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ABSTRACT

An analytical expression for the underwater radiance distribution due to a purely “delta function”
sun is discussed. The expression derives from a WEKB evaluation of the path integral solution for time-
dependent radiative transfer, integrated over long times, and does not involve a small-angle approximation.
lowever, a dilfusion-limiting length scale previously found in the small-angle approximalion also arises in
this evaluation, suggesting that it plays a physically immportant role (independent of approximation schemes)
in governing the structure and evolution of the radiance distribution. In its present form, the analytical
expression reproduces the shape of the downwelling radiance distribution for angles as large as 90°, but is
inadequate for the upwelling component. However, the poor modelling of the upwelling compunent is not
a limitation of the WKB approximation, but is most likely due to the simplistic treatment of the phase
function. An eflort is underway to more carefully handle the phase function within this WKB framework,

1 INTRODUCTION

Although there exist several sophisticated codes for calculating the radiance distribution in the ocean
due to external light sourcesl: 2 3 4, there are situations when an analytical model is desireable, even
if the model is less accurate that the numerical approaches. Toward this end relatively accurate models
have heen developed which apply only to the up- and down-welling scalar and vector irradiances® 9. The
small-angle approximation is a method of generating models of the radiance distribution directly from
the radiative transfer eqtlati0117' 8, 9. While this approximation can model some aspects of the radiance
distribution (e.g. the diffuse attenuation coeflicient, broadening of the width with depth, and movement
with depth of the solar peak angle towards nadirlo) it is inadequate for modelling the distribution at angles
larger than a few degrees from the peak. However, it dues have the benefit that, in principle, a systematic
perturbation expansion can be constructed to improve its predictive abilities.

In the remaining sections 1 describe recent work on an analytical approach for directly solving the
radiative transfer equation, without requiring the small-angle approximation. The starting point is based
on framing the radiative transfer problem as a time-dependent phenomenon, with an external power source
that is constant in time. If we begin from a condition of no radiance, the radiance ramps up over a short time
period due to the constant power source, and the loug time result is the solution of the time-independent
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radiative transfer problem. The reason for adding the extra time-dependent behavior is that it allows
certain simplifications in the mathematical formulation, and in particular allows us to abandon the small-
angle approach. The outcome is a formally exact solution in terms of a phase-space path integral over

all paths light rays can take from the source to the observation point. The steps to this formalism are
presented in section 2.

An approximate analytical expression is derived in section 3 using the WKB approximation for path
integrals, and Laplace’s approximation for the integral over time. These approximations have impacts on
the physical fidelity of the result in several ways, some of which are discussed. An interesting consequence
of this approach is that a length scale £, defined as

1

L ——es ’
(0)ab

arises in the analytical result. This length scale also appears in the small-angle approximation?, and
could be interpreted in several ways. However, because it appears in both the small-angle and WKB
approximations, £ may be a fundamental controlling parameter of the radiance distribution.

In order to assess the success of the WEKTB approach, the analytical expression is compared in section
4 with the radiance data collected by Tyler!l, The shortcomings of the current results are discussed, and

steps for improvement suggested.

The discussion here is restricted to the case of a uniform unstratified ocean, with scattering coeflicient
b and absorption coefficient a.

2 TIME-DEPENDENT PATH INTEGRAL FORMULATION

The mathematical problem of obtaining the radiance distribution in the ocean due to solar lighting is
usually approached as a boundary value problem, in which the radiative transfer equation

[#-% 4 ¢} (@) = bfdn' P(#-#') L(Z, )

is solved subject to boundary conditions, including the condition that the downwelling radiance at the
surface is some prescribed form due to solar illumination. In the approach used here, the solar illumination
is treated as an external source at the ocean surface (2 = 0), and the radiative transfer equation is now

(A V4 8} L(#h) — b/dﬂ.’ Pl 3% Hai) = Fotor (5
For a “delta-function” sun used here,
oot Tt} = Foaiar 6(2) 00~ maun) 5
where 7, is the direction the sun rays are pointing into the water.
If an operator ¢g(Z,7n; #,7') is defined as

9(Z,4; &, #') = {[4-V + ] 6(h— ')~ b P(r-#)} §(F - &)
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then the radiative transfer equation can be phrased as a multidimensional integral equation
f Lo’ A g(&, 72, 7) L(F,#') = Fuotar(8,7) .

A formal solution of the form
i) = f B2’ dY g~ V&, 7; @, 7') Frotar(@,#)

1

follows from the construction of the inverse operator g~*, subject to boundary conditions.

An alternative, mathematically equivalent, solution comes from introducing the time-dependent radia-
tive {ransfer problem

{% LR c} L(5,8,) = b [ N P(h-#) L(Z,¥) = Futar (&) (1)

where s = vt is time in units of length by scaling with the speed of light in water v. The solution of this
problem can be written with the help of a kernel operator G as

L(s,2,7) = f &2’ d G(s, 7,7 7, 7') L(0, &, )
7 /0 ds' f Bz’ dY G(s — o', B, 7 &, ') Footar(&,7') (2)

where L(0, &, #) is the initial radiance distribution, and G satisfies equation 1 with Fyoter = 0 and has the
initial condition
G(0,Z,7; & ,7') = 6(F — &) 6(R — ') . (3)
Using the operator g, G can be written
& = fexnl—s0l)

From this form, a path integral expression for G was previously found asl2
G(s, &, i@, 7) = e f [d%p] [d92] 6 (B(0) - 2') & (B(s) - 7) 6 (5 g f ds' ,é(s'))
(i
# s dA !
X exp {bf ds' Z(f)’(s'))} exp {zf ds' p(s') - ﬂ—(f—l} > (4)
0 0 ds
where Z({) is the “pseudo”-Fourier transform of the phase function, and B(s) is the path a lightray can
take fromn the point &' to the observation point Z.
To obtain the time-independent distribution, we take the s — oo limit of equation 2, to arrive at
o0
B(=a)= f ds f B2’ dR G(s, & 7 &, ') Footar(8', ') - (5)
0

Two additional steps allow further reduction of equation 5 before approximations must be employed. One
of them uses the fact that G is of function of £ and &' only in the form & — ' (see equation 4). Therefore
the convolution over Z' can be done in Fourier space, using the Fourier-transformed quantity

Gls, @m0} = /daa: G(s, ¥+ Z, ;g 0') exp{—1g-z}. (6)
The second step uses the representation of the delta-function sun. The total result is
h ) it d(Iz =~ s ;
L(z:n) = Fso!ur ds f 2— G(S, gz, T,y 'nauﬂ)exp{3QZz} b (
o —oo &M

with g, being the z-compnent of g.

-1
—
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3 ANALYTICAL APPROXIMATION

Equations 4 and 7 are the necessary ingredients to begin the WKB evaluation outlined in the next
section. The path integral in equation 4 will be evaluated by the WKB procedurel3: 14 and the integral
over time in equation 7 will be evaluated by Laplace’s 1r1et]10d15, i.e. by expanding the integrand as a
gaussian around a maximum point. The final expression for the radiance is equation 13 below, with lerms
defined in the discussion surrounding it.

3.1 WKB Evaluation

There are two functional integrals in equation 4 which must be approximately evaluated. The integral over
the Fourier transform variable p{(s) is evaluated first, followed by the integral over lightray paths ((s).

The integral of p{s):

f[dsp] exp {/: ds' (!;Z(ﬁ(s')) + ip(s’) - é%f)-)}

cannot be evaluated for general forms of Z. Tor a sharply forward-peaked phase function, the form
frequently used in the small-angle approximation is

2

2@ ~1- 8, (®)

where (0?) is the mean square width of the forward peak. This form is also used here, recognizing that

it is an inadequate treatment of backscatter. In fact, this one approximation probably accounts for the

underestimate of upwelling radiance shown in section 4 below. Work is un derway to handle more reasonable

forms for Z. Nevertheless, we can expect the WKB evaluation to succeed at modelling the radiance

distribution better than the small-angle approximation, because the additional small-angle assumption
that 7 and #,,, are both close to nadir is not used here.

Having adopted equation 8, the functional integral over p can be evaluated because it is gaussian, to

give (8 = dB/ds’)
1 P 2
exp {_W/O ds } -

Here T have ignored normalizing constants, which can be picked up again in the final result when the initial
condition in equation 3 is applied.

B(s")

Alter Fourier transforming as in equation 6, the remaining integral is

Glos @A) = e [1d0) 8 (B(0) ~ fmun) 6 (5(s) - 1)

X exp{—ﬁ(la-z—)/usds' ﬁ(s') 2} exp{—z'/:ds’q‘-ﬁ(s')} : (9)
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As a sidenote, this path integral has an exact solution for § = 0 (see reference 16):

G(s,0,7,7') = e~ i i Yom () Y2, .(7') exp {—b(f)sn(n - 1)} 3

n=0m=-n

where the Yy, are the spherical harmonics. This particular result might prove useful as a limiting test
case in future efforts to develop improved models, but currently is not used.

To carry out the WKB approximation, the integration function ﬁ(s ) is decomposed into two compo-
nents: B(s') = Bo(s) + 7(s'), where Bo(s') is the mean path for the dominant contribution to the path
integral, and ¥ represents small deviations around ﬁ[, The mean path is obtained by minimizing the

effective attenuation
1 &
d r
26(62) /u s

Bﬂ(n) — ﬁaun)
ﬁAU(S) = n,

and the condition that By is a unit vector. Expressing o in terms of polar coordinates (9(s’), ¢(s’)), the
Euler-Lagrange equations for minimizing the attenuation are

)

]

subject to the boundary conditions

I(s") — $?(s') sind(s") cosI(s') = 0
% [@(3') sin? 19(3’)] = i

These equations have the general solution

cos 19(3’) = cosa cos(D(s — 80))
¢(s') = o+ arctan { i (D.(s ke 30))} ’
Sin

where a, 89, ¢g, and D are integration constants. In addition, the Euler-Lagrange equations also give

— 15,2(3:) i gbg(s’) sin? I(s') = D? = constant ,

* o D? s
= exp ——%(02) .
(0]

D=—,

8

o) :

1 ol
exp {—25(92)L ds

Applying the boundary conditions gives

so that

)

where © = arccos(7 - A,y ) is the angle between the observing and solar directions. Tn addition,

sina = sinfsun 5in(@ — Geun)
. cosf — cos O cos O,y
sin(Ds — : 2
(Do) cosasin ®
tan(Dsg
0o = Qaun + arctan { (__.._) :
sin a
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In these expressions, (0, ¢) and (@suns Psun) are the polar coordinates for # and TLgun Tespectively.

Using the decomposition of 3 into Bo and 7, and setling the horizontal components of q to zero, we
arrive at

» Sl @2 )
0(31 Gz, 12, nm.m) = eXxp {—0-3 = ﬁ-(—g"z-); - zqzs.f}

— — JI§ ? r r Dok !
X f[d’y] 6(7(0)) 6(7(s)) exp /{; ds 25(07) + ig,Z - Y(s") ; (10)
where i i -
* s B o= B0
= ;/; ds' cosd(s') = Sio (cos @ + cos0,,,) .

This expression is still exact, because the decomposition does not constitute an approximation. The WKB
approach however, tells us to treat ¥(s') as a “small” deviation from the mean path Bo(s'). To do that
carefully, the constraint that 3 be a unit vector must be maintained in some way. This constraint can be
written as

7*(s') -+ 29(s") - Bo(s) = 0.
While a careful evaluation using this constraint is desireable, for now it will be ignored. The integral in 10
then has a gaussian form, to give

[1an 6(3(0)) 6(3(2)) exp { - [ as Shay + a2 A)| P x s tem {—ebengls) (1)

up to overall normalization. The integral over g, in equation 7 can now be evaluated since it is now
gaussian:

R oo ©2 (z — 3£)2
~ L golar d 5% = — - .
L(z,1) = Fyo f{) s s exp { as 26(0%)s ~ 226(0%) 3 (12)

3.2 Time Integral Evaluation

The remaining integral over time s in equation 12 cannot be evaluated exactly. However, in comparing
a direct numerical integration of a few cases with the result of evaluation by Laplace’s method below,
Laplace’s method succeeded in reasonably reproducing the more accurate numerical result. Certainly
more important errors arise from the assumption in equation 8 for the phase function.

Before carrying out the approximate evaluation, the particular case 2 = 0 can be evaluated exactly, to
give (see inlegral 3.471.9 of reference 17)

a3

=374 e e
B0 = [; (@2 = .52/12} 62} K (\/2 (02 + {2,’12){&) ]

where €% = 1/((6%)ba) is the length scale found in the small-angle approximation, and K3/, is a modified
Bessel function. This solution is plotted in figure 1 for ¢ = ¢,un and 0,,, = 24°, and is dominated by
upwelling light. This is because the light source is at z = 0, and so the only downwelling light coming into
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Figure 1: Radiance at the z = 0 surface in the plane of the sun. The sun is located at @un = 24°.

the z = 0 plane from above is from backscatter of the upwelling light. Just below the z = 0 plane, there is
a downwelling peak in the i = A1,y direction.

For z > 0 the integral in equation 12 does not have a known general solution. The approach taken here
is to use Laplace’s method to approximately evaluate the integral. Writing

Liz,t) = F,o;a,f ds s7%/? exp{-5(s)},
0

L4 02 (z — s€)?
S(s) = as+ piemys t 2a0(07) 8

the integrand has a maximum where § has a minimum. That poiut so satisfies the quartic equation

(7 = s0/t; = = 2/0)
T4F72(02+§{)+T;c££:0,

2 24 4 8

which has only one real solution that minimizes §. Expanding about so,
1 5
5(s) =~ S(so) + -;Z-(s —E)” Sl

with

5"(s0) = )

[y+ﬁ+u—mw+a#wm

b(62)s3 12 283 250
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The integral remaining is now gaussian, giving

L(2,7) = Faotar {5"(50)} ™ 55°/* exp{—S(s0)} . (13)

Note that because S has the form F(s)
s
S(s) =as + —+~
( ) -‘l 6(82)3 ?
with I a dimensionless function independent of optical properties, the solution scales as 89 = {1, where T
is dimensionless. Just as in the exact integral evaluation at z = 0, and as in the small-angle approximation,
this approximate evaluation identifies the length scale £ as an important scale parameter.

4 COMPARISON WITH DATA

As a first evaluation of the outcome of equation 13, the predicted radiance distribution is shown in
figure 2, along with data reported by Tyler!! from Take Pend Oreille. The figure shows radiance in the
plane of the sun at 7 depths. The absorption and scattering coeflicients used in the model are ¢ = 0.12 m~-!
and b= 0.28 m™', as reported by Tyler. The model radiance is normalized to the data value at z — 66.1
m, 6 = 0°. The phase function width (8?) was set to the value 0.035. This value provides a qualitatively
best fit to the data, and was also previously found to be the best in a comparison of the same data with
the small-angle approximationl9,

Although the model clearly underestimates the upwelling light, the shape of the distribution for 8 > 90°
is more reasonable at depths below about 10 m (~ 4 beam attenaution lengths). There are three ways in
which improvements in the analytical approach should improve the comparison:

1. As mentioned earlier, a better representation of the phase function is needed in order to increase the
magnitude of backscatter in the model. Work is underway to allow general phase functions, at the
cost perhaps of needing some numerical iteration to solve a transcendental equation.

2. The solar distribution just above the ocean surface includes a relatively smooth background light field
in addition to the direct sunlight. The background appears to be important in forming the upwelling
light field near the surface.

3. The “sloppy” evaluation of the path integral over ¥ in equation 11 should be corrected. This will be
particulary important if the solution were used in time-dependent problems, such as pulse propaga-
tiom.

Despite these shortcomings of equation 13, the result here js an improvement over the small-angle
approximation in predicting the radiance distribution. In addition, the WKB approach provides a general
and systematic scheme for removing the physical and mathematical approximations used previously in
deriving solutions of the radiative transfer equation.
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Figure 2: Radiance in the plane of the sun at depths of 4.24, 10.4, 16.6, 29.0, 43.1, 53.7, and 66.1 meters.
The dots are data points from Tyler.
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