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1 What is a Square Root?

For a number x, the square root is designated
√

x. Its meaning comes from its
definition, which is

(
√

x)2 = x (1)

This is the fundamental definition, and it can be used for defining the square
root of objects other than numbers.

2 Square Root of a Matrix

Consider a square N ×N matrix M which is have eigenvalues and eigenvectors.
Denote the eigenvalues by mα, α = 1, . . . N , and the orthonormal eigenvectors
êα. The eigenvectors satisfy

ê∗α · êβ = δαβ (2)

We can expand the matrix as

M =
N∑

α=1

mα êα ⊗ ê∗α (3)

and we can directly verify that

M · êα = mα êα (4)

Using the definition for the square root (
√

M)2 = M , we can directly verify
that

√
M =

N∑
α=1

√
mα êα ⊗ ê∗α (5)

and in particular that √
M · êα =

√
mα êα (6)

How do we use the square root of a matrix on a vector in N space. Since all
such vectors can be expanded in terms of the orthonormal eigenbasis, we can
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write an arbitrary vector ~v as

~v =
N∑

α=1

vα êα (7)

the application of the square root matrix is

√
M · ~v =

N∑
α=1

√
mα vα êα (8)

As a side note, if you know the eigenvalues of a matrix, then a good way of
computing the exponential of that matrix is

eM =
N∑

α=1

emα êα ⊗ ê∗α (9)

3 Eigenbasis for derivative operators - One di-
mensional case

When we go to looking at derivatives as operators, the eigenvalue/eigenvector
approach carries over, but the eigenvalues are continuous instead of discrete,
so there is some additional mathematical machinery to put in place. We begin
with one dimensional problems for this.

Consider functions f(x) of a single variable x. The deriviative d/dx is an
operator on those functions. You can directly verify that d/dx has eigenvectors

êk(x) =
1√
2π

eikx (10)

and the eigenvalues are ik, for k real-valued. The eigenvectors are orthonormal
in the continuous sense, i.e.∫ ∞

−∞
dx ê∗k(x) êq(x) = δ(k − q) (11)

So now lets look at the operator −d2/dx2. Since

− d2

dx2
êk(x) = k2 êk(x) (12)

we can see that êk(x) is an eigenvector and k2 is the corresponding eigenvalue
for −d2/dx2. Following the process used for matrices, the square root acts like√

− d2

dx2
êk(x) = |k| êk(x) (13)
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Since any function f(x) has a Fourier representation

f(x) =
∫ ∞

−∞
dk êk(x) f̃(k) (14)

the square root operator looks like this:√
− d2

dx2
f(x) =

∫ ∞

−∞
dk êk(x) f̃(k) |k| (15)

4 Two Dimensions

The two dimensional case is a straightforward extension of the 1D case. Now
positions are ~x = (x, z) and the eigenvalue label is ~k = (kx, kz). The eigenvectors
are

ê~k(~x) =
1
2π

ei~k·~x (16)

and are properly normalized:∫
d2x ê∗~k(~x) ê~q(~x) = δ(~k − ~q) (17)

Following the same procedure as above, we can verify directly that√
−

(
∂2

∂x2
+

∂2

∂z2

)
ê~k(~x) = |~k| ê~k(~x) (18)

So for any function φ(~x) that has a Fourier representation φ̃(~k),√
−

(
∂2

∂x2
+

∂2

∂z2

)
φ(~x) =

∫
d2k ê~k(~x) φ̃(~k) |~k| (19)

5 Conversion to Convolution

Through a series of manipulations of the identities associated with the eigen-
vectors, we can convert equation 19 to an equation for a convolution. First, we
insert an integral over the Dirac function:√

−
(

∂2

∂x2
+

∂2

∂z2

)
φ(~x) =

∫
d2k ê~k(~x) |~k|

∫
d2q φ̃(~q) δ(~k − ~q) (20)

=
∫

d2k ê~k(~x) |~k|
∫

d2q φ̃(~q)
∫

d2y ê∗~k(~y) ê~q(~y)

Since we assume that all of the integral converge and are well behaved, we
can move the order of integration around and rewrite this as∫

d2y

∫
d2k ê~k(~x) |~k| ê∗~k(~y)

∫
d2q φ̃(~q) ê~q(~y) (21)
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The integral over ~q we can recognize is just φ(~x). If we define

G(~x− ~y) ≡
∫

d2k ê~k(~x) |~k| ê∗~k(~y) (22)

then everything assembles to√
−

(
∂2

∂x2
+

∂2

∂z2

)
φ(~x) =

∫
d2y G(~x− ~y) φ(~y) (23)

which is a convolution of φ by the convolution kernel G.

6 Grid Discretization

The next step is to convert equation 23 to living on a 2D rectangular grid. So
we assume that we want to evaluate things on a grid consisting of vertices at
points ~xij . The function φ(~x) exists only at the grid points, and we label it
φij ≡ φ(~xij). Then we rewrite the continuous convolution in 23 as{√

−
(

∂2

∂x2
+

∂2

∂z2

)
φ(~x)

}
ij

=
∑
IJ

G(~xij − ~xIJ) φIJ (24)

There is actually a normalization issue here, because I haven’t put in anything
for the integration measure d2y. Instead, I am going to lump all of the nor-
malization problems into the free parameters in the problem, like the gravity
coefficient and the time step, and instead normalize by G(0). So I am going to
replace this with{√

−
(

∂2

∂x2
+

∂2

∂z2

)
φ(~x)

}
ij

→
∑

IJ G(~xij − ~xIJ) φIJ

G(0)
(25)

And so the weights in iWave are

wijIJ =
G(~xij − ~xIJ)

G(0)
(26)

The next order of business is to note that the definition of G in equation 22
is divergent. But since we are only simulating on a grid, we don’t need spatial
frequencies higher than the grid resolution. A simple way to handle this is to
insert a ”soft-cutoff” in the form of an gaussian term, and redefine G to be

G(~x− ~y) ≡
∫

d2k ê~k(~x) |~k| e−|
~k|2σ2

ê∗~k(~y) (27)

The parameter σ acts as a controllable cutoff. In practice, a value of σ = 1
works well, but others can too.
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We can make further reductions of the the expression for G by using polar
coordinates and evaluating the integral over the polar angle exactly. With the
switch to polar coordinates, G looks like

G(~x) =
∫ ∞

0

dk k2e−k2σ2
∫ 2π

0

dθ eik|~x| cos θ (28)

=
∫ ∞

0

dk k2e−k2σ2
J0(k|~x|) (29)
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