Probability Density Function P (λmin) from minimum eigenval-
ues of ocean surface realization.

4. Create Cumulative Distribution Function CDF(λT ) for the threshold λT .

5. W ← a (U − U0)b

6. Wreduced ←W ( 1 − α ) / ( 1 − α W )

7. λT ← CDF(λT ) = Wreduced
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Parameter Range
half life T (sec) { 4.0, 8.0 }
cuspscale fcusp { 0.05, 0.95 }

wind speed U (m/s) { 4.0, 25.0 }
wind direction (deg) { 0.0, 359.0 }

fetch (km) { 25.0, 200.0 }
patch size (m) { 400.0, 4000.0 }

patch dimensions (pixels) 2048× 2048
depth (km) 1000.0

Table 1: Simulation parameters for an ocean surface based on the TMA spec-
trum. A value for each parameter is chosen from a uniform distribution within
the indicated range. Some parameters have only a single value and do not vary.

whitecap fraction via the MOM80 model [1]

W = 3.84× 10−6 U3.41 (14)

which in turn produced a value for λT via the implicit equation 13 and α = 0.861.
The simulations were run for 300 frames, with a time step of 1/30sec, and the
whitecap fraction averaged over the last 100 frames. Figure 7 shows whitecap
fractions from the ocean surface realizations, compared to the phenomenological
curve for MOM80. As many authors of have noted while analyzing observational
whitecap data, the mechanisms producing whitecap fraction are many and not
all described by a dependence on wind speed alone [3]. Similarly, our model
of whitecap generation and evolution is sensitive to many more influences that
just wind speed, and so the whitecap fraction realizations should be distributed
around the model curve. In both observational analysis studies and the model
fitting here, the characterization of whitecap fraction in terms of windspeed is
a useful organizational mechanism. In fact, the scatter of data points in figure
7 bears a superficial resemblance to the scatter of observational data (see, for
example, figure 2 in [8]). Other whitecap fraction models that phenomenologi-
cally account for dependence on more oceangraphic conditions may also provide
opportunities for modeling of λT with more specific detail.

Figure 8 shows the whitecap opacity fields generated in three of the random
realizations in figure 7, representing a broad range of whitecap conditions gen-
erated. One of these cases is in the rendered ocean scene displayed in figure 1.
The whitecap opacity map O(x, t) is shaded as a white lambertian texture on
the surface.

6 Conclusions

In many computer graphics applications, generating ocean whitecaps via the
minimum eigenvalue threshold has been the method of choice, while the pa-
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Figure 7: Whitecap fractions obtained from simulations, in which the threshold
parameter λT is chosen via algorithm 1, with the value α = 0.861, or ∆t =
0.15T .

rameters involved have been user-chosen without much regard for ocean phe-
nomenology. Here a method has been demonstrated for making those choices
based on ocean phenomenology and the probability density function of the min-
imum eigenvalue. Because whitecap formation and decay depends on more
than just windspeed, the simulated whitecap fraction randomly deviates from
the phenomenological prediction. Overall however, this algorithm provides a
phenomena-driven and realization-senstive process for assigning the threshold
parameter to achieve a physically-reasonable amount of whitecaps.
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