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The time-dependent radiative transfer equation in an absorbing and scattering medium is recast as an evolution
equation that is similar to the global formulation of Preisendorfer. All the properties of radiative transfer are
embodied in the evolution operator, which can be studied and manipulated in the Dirac operator notation. The
reciprocity theorem is obtained in a simple way from the fundamental components of the operator, and in a
homogeneous and globally isotropic medium this leads to the statement of the theorem in terms of the radiometric
distributions of a laser and a spherical point source. A path integral expression is derived for the evolution operator
by using the Dirac notation. By collapsing the Hilbert space of Euclidean and angular degrees of freedom into a
finite-sized subspace, an explicit finite-difference numerical scheme is obtained. A feature of the scheme is causal
interpolation, which adjusts the spatial interpolation on a step-by-step basis in order to guarantee that the speed of
propagation measured from the calculation is the physical (causal) speed to within the spatial and temporal
resolution of the calculation. This finite-difference scheme is unconditionally stable and with only weak conditions
is consistent. Lax’s theorem guarantees that the scheme converges to the continuous solution as the spatial,
temporal, and angular grids become arbitrarily fine. Example results from a code written to execute this algorithm
are presented. In this example grid and ray affects are illustrated. Finally, the scheme is modified to account for
sources of radiant energy located within the medium, and an algorithm is presented to include reflections from

surfaces within the medium.

1. INTRODUCTION

The evolution of the radiant distribution of light in a laser
pulse as it propagates through a scattering and absorbing
medium can in many circumstances be described by the
time-dependent radiative transfer (TDRT) equation. Prei-
sendorfer gave an excellent acecount of the conditions under
which this equation is valid,! including an outline of the
connection between it and the fundamental Maxwell equa-
tions. Under the appropriate conditions of validity, the
pulse can be characterized by its distribution of energy den-
sity in various propagation directions at each point in the
medium. The TDRT equation describes the temporal evo-
lution of such a pulse, given some phenomenological optical
information about the medium, in the form of the total
attenuation coefficient ¢(x) and the volume-scattering func-
tion B(x, fi, A’). The dependence of these quantities is on
the spatial position x and the incoming and outgoing direc-
tions of propagation A/, i. The pulse is characterized by the
radiance L(s, x, ), which is the power per unit projected
area per unit solid angle that would be incident upon a
surface located at the position x from the direction 2. The
TDRT equation for the radiance is

{% +A-V+ c(x)} L(s,x, /i) = J rB(x, i, )L(s, %, 7)), (1)
where s is time measured in units of length with s = vt, ¢ is
time measured in units of seconds, and v is the speed of light
in the medium. The TDRT problem is well posed in the
outer product space R® ® S? of three-dimensional Euclidean
space with the unit sphere when the initial distribution
Lo(x, f) is specified throughout the space.

A formal solution of Eq. (1) can be written in terms of a space
and angle convolution of an evolution operator with the initial
distribution and is equivalent to the global formulation dis-
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cussed by Preisendorfer. This global formulation is a practical
starting point for numeric and analytic evaluation schemes he-
cause, without approximation or loss of generality, it recasts the
TDRT equation as an explicit finite-difference problem. The
global evolution formulation can be written compactly by em-
ploying the Dirac bra-ket notation widely used in quantum
mechanics? and by using Hilbert space techniques; this notation
is assumed below. The radiance distribution L is represented
by an operator .£, which depends on time and satisfies the
evolution equation

L(s) = §(s)L(0), 2

where §(s) is the evolution operator. These operators act on a
Hilbert space with ket vectors |x, ), constructed by using an
outer product of the Hilbert spaces of Euclidean space R? and
the unit sphere S%

Ix, 7) = |x) ® |A).

The vectors in the corresponding dual space are the bra vectors
(x,7|. Theoperator .£ is related to the radiance distribution by
the formula

L(s, x, ) = f drd?n(x, AL, ), @)

so that the components (x, #l.L (s)|x’, #’) are interpreted as
the amount of radiance per unit volume per unit solid angle
that originates at time s = 0 at position x’ propagating in
direction A’ and is at position and direction (x, #) at time s.
The initial distribution operator can be taken to have the
form

(x, ALLO)Ix, A') = Lo(x, A)o(x — x')8(h — A,

and the evolution Eq. (2) is equivalent to
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Lis,x,n) = J d*x’d%n’Gs, x, f; X/, A)Ly(x’, i), (4)

where G(s, %, fi; X/, /') is just the component (x, AlS(s)|x’, A7).
The closure property of the Hilbert space has been used to
obtain Eq. (4). The explicit connection between this global
evolution formulation and the TDRT equation comes from
choosing ¢ to be the exponentiated operator

8(s) = exp(—sF), (5)
where the extinction operator # has components
(x, AlFlx, A7) =(h — )[R -V, + e(x)]
= B(x, A, A')}o(x — x'). (6)
In operator notation,
H=N-V+e— B,
where
(x, ALV X!, A7) = Ad(A — A)6(x — X),
Clx’, i’y = c(x)é(A — A)é(x — x'),
(x, AlBlx, 7)) = B(x, A, A)d(x — x),

(x, AlVIx, 1’y = V_8(x — x)8(A — AY). (7)

{x, F

Equation (5) follows from the initial condition that §€(0) = 1
and from the fact that

{i i }f} 9(s) = 0
ds
is equivalent to Eq. (1).

The compact bra-ket notation can be a useful tool. For
example, Appendix A uses Eq. (5) as the starting point for a
derivation of a path integral expression for the components
of §. The bra-ket notation is also used to construct the
numerical algorithm in Section 2. As a demonstration, the
reversibility property of radiative transfer, known as the
reciprocity theorem, can quickly be derived from the funda-
mental structure of the TDRT equation. For this purpose, a
Hermitian idempotent operator %, called the reversal opera-
tor, can be defined by the operation

Rlx, A) = Ix, — A).

Notice from Eq. (6) that when the volume-scattering func-
tion satisfies

B(x, A, 1) = B(x, —A', —f)
the extinction operator has the reversibility property
FH = RHIR,

from which it follows that the evolution operator also satis-
fies

= RGTA. (8)

Equation (8) is the reciprocity theorem. In component
form,

G(s,x, i, x', ") = G(s, x', — A'; x, —H).

The meaning of this theorem is clear: The radiance distri-
bution at (x, 71), which is to radiance initially at (x’, #’), is the
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same as the radiance distribution at (x’, —#’), which is due to
radiance initially at (x, —#).

If the medium is homogeneous and globally isotropic, a
common method of stating the theorem is to connect the
radiance from a spherical-point initial distribution with the
irradiance from a point-laser initial distribution. This form
of reciprocity follows from the operator form of the theorem.
The homogeneity and global isotropy imply that the optical
properties ¢ and 38 are independent of spatial position and
that 8 depends on the directions A and A’ only through the
quantity 71 - A". It follows that the components Gy (s, %, 7i; X', i)
(the subscript h is a reminder that the medium is homoge-
neous and globally isotropic) depend on the ten space and
direction dimensions only through the four quantities

lx — x|,
x—-x)-A,
(x—x')-#,

& oAy

n-n.

With this restriction and the reciprocity theorem, the evolu-
tion operator satisfies the particular property

(x, AlGuIx, A7) = (x, #I9ulx, A). 9
The radiance operator for a laser pulse located initially at
(xp, fip) is
L,(s) = E,°8,(s)|xp, ) (x,, 7,

where E,%/v is the energy in the initial pulse. This distribu-
tion has an irradiance of

Ey(s,x = x,, 1) = B, | dn [ &8 dn'(x, alL, ), #)

D 2

=E) J d*n(x, Alg,(s)lx,, 72,).

A spherical-point distribution initially located at x has the
radiance operator

L) =L j an'g,(s)lxs, A7) (xg, A,

with total initial energy 4wLs%/v. The corresponding radi-
ance distribution is

Ls,x = x5, ) = Ls® | &’ (x, 18, s)bxs, 1),
and by using Eq. (9), the relation
E (s, %, ) i Lgl(s, x, 1)
Ep(} LSU

emerges. This equation is the explicit statement that the
irradiance distribution from a laser point pulse and the radi-
ance distribution from a spherical point pulse are propor-
tional.

As mentioned above, the global evolution operator formu-
lation of TDRT is a convenient starting point for numerical

schemes of solving the equation. In fact, Eq. (2) is equiva-
lent to the finite-difference scheme

L(s + As) = §(As).L(s), (10)

which follows from the time-translation invariance of the
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TDRT equation. In particular, time-translation invariance
implies that

§(s + As) = £(As)9(s),

and this property gives Eq. (10) when applied to Eaq. (2).
The construction of a numerical scheme can then focus on
developing approximate and/or discretized versions of
§(As), L(s), L(s + As), and the product of operators. In
fact, this is the approach taken in the sections below in order
to construct a real-space finite-difference algorithm. The
result has several advantages over other commonly used
schemes, such as Monte Carlo simulation,? finite-element
techniques,* and traditional finite-difference approximation
of the TDRT equation.® Some of these advantages include
unconditional stability and great flexibility in choosing a
spatial interpolation algorithm that maintains consistency.
As with other finite-difference (and finite-element) meth-
ods, most interpolation schemes permit unphysical (acausal)
propagation of the light distribution; that is, the apparent
speed of light is faster than the physical speed. A general
framework has been found, however, in the form of criteria
for choosing the spatial points to be used in the interpola-
tion, which guarantees causal propagation at the physical
speed of light.

The construction of this finite-difference scheme is the
subject of Section 2. The development is restricted to the
homogeneous and globally isotropic problem in which ¢ and
£ are constant throughout the medium and 8 has the form

B(h, A’) = bP(A - ).

The constant b is the scattering coefficient, and P is the unit-
normalized phase function that satisfies

J d?nP(A -A) = 1. (11)

The limitations of the real-space algorithm in terms of spa-
tial and temporal resolution are discussed. The special in-
terpolation algorithm for ensuring the correct physical prop-
agation speed is called causal interpolation. The set of rules
for causal interpolation is also presented in Section 2, and
the reasoning behind the rules and justification for them are
reserved for Section 4. Section 3 demonstrates that the
algorithm is unconditionally stable and conditionally consis-
tent, and, according to Lax’s theorem, the algorithm is con-
vergent when the appropriate consistency requirements are
satisfied. Section 5 presents an example calculation of a
cylindrically symmetric pulse propagating through a homo-
geneous medium with an isotropic phase function. In this
example ray and grid affects are demonstrated.

If a source of radiant energy is present in the medium, the
TDRT equation must be modified in an appropriate way.
Section 6 develops the formalism and numerical algorithm,
including a source. Also in Section 6, an algorithm is pre-
sented for reflection of a propagating pulse from a surface
characterized by its bidirectional reflectivity distribution
function.

2, FINITE-DIFFERENCE EVOLUTION
ALGORITHM

The development ‘of a finite-difference algorithm that is
based on Eq. (10) and is suitable for numerical implementa-

J. Tessendorf

tion requires a series of steps for discretizing the spatial and
angular dimensions to a finite set of degrees of freedom.
This is accomplished by following the steps below in order:

1. Choose a partition of the unit sphere S? that reduces
the set of directions of propagation to a finite set ), k=1,
.-, N, and a corresponding set of solid angles {AQ,}. By
using this partition, the components of the evolution opera-
tor can be explicitly constructed in Fourier-space conjugate
to the real-space R3.

2. Restrict the size of the time-step As to be smaller than
one scattering length, i.e., As << 1/b. This allows for an
approximation of the expression for the evolution operator,
which is necessary for the construction of a real-space algo-
rithm, and places an upper bound on the achievable spatial
resolution.

3. Choose a set of spatial points (which need not be
uniform) and implement the causal interpolation algorithm.

Along with the execution of these steps, the properties of the
algorithm that provide for energy conservation are illustrat-
ed.

A partition of the unit sphere consists of a set of N bins on
the surface of the sphere, which are labeled by the index %
and do not overlap, although neighboring bins may share a
common boundary. The points on the boundary constitute
a set of measure zero and thus do not affect the outcome of
the discretization. Bach bin is characterized by a unit vec-
tor fi, pointing in the direction of the centroid of the bin and
asolid angle AQ,. Because the bins do not overlap,

N
Q. =4dm.
;Ak T

To find an explicit expression for the components of §(As)
on this partitioned set of propagation directions, it is neces-
sary to collapse the infinite-dimensional Hilbert space of
propagation directions with basis kets |#) to a finite-dimen-
sional Hilbert subspace whose basis kets are denoted |k §48
By defining |k} in terms of its action on the basis members of
the full space, it is demonstrated that this set constitutes a
basis of the collapsed Hilbert space. The ket k) acting on
[#) produces the result

(HlA) = { 0 if 7 is not in bin &_ (5}

1/AQ, if A is in bin &

This definition is summarized in the expansion

1 ;
ky =—— | d%nln
o e f ),
where [;d’n means angular integration within the solid an-
gle AQ; of bin k. From this definition it follows that the

collapsed basis is orthogonal. When the closure of the full
Hilbert space is used,

(klk") =Jd2n(k|ﬁ)(ﬁlk’)

1
= (m) O
k

Because the basis kets are not normalized to a magnitude of
unity, the identity operator in this subspace has the clostre
expansion '
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N
AQ, k) (Bl = 1. (13)
k=1

The behavior of operators in the collapsed space can be
obtained from their behavior in the full space coupled with
Egs. (12) and (13). The radiance operator at time s = 0 is

L (0, x; X') = (x, RILO)Ix, ')

= J d’n f r/(kln)y (x, AlLO)x, A7) (IR

1 1
= dZJd215A_A;3 I
AQ, AQk,L B e —RiE—x)
X L0, x, fi)
| ,
= A—QkLk(O, X}Bkkzﬁ(x — X ),

where the radiance in bin & is the average over that bin
1
AL,

This form for the radiance in a bin follows from the collapse
of Eq. (3) onto the discrete subspace

L. l5, %) = J &nL(s, %, A).
k

N
Lisx = Ag, J &/ (x, KLL ()|, k)
k=1
and from the use of Eq. (12) and the closure relation in Eq.
(13). When Eq. (10) is applied to the right-hand side, the
discrete evolution equation is

N
L(s+ As, x) = Z AQy, J d®x’(x, kl9(As).L(s)Ix’, &)
k=1

N N
= > A9, J & Y AQ J dx”
k=1 k=1

X (x, El9(As)|x”, k") (x”, k"| L(s)Ix’, k)
N
=N an, j &' (x, kl9(As)|x, B) Ly (s, X).

(14)

Because the medium is homogeneous by assumption, the
convolution in the x” variable in Eq. (14) can be converted to
a simple product by Fourier transforming the equation. In
the operator formalism this is accomplished by introducing
the conjugate basis with kets |q), which has the closure
relation

e3¢l
=1
J(Zrﬁ a)(g

and satisfies the conjugation property
(xlq) = exp(iq - x).

The expression for the radiance in this Fourier-transform
basis is identical to Eq. (14) when x is replaced everywhere
by q. Because of homogeneity, however, the convolution
can be evaluated, and the result is an evolution equation in
terms of a matrix of equations. In particular, homogeneity
implies that
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(q, kl9(As)la’, k) AQ;, = 6(q — @')Gpp(As, @).

The solid angle AQp, has been incorporated into this defini-
tion in order to remove it from the matrix expressions below.

The quantities Gp/(As, @) are the matrix elements of the
exponentiated matrix

G(As, q) = exp[—AsH(q)]
and
H(q) =iN.gq+ ¢ — bP.

The extinction matrix H is obtained from the extinction
operator # by using the relation

{q, k|ﬂlq’, RYAQ, = 8(a — q')H,,(q).

From Eqs. (7), the terms N and P have matrix elements

1 o
ﬁkk’ = 6kk’ AQ’Z Jk d2n I, (15)
L N J a2 J En'P(h - 7). (16)
e ’

P is called the phase matrix, and its elements are dimension-
less. When the number of bins IV is large, the average of the
unit vectors in a bin can be approximated by just the unit
vector at the centroid of the bin. In the implementation of
the numerical algorithm this has been assumed, and there is
a replacement of

Ny = dppefpe

The full TDRT equation in the partition basis is
N

Ly(s+ As, q) = Z G (As, @)L (s, @). am
k=1

The matrix quantities G and H satisfy a conservation prop-
erty and a symmetry property, which can be useful. In’
particular, the normalization of the phase function in Eq.
(11) implies that the phase matrix satisfies the condition

N
Z Pkkt =1. (18)
k=1

When this property is used, the extinction matrix satisfies
the condition

N
ZHkkt: iﬁk'q+a.
k=1
The structures of matrices N and P in Egs. (15) and (16)
imply the symmetry properties
ANy = ANy,
AQkPkk’ == Aﬂk:Pkfk,

which consequently apply to the full extinction matrix and
to the evolution matrix:

AQ,G(As, @) = AQ,Gy(As, ). (19)

These conservation and symmetry properties are applied
below to the real-space algorithm in order to obtain equa-
tions for energy and irradiance flux.
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A real-space algorithm cannot be obtained directly from
Eq. (17) because a Fourier transformation of that equation
cannot be done analytically. An analytic transformation
would be possible if the evolution matrix could be written in
the form

G(As, q) ~ G,(As)exp[—iq - M(As)],

where G; and M are some matrices. However, this decom-
position is not possible because P and N do not commute.
The alternative is to restrict the size of the time step As and
to place a lower bound on the smallest resolvable scale Ax =
2w /maxflql} included in a calculation. The result, which will
be shown below, is that the evolution matrix can be approxi-
mated by

G(As, q) = exp(—cAs)T(As)exp(—iAsN - q), (20)
where

T(As) = exp(bAsP)

is the transition matrix. Because N is a diagonal matrix, the
Fourier transformation can be evaluated to produce the real-
space algorithm
N
Ly(s + As, x) = exp(—cAs) Z Tyr(A8)Ly(s, X — Ry As).
k=1
(21)

A complete numerical algorithm follows from Eq. (21) when
a set of spatial grid points {x;} and an interpolation scheme
for estimating the radiance at the points y;, = x; — A:As are
chosen. As is demonstrated in Section 3, there is consider-
able freedom in choosing the spatial grid relative to the
partition and time step, but Section 4 shows that the inter-
polation algorithm must be chosen carefully in order for us
to ensure the correct speed of propagation.

An interpretation of Eq. (21) is that the radiance propa-
gating in the direction f; at the point x arrived there by
propagating along the line of sight from the surrounding
points x — fpAs to x, then scattering from the arriving
direction to the direction #;. In each time step one scatter-
ing event occurs, so that a distribution that includes multi-
ple-scattering events is achieved after several time steps.

The approximation of G by expression (20) and the re-
strictions on time-step and spatial resolution that make the
approximation valid follow when we consider the exponenti-
ation of the sum of two matrices A and B, which do not
commute. Inthe context of radiative transfer, A = —bP and
B = iN - q. In general, the exponentiated sum can be
decomposed as

exp[—s(A + B)] = exp(—sA)exp(—sB)exp[C(s)],

where C(s) is some matrix constructed from A, B, ands. In
fact, C satisfies the initial value problem

C(0) =0,

aC(s)

% = exp(sB)exp(sA)[exp(—sA), Blexp(—sB).

By expanding each of the exponents in a Taylor expansion
and by collecting powers of s, the differential equation can
be integrated to give
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= &/t
€O =D G ™
i=1

where the coefficient matrices are

i

gls (—1)fss

w. =
j o FalkalkslG — By =y — kp)!

Ry leg=
x BTk R g kAR gk
The first term of C in this case is

(As)®
2
The requirement necessary in order for expression (20) to be
valid is that this term be small in an asymptotic sense com-
pared with the terms that were kept. When C is compared

with iAsN - q, the first condition is that

C(As) ~ =b i(N-q,P).

bAs < 1, (22)

Le., that the time step be small compared with the scattering
length. This condition ensures that there is a negligible
amount of scattering during a single time step. The second
condition comes from requiring that C be small compared
with bAsP,

Aslgl «< 1.

For a particular numerical calculation, the chosen spatial
grid has a minimum resolvable length scale denoted Ax.
The second condition requires that

M))As

2w : (23)

which ensures that the scattering process occurs at the grid
points and does not have a contribution from multiple scat-
tering along a path of length As. If the spatial resolution
were finer than As/2w, the scattering that physically occurs
at the finer scales would not be accounted for accurately by
Eq. (21). Using aspatial grid that includes finer scales is not
harmful, however, because finer scales do not degrade the
stability and consistency of the algorithm. It should be kept
in mind, however, that the behavior of a numerical solution
on spatial scales smaller than As/2r is not necessarily a good
reproduction of the correct physical behavior.

The two conditions also ensure that higher-order terms in
C are small in the asymptotic sense as well.

It is instructive to compare this forn of the evolution
equation with Eq. (1) and in particular to examine the mech-
anisms that each has for the absorption, transport, and con-
servation of energy and irradiance flux. The purpose of this
comparison is simply to show that the equations for irradi-
ance and energy transport from the partitioned equation can
be matched term by term with corresponding quantities in
the continuous problem.

In the continuous problem the scalar and vector irradi-
ance are defined, respectively, as

E(s,x) = f d’nL(s, x, 1),

Rooad = J Brnllsieh)
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and from Eq. (1) satisfy (@ = ¢ — b is the absorption coeffi-
cient)

(% + a) E(s,x) = =V - E(s, x). (24)

Equation (24) can be converted to the finite-difference form
E(s + As, x) = exp(—ads)
s+ Ay
o {E(s, X) — j ds’ exp[—a(s — ¢)]V - E(s/, x)}-

Similarly, the energy contained in a volume V within the
medium is

eyls) = EJ d*x E(s, x),
o v
and it satisfies

d
(g + a) ey(s) = —e,y(s).
The energy flux e;y(s) is the rate of energy transfer out of the
volume V through its boundary aV:

eyyls) = % Lv dA Ay(x) - E(s, x).

In this expression d4 is the area measure on the boundary of
the volume and Ay(x) is the outward normal of the bound-
ary. This differential equation can similarly be converted to
the finite-difference form

eyls + As) = exp(—adis)

s+ A
X {ev(s) = J ds” exp[—a(s — s’)]ew(s’)}-
&

To construct the corresponding equations in the parti-
tioned basis for the finite-difference algorithm of Eq. (21),
the normalization and symmetry properties of Egs. (18) and
(19) can be used to obtain the relationships for T:

N

Z Ty (As) = exp(bAs), (25)
k=1
AQ, Tl As) = AQ, T, (As). (26)

The scalar and vector irradiances in the partition basis are,
respectively,
N
EP(s, x) = AQy L (s, x),
k=1

N

EP(s,x) = 2 AQ L (s, X)Fy,
k=1

where the superscript p refers to the partitioned basis.

From Egs. (21), (25), and (26), the irradiance transport
equation is
N
EP(s + As, x) = exp(—ecAs) Z AQ Ty (As)Ly (s, x — Ay As)
RE=1

= exp(—aAs)[EP(s, x) — 6EP(s, x)],
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where

N
E"(s,x) = As z AQ,

k=1

Ly(s,x) — Ly(s, x — A, As)
As I

The quantity 6E” is the discrete form of the continuous flux
out of the volume
st+As
f ds’ exp[—a(s — s)|V - E(s’, x).
5
Note that in the limit when As — 0 this equation becomes
Eqg. (24) because

L,(s,x) — Ly(s,x — i, As)
As

lim

Ag—{)

J = fi, - VL,(s,x);

thus
0EF (s, x) — AsV - EP(s, %).

If the equation for EP is integrated over a volume V, the
equation for the energy in the volume is

eyf(s + As) = exp(—aAs)[ey”(s) — de,P(s)],

where
N ”
As : Lk{s) X) b L};(Ss x= n’.’?AS)
s)=— 1\ AQ - .
bey(s) = = % > Ld x[ -~

A partitioned boundary 8°V can be defined as the set of
points x in the volume V, for which x — #,As is not in the
volume for some direction bin k. For points in V that are
not on the boundary, the limits of integration may be trans-
lated, leaving

N
deP(s) = % z AQ, J
k=1

fid

& Ly (s,x) — Ly(s,x — fi,As)
v As

which is the discrete version of the quantity

s+A5
J ds” exp[—a(s — s)]e,As”).
&

As in the continuous problem, the quantity ey ?(s)/As is the
energy flux out of the volume V.

The final step necessary to execute Eq. (21) in a numerical
algorithm is to choose a discrete set of points X = {x;,i = 1,
.- -, M} on which to solve the finite-difference equation. For
any finite set of points there is a set of one or more points v;
= x; — fipds that are not grid points; thus it is necessary to
obtain the radiance Lx(s, y;) by interpolation, using nearby
grid points. Denoting an interpolation algorithm by &, the
full numerical algorithm is

N

Li(s + As, x;) = exp(—cAs) Z Ty AAS)S[Ly s, x;, — ApAs)].
B=1

(27)

A particular interpolation scheme works by choosing a set of
points from X that are in some sense near the point y;; and
by choosing a set of unit normalized weights. Ifthe grid X is
not a simple, regular lattice, the set of weights and nearby
points can depend on the particular point x; and the propa-
gation direction 7, and are denoted w;y; and x;x;, respective-
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ly, wherel =1,..., M labels the set of points near y;.. The
interpolation scheme is

S[Ly(s, y)] = Z Wil (S, X0,
]

and the normalization of the weights is

Z Wiy = 1.
i

In addition, if some of the weights are negative it is possible
to produce a negative interpolated value for the radiance.
Because this is not desirable, the restriction

Wy = 0
is imposed.

Most interpolation schemes, for example, nearest-neigh-
bor and bilinear schemes, use the set of nearest points that
completely surround the position y;.. However, y;, is at a
distance As from x;, which is the longest distance that light
can physically travel in one time step. Some of the sur-
rounding points used in these interpolation schemes lie at a
distance from x; that is greater than As, and the interpolated
radiance includes radiant energy that cannot physically
have arrived at x; in the time As. This acausal behavior
occurs in many numerical schemes for radiative transfer,
including finite elements and more traditional finite-differ-
ence algorithms. Inaddition, the excess distance and excess
apparent speed of light depend on the direction of propaga-
tion and position in the grid. This acausal behavior can be
overcome by using the following set of steps, called causal
interpolation:

(a) A position, direction, and time-dependent length
scale liz(s) is defined, which replaces the time step length in
the interpolation formula. The modified algorithm is

N
Lyfs + As, x) = exp(—cAs) > TyA)SILyls, x; = Aydypls)]}.

k=1
(28)

The initial value [;(0) is As.

(b) Choose the interpolation points x;;(s) from the set of
points within a distance [;;(s) of x; and within the angular
bin k. Generate the weights w;;(s) and interpolate the radi-
ance. Typically, the set of points and weights used varies
from time step to time step.

(¢) Find the distance

5;_:3(8) = m?x[[x,- = x;kg{vs)i], (29}

which is the greatest distance that light traveled in the direc-
tion A to reach x; during this time step.

(d) Update l; to the next time step by using the proce-
dure

(s + As) = 1;(s) + As — §;.(s). (30)

(e) A time-step index m;.(s) is defined to account for
situations in which no points except x; are found for the
interpolation. m(s) is equal to the number of time steps
backward that the distribution must be sampled. For situa-
tions in which points in addition to x; were found in the
previous time, m;;(s) = 1. If no points in addition to x; were
found, mi(s) = mul(s — As) + 1. Equation (28) is the
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algorithm used when my(s) = 1. For larger values, the
algorithm is generalized to

N
Ly(s + As,x) = ' exp[—cm(s)As] Ty (myps)
k=1

X Q{Lyls — (my, — 1 As, x; — Al ()]}

The reason for each of these steps and their justification
are contained in Section 4. The effect of the causal interpo-
lation scheme is to ensure that at all times the apparent
speed of light is equal to the physical speed to within the
spatial and temporal resolution of the calculation. In Sec-
tion 3 it is shown that this scheme does not spoil the consis-
tency properties of the algorithm.

An important concept to introduce when the grid X is not
aregular lattice is that of a local grid spacing o, which is the
distance from the point x; to its nearest neighboring point
within the solid angle defined by bin k in the partition. This
quantity is used in Sections 3 and 4 in the discussions on
interpolation.

3. CONVERGENCE

The fundamental property desired of any finite-difference
algorithm is convergence, i.e., the solution of the algorithm
on a finite-sized grid should approach the corresponding
continuous solution as the grid becomes finer. Lax’s theo-
rem® shows that the convergence is ensured if and only if the
finite-difference algorithm is uniformly stable and consis-
tent with the original continuous equation as the grid be-
comes finer.

It should be noted that the restrictions placed on the time
and space resolution in expressions (22) and (23) are not
related to the stability of the algorithm embodied by Eq.
(27). These conditions specify the necessary temporal reso-
lution and the minimum grid spacing in order to ensure that
the real-space algorithm includes all the desired radiative-
transfer processes. It is reasonable to permit the smallest
spatial scale in a calculation to be smaller than As/27. How-
ever, the solution obtained at the smaller scales will not be
reliable because it does not include the small-scale multiple
scattering that should physically be present. The solution
on the larger scales will contain the correct multiple-scatter-
ing and attenuation features.

The stability of the algorithm follows from an examina-
tion of the temporal evolution of the maximum value K of
the radiance, defined as

K(s) = miz [Ly(s, x))].

The elements of the transition matrix T are all positive, and
when Eq. (25) is used, the maximum K satisfies

N
Kis + As) = exp(—cAs)mix {Z Typ A AS)S[ L3, x; — r‘:,z,As]I}
A TS

=< exp(—aﬂs)mgx {S[L(s, x; — ARAs)]}

=< exp(—aAs)K(s).
The last inequality follows from the fact that the interpola-
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tion weights are nonnegative and normalized to 1. When
this result is iterated,

K(s) = K(0),

and the uniform stability of the algorithm is proved.

The consistency of the algorithm depends on how the
algorithm reproduces the TDRT equation as the three
grids—spatial, angular, and temporal—become arbitrarily
dense. For the demonstrations of consistency in this section
the causal interpolation scheme is not considered explicitly.
Constraints added to ensure consistency under causal inter-
polation are discussed in Section 4.

The approach to demonstrating consistency is to repro-
duce the original TDRT equation from the finite-difference
scheme. When we begin with Eq. (27), the surviving terms
as Ag — 0 are

é [Ly(s + As, x;) — Ly(s, x;)] + Q[Ay, - VL,(s, x;)]

+cL,(s,x) = b Z Py Ly (s, x,),
k(
where
QAL - VL(s, x))] = Ais {L (s, x;) — S[L,(s, x; — A As)]}

Consistency follows if, as the grids become dense, the rela-
tions

%{ﬁk # va(s, Xi)} g ﬁk - va(s, Xf},
Z P, Ly(s, x;) — J d’n'P(f - 7)L(s, x;, )
~

hold. The second relation follows from the definition of the
phase matrix P in Eq. (16) in the limit when N — « while
ZkN:]AQk = 4w. The validity of the first relation depends on
the specific spatial interpolation scheme used. In particu-
lar, two schemes—linear interpolation and 1/r? weighting—
can be demonstrated to satisfy consistency.

In the case of linear interpolation the interpolated radi-
ance is

S[Li(s, x; — ApAs)] = (1 = E) Ly(s, x;) + 4 Ly(s, zy.),

Tk Oip

where oy, is the local grid spacing and z;, is the grid point at
the distance o, from x; in the partition bin containing the
direction —fA;. It follows that

Lk(S, XE) = L};(S: zik)

Oy,

g -« VLy(s, Xf)] o

and in the limit when the spatial grid becomes dense the first
relation is established.

If the time step is larger than the local grid spacing, then
some of the weights in the linear interpolation scheme are
negative. Because this can induce an artificially negative
value for the radiance, linear interpolation may not be the
best scheme for a particular application. An alternative
scheme with positive weights is a 1/r> method. When we
choose a set of points % in the neighborhood of x; — fipAs
for the interpolation, they are weighted according to
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where
Puh — 2 2
Afk{ = ]xik{ X; + nk:ﬁS| %

Assume that the points x;;; have been ordered so that Aj) <
Ajgg < Apg < .... The unit normalization of the weights

implies that
Ay Ay
Wipy = o z A2 g
ikl — Bpp

I i

As the spatial grid becomes dense, the weights w;;; are domi-
nated by those points x;;,; that approach x; — fyAs, so that
the interpolated radiance

Q[Ly(s, %; — M As)] = Z Wip Ly (s, X))
7

approaches the desired value of L (s, x; — fizAs). In thiscase

L(: f)_L(:X;'_ﬁrAS
S[fy « VL (s, x)] — e Z; : )’

which approaches the desired value as As — 0, and the first
relation is satisfied.

From the two interpolation schemes illustrated, it is clear
that essentially any interpolation scheme will give a consis-
tent algorithm if the interpolation becomes more accurate as
the spatial grid becomes dense. There are many finite-
difference algorithms for TDRT that differ only in their
essentials by the method of approximating the spatial deriv-
ative along the direction of propagation.® However, al-
though many algorithms enjoy consistency, the stability re-
strictions differ substantially for the different algorithms.
The advantage of the present algorithm is that the grids and
the interpolation algorithm can be designed to suit particu-
lar problems. Because uniform stability is guaranteed re-
gardless of the interpolation algorithm and because consis-
tency follows from reasonably constructed interpolation al-
gorithms, it is relatively easy to construct a convergent
algorithm that is tailored to a specific problem.

4, CAUSAL INTERPOLATION

Nearly any reasonable spatial interpolation scheme can pro-
duce a convergent TDRT algorithm. However, most
schemes also permit the radiance to propagate at a speed
faster than the physical speed of light. The reason for thisis
simple: Interpolation using surrounding points to the point
x; — fipAs usually includes points that are more than the
distance As from x;. Consequently, in a single time step,
radiance travels more than As, which produces acausal be-
havior.

To eliminate this problem, the interpolation algorithm
could be modified to one in which only points within the
distance As from x; are used. This scheme suffers, however,
from a propagation speed that is generally slower than the
physical speed. A simple one-dimensional model can illus-
trate this behavior. Assume a regular one-dimensional ar-
ray with spacing Ax, and choose As = mAx + n, where mis an
integer and 0 < n < Ax. In a single time step the distance
moved is mAx, so the apparent speed of propagation is
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pme — ey
m + n/Ax :
which is less than the physical speed (in these units in which
time s is measured in units of length, the physical speed of
lightis 1). In particular, if As < Ax, then m = 0, and there is
no movement of the radiance. By making As > Ax and 7
sufficiently small, the apparent speed p=ep approaches the
physical speed to within the desired accuracy. In a higher-
dimensional calculation, however, 7 cannot easily be made
small in all directions simultaneously, and in practical appli-
cations, when computing resources are limited, the discrep-
ancy between apparent and physical speeds can be signifi-
cant. Also, in higher-dimensional calculations the apparent
speed would depend on the direction of propagation and the
structure of the spatial grid.

The fundamental difficulty is that in all the interpolation
schemes discussed, the distance traveled in each time step is
always less than (or greater than) the physically required
distance. The error in the distance propagated may be less
than the local grid spacing and so is not measureable. The
error accumulates, however, and after some number of time
steps exceeds the threshold of resolution.

The solution of this problem is to adjust the distance
actually propagated in each time step in a way that ensures
that the accumulated difference between the actual distance
and the physically required distance does not exceed the
local grid spacing, i.e., is not measureable. Steps (a)-(e) in
Section 2 succeed in accomplishing this goal and maintain-
ing consistency of the algorithm, with a weak restriction that
the spatial, angular, and temporal grids must be sufficiently
dense to implement step (e) when necessary. The term
causal interpolation arises from the intent of the algorithm
to preserve the physical (causal) propagation speed.

Two properties of causal interpolation demonstrate that it
is an algorithm that meets the above objectives:

1. Consistency follows from the property that
As = la'fz(‘s) < As + Tiby

where oy, is the local grid spacing, because l;;, — As as ¢ — 0,
and the original finite-difference algorithm is restored.
2. After m time steps, the apparent speed is

Tik
vpPP(s) =1+ 0 (—)s

g

where s = mAs.

Both of these properties are proved below.

Property 2 follows, assuming that property 1 is valid.
From the definition of §; in Eq. (29), the apparent speed at
position x; in the direction #; after m time steps is

1 m
Ul_kaD]J — ‘; Z 5ik(m;AS);
m'=0

where s = mAs. From Eq. (30),

Lpl(m” + 1D As] — l;k[m’.ﬁs)}

Ua'kﬂpp(s] =1+ Z { "

m'=0
o Iile&(s + As) — Ifk(o)]_
s
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From property 1, [l;.(s + As) — Li(0) < o, i, it is bounded,
and property 2 follows. As a result of this property, the
apparent speed approaches the physical speed as more time
steps are calculated, and the error at any individual time
step is below the spatial and temporal resolution.

An inductive proof of property 1 comes in two parts. In
part 1 we assume that As > ¢;, and write

Tip = plls,

where a;;, < 1. Also, we assume that [;(s) = As + €k, With €,
< oi. The largest distance traveled is

0;(s) = oy

= ngegpAs,

2 (l‘l‘ka},m)
= mtf ——— |-

where

Qip

For the next time step,
£
lék(s £ &S) = As + AS(I -+ Ek' o O‘.'"knfk)'
5

The quantity in the parentheses on the right-hand side satis-
fies the inequality

ik

1+-=
As

— gl < agy,

and this produces the desired result:
lip(s + As) < As + a;,As
< As + oy

In part 2, we assume that As < ;. In this case radiance
does not propagate for my — 1 time steps, where

myAs + € > oy,
(my, — DAs + ¢ < oy

This situation is identical to that of part 1, with a time step
of m;zAs, and the same result as in part 1 holds. The finite-
difference problem to be solved has a time step of m;rAs, and
so the algorithm in step (e) of Section 2 is used. In this
situation there are m;;, — 1 time steps in which radiance does
not propagate in the i, direction from the point x;. Insome
geometries this has the appearance of a high-frequency os-
cillation. However, it should be emphasized that the oscil-
lation is controlled by the uniform stability of this algorithm
and can be reduced by performing caleulations with finer
grids.

5. EXAMPLE

The algorithms for TDRT, contained in steps (a)—(e) in
Section 2, have been coded and executed in FORTRAN on a
VAX 11/785 computer. The results of a calculation can be
examined in several ways, some of which are provided here
for a particular choice of initial conditions and optical prop-
erties.

The example under consideration is the propagation of a
cylindrically symmetric pulse through 98 m of a medium
with no absorption (¢ = 0), a scattering coefficient b = 0.1
m~}, and an isotropic phase function
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P.

lsutmpic(ﬁ' - ff) =

1

4 ’

Cylindrical symmetry is the property that the radiance dis-
tribution is invariant when the spatial and directional azi-
muthal angles are rotated rigidly together. If the propaga-
tion direction is given by the angle (8, ¢) in spherical coordi-
nates and the position is given by (p, ¢, 2) in cylindrical
coordinates, then the symmetry is

L(s,p,¢,2,8,0) =L(s,p, o + A, 2,0, ¢ + A). (31)

The FORTRAN code obtains the radiance in the plane ¢ = 0
at each time step. This requires knowledge of the radiance
at nonzero spatial azimuths in each previous time step,
which is obtained by using Eq. (31).

The phase matrix for the isotropic phase function is

AQ,,
4 )

Py =

The chosen partition has the 26 directions shown in Table 1,
consisting of an equiangular division in # and an equiangular
division in ¢ for the bins away from 8 = 0° and § = 180°. The
spatial grid in the ¢ = 0 plane is rectangular, with the grid
spacing Ap = Az = 2m, N, = 10, N, = 50, and the time step
As =2m. The initial distribution of the pulse has energy in
the forward direction (k& = 1) bin only, located at three
spatial points on the axis of propagation and the three points
adjacent to those axis points. The evolving distribution was
obtained for a total of 50 time steps, which required approxi-
mately 4 h of CPU time and 3/4 Mbyte memory on the VAX
11/785.

Figures 1 and 2 show the spatial distribution at several
times in the forward (k = 1) and backward (k¢ = 26) direc-
tions, respectively. The numbers next to the contours indi-
cate the order of magnitude of the adjacent contour below
the initial pulse strength (e.g., —1 is 10~! below the original
strength). The most prominent feature in these plots is the
ray effect characterized by the lobes corresponding to radi-
ance moving at 45 and 135° from the initial direction of
propagation. This type of ray effect is present in any
scheme in which the angular dimensions are replaced by a
finite set of directions. The forward edge of the pulse at
time s = 20 m has a ripple structure, owing to the course grid,
which smooths in time as the distribution occupies more
volume. The isotropic character of the phase function gives
a high weight to multiple-scattering events, and the distri-
bution behind the pulse quickly evolves into a smoothly
stratified one in both of the figures.

If causal interpolation had not been used in the calcula-
tion, the edge of the distribution would outline a square with
sides moving at the physical speed of light in the perpendic-
ular directions, and the corners of the square would move
faster than the physical speed.

Figures 3 and 4 show multiple time series in the forward
and backward directions, respectively. Each time-series
trace is the value of the radiance propagating in the appro-
priate direction at a designated point along the pulse axis.

One clear outcome of this calculation is that the magni-
tude of the forward-direction peak diminishes exponentially
in time as

L(s) ~ exp(—K,s),

and in this calculation K, ~ 0.096 m~'. Because there is no
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Table 1. Angular Partition for the Example

Bin Maximum Minimum
k 8, f, ¢ a4, ¢
1 0,0 22.5, 360 0,0
2 45,0 67.5,22.5 235, —22.5
3 45,45 67.5, 67.5 99.5,22.5
4 45, 90 67.5,112.5 22.5,67.5
5 45,135 67.5, 157.5 22.5,112.5
6 45, 180 67.5, 202.5 22.5,157.5
7 45, 225 67.5, 247.5 22.5,202.5
8 45,270 67.5, 292.5 22.5,247.5
9 45, 315 67.5,337.5 22.5,292.5
10 90,0 67.5,225 67.5, =225
11 90, 45 112.5, 67.5 67.5, 22.5
12 90, 90 112.5,112.5 67.5,67.5
13 90, 135 112.5,157.5 67.5,112.5
14 90, 180 112.5, 202.5 67.5, 157.5
15 90, 225 112.5, 2475 67.5, 202.5
16 90, 270 112.5, 292.5 67.5, 247.5
17 90, 315 112.5, 337.5 67.5, 292.5
18 135,0 157.5, 22.5 112.5, =225
19 135, 45 157.5, 67.5 112.5,22.5
20 135, 90 157.5,112.5 112.5,67.5
21 135,135 157.5, 157.5 112.5,112.5
22 135, 180 157.5, 202.5 112.5, 157.5
23 135, 225 157.5, 247.5 112.5, 202.5
24 135, 270 157.5,292.5 112.5, 247.5
25 135, 315 157.5, 337.6 112.5, 292.5
26 180,0 180, 360 157.5,0

absorption and the pulse dimensions are small compared
with the scattering length, K p should have the approximate
form

K, = bg(P),

where g is a dimensionless quantity that depends on the
phase matrix. The resulting value g ~ 0.96 is approximately
the same as 1 — Pyy. This allows for the interpretation that
the peak of the distribution attenuates in time at the rate
given by the scattering coefficient b and is partially restored
by single scattering of the forward-directed pulse into the
forward direction. Multiple-scattering events in the for-
ward direction would contribute additional powers of P
through

8(P) =1—Poo + " g, (P")go(bs)™™,
n=2
and these appear to be small compared with single scatter-
ing, even over time scales equivalent to many scattering
lengths.

In contrast, the backward-direction radiance shows atten-
uation that is due to single and multiple scattering. The
peak backward radiance at each point attenuates at the
same rate as the forward peak, indicating that the backward
direction obtains energy directly from the forward direction.
Over time, however, the attenuation rate at a given point
diminishes, indicating that multiple-scattering effects con-
tribute substantial amounts of energy to the backward direc-
tion. In fact, multiple scattering is important in all direc-
tions (including the forward direction) in regions away from
the pulse.

The rough picture that develops from this simple analysis
is that energy is removed from the propagating pulse by
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Fig. 1. Contour plots of the spatial distribution of the pulse in the forward (k = 1) direction at times s = 2, 20, 40, 60, 80, 100 m.

single-scattering events, with insignificant replenishment of
the pulse by multiple scattering, and the removed energy is
distributed in space and directions by multiple scattering.
This description probably breaks down when the pulse has
propagated for an amount of time that is sufficient to in-
crease the relative magnitude of the multiple-scattered ener-
gy to a level comparable with the attenuated pulse. A rough
estimate of the number of scattering lengths N, required for
multiple scattering to be seen in the pulse is

== P%’
Pyy?

ie., N; is the number of scattering events required to make
double scattering comparable with single scattering in the
attenuation factor g. For the example, N;, ~ 25, which is
more than twice the number of events obtained in the calcu-
lation.

The example presented here is a calculation on a coarse set
of angular and spatial grids, with an isotropic phase func-
tion. Realistic calculations in hydrologic or atmospheric

Ny~

optics would use phase functions that have a sharp forward
peak. To reproduce this peak in the phase matrix it would
be necessary to choose an angular partition that is corre-
spondingly fine, potentially requiring prohibitive amounts
of computational resources. However, experience with the
existing code with coarse calculations indicates that such
resources are available in modern work stations.

The CPU time and memory requirements for a given cal-
culation are determined principally by the product of the
number of space points times the number of partitioned
directions. The total memory requirement (in bytes) is
approximately

M= N,N,N,N,,

where N}, is the number of bytes per real number, N, is the
number of spatial grid points, N, is the number of parti-
tioned directions, and Ny is a scaling factor for the storage of
more than one copy of the distribution and other variables.
In practice, Ny is approximately 4. For example, if the unit
sphere is partitioned into 10-deg intervals, the number of
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Fig. 2. Contour plots of the spatial distribution of the pulse in the backward (¢ = 26) direction at times s = 2, 20, 40, 60, 80, 100 m.

directions is 648. When 100 spatial grid points are used in a
calculation and when we assume 16 bytes per number, the
total memory requirement is approximately 4 Mbyte, which
is readily available in work stations and supercomputers.

In principle, CPU time requirements also scale linearly
with NNy, but the method of estimating the CPU time
needed for a single time step is complicated significantly by
the particular characteristics of computer architecture and
hardware. In almost all calculations that we have complet-
ed, the execution time exceeds the linear scaling relationship
because of the virtual memory page swapping overhead on
the VAX 11/785. A calculation in which N, = 110 and N, =
26 requires approximately 2-3 sec of VAX CPU time for
each time step, whereas when N, = 1122 and Ny = 26, 1 h per
time step is required. There are several possible ways to
improve the efficiency of the code beyond these times, how-
ever. The existing code spends 96% of the CPU time con-
structing the causal interpolation weights for each time step.
This is because it treats the set of spatial grid points as an
unordered set, so that the search for the interpolation points

is conducted over the entire set of points. The execution
time could be reduced substantially by ordering the grid
points, at least partially, so that the search can be confined
to a limited subset.

A second technique to reduce the CPU time is to use
nonlinear, moving, or expanding spatial grids. If the radi-
ance distribution is confined initially, the grid can also be
confined initially and expanded periodically, either by add-
ing more points or by spreading existing points farther apart
so that CPU time is not used at locations for which the
radiance is zero. The grid can also follow the motion of the
core of a pulse so that the number of points remains fixed.

6. ADDITIONAL DEVELOPMENTS

Until now the discussion has focused on a finite-difference
algorithm for the evolution of an initial radiance distribu-
tion in an unbounded medium. Generalizations can be
made to include input of radiant energy over a period of time
by a source located within the medium and the reflection of
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Fig. 3. Time series of the forward-direction radiance at several positions along the pulse axis.

radiance from an arbitrarily shaped surface. These two
additions are discussed below.

A source of energy within the medium is described by the
amount of radiant energy delivered into a volume AV in the
solid angle AQ of directions during a time interval As. The
source function is given by

Alenergy) = F(s, x, A)AsAQAV/v
and appears in the TDRT equation as

[i +h-V+ c(x)] L(s, x, 1)
ds

- J &2n'B(x, A, A)L(s, x, #) + Fs, x, 7).
The corresponding operator equation is

(i % ?f) L(s) = F(s)
o5

and has the solution
&
L(s) = G(s).L(0) + J ds’8€(s — s )F(s").
0

To construct a finite-difference algorithm with a source
term, the operator solution is written as

s+As

s dAs = GihS T £ J ds’S(s + As — s)F(s).

5

In addition, the condition bAs <« 1 allows for the simplifica-
tion of the evolution operator in the source term to

G(s + As — ") — exp[—als + As — s')].

Assuming that the source does not vary rapidly during a
single time step, we find the operator algorithm to be
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Fig. 4. Time series of the backward-direction radiance at several positions along the pulse axis.

L(s + As) = §(As) L(s)

+% [exp(—ads/2) — exp(—aAs)]F(s)

+ % [1 — exp(—aAs/2)]F(s + As).

If we execute the partitioning and discretization as above
the complete algorithm is

N
L;(s + As, x) = exp(—cAs) Z Ty (As) Ly (s, x — fiphis)
k=1

+% [exp(—aAs/2) — exp(—aAs)]F, (s, x)

+éﬂ*ﬂﬂﬂmmMﬂ@+MmL

’

An algorithm for time-dependent reflection of radiance
from a surface can be constructed by appropriate interpreta-
tion of the quantities in the definition of the bidirectional
reflectivity distribution function. Suppose that a surface S
within the medium has a normal fig at the point xs. Inci-
dent radiance Li(xg, 71) is reflected at the surface in many
directions to produce the reflected distribution Lr(xg, 7).
The connection between the two can be written as

L'(xg ) = ] PR (A, ', x5) (—g - A1) Li(xe, 7),

where R is the bidirectional reflectivity distribution func-
tion.” In partitioned form this equation is

Ly (xg) = Z Ry (x5) Ly (xg),
=

where
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R (xg) o J d*n J d2nR(R, 1, xg)(—hg - A).
Ay Jy ‘

The time-dependent algorithm follows by interpreting the
reflected radiance as the observed radiance at the surface
point,

L,/ (xg) = Ly(s + As, xg),

and by interpreting the incident radiance as the distribution
near the surface in the previous time step, propagated to the
surface and reduced in magnitude by absorption,

ka(x‘g) = exp(—ads)L;(s, x5 — A As).

In this case the full algorithm is

Li(s + As, xg) = exp(—ads) z Ry Ly (s, xg — Ay AAs).
=

Modifications and restrictions for causal interpolation ap-
ply to this algorithm the same as for the volume-scattering
algorithm. In addition, a numerical execution of this algo-
rithm must account for hiding by the surface and reflection
of some portion of the causal interpolation propagation dis-
tance ;.

APPENDIX A

The development of TDRT in the Dirac notation in Sections
1 and 2 highlights the similarities in the formal mathemati-
cal structure between quantum mechanics and radiative
transfer, although the extent of similarities in their physical
interpretation depends on the nature of the application.
The mathematical similarities can be extended further by
constructing a path integral expression for the components
of the evolution operator §. The construction can be ap-
proached from a functional analysis point of view, or from a
more traditional piecewise method by using the closure rela-
tion of Hilbert space. The functional approach was applied
to the time-independent problem in Ref. 8, so the more
traditional approach? is taken here to complement that deri-
vation.

Although the path integral expression is a formal solution,
it offers the hope of leading to significantly new and varied
approximate solutions of the TDRT equation. As an exam-
ple, a new small-angle approximation for the time-indepen-
dent problem was extracted from its path integral solution
and compared with data on the in-water solar distribution
with some success.l? Path integral methods have been pow-
erful tools in the fields of high-energy physics,!! solid-state
and condensed-matter physics,'2 and even fluid dynamics.13
General schemes have been established for approximating
path integral expressions.!* An outline is given at the end of
this appendix as to how a nonperturbative approximate
evaluation might be obtained for the TDRT path integral
expression.

The construction of the path integral expression begins
with the definition of the components of the evolution oper-
ator

G(s, x, Ay ¥/, A') = (x, Alexp(—sH)|x’, #').
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The evolution operator can be broken into a product of N
short-time evolution operators, as in

N
exp(—s¥#) = exp(—AsF),
it

with s = NAs., Between each term in the product, the clo-
sure relation

J d*xdinlx, A)(x, Al = 1

can be inserted to give
N-1
Gls, x, i x/, 1) = [ (H dsx,-d2m)
i=1

N
X [T =i Ailexp(=as70)lx,_, ;)
i=1

where Ixy, Ain) = |x, #) and Ixq, Ag) = |x’, #’). The path
integral solution is obtained by considering the limiting form
when N — «, while NAs = s is fixed.

To proceed further, it is useful to introduce the variable p
as a conjugate to #, as there is a representation of the phase
function in the form

3
P, #) = J (:;‘;3 H(p)explip - ( — 7]

and there is an inner-product relation
(Alp) = exp(ip - A).

From these relationships and the closure of the {|p)} basis,
the terms in the product in G are

dBPf
(2n)?
X (¥, pilexp(—AsF)|x;_1, Aim1).

(x; Allexp(~AsFO)lx;_y, i) = [ @y T (s ly, )

The small time-step argument used to obtain expression
(20) can be used here to give

(¥, pilexp(=As#)Ix,_y, f,_;) = (¥, plexp(—cAs)exp(bAsP)
X Ix;_y + 2, Riy)
=6y —x;_; — A;_,As)
X exp(—ip; - f;_;)exp(—cAs)
X exp[bAsII(p;)],
whereas the conjugation property gives
(x;, iily, p;) = 8(x; — y)exp(ip; - ).

When the terms of the product are assembled,
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N-1 &p,
G(s,x,n;x', A') = exp(—cs) j d2n£ =
[T
N
X 6(7{ R ZAS&E)

=0

N
X exp|:z bAsII(DJ:l

=1

N S
2 n—
X exp[i Z Asp; - (—As__l):| .

i=1

In the N — = limit the sums over i in the exponents
become integrals over time, the discrete set {#;} becomes the
continuous function 3(s’), the measure becomes

N-—-1 3

d'p, ; A
[T & 5 — (DAL IDRIEIA0) — W1s[3(s) = 4],

i=1

where the 4w subscript means integration over the unit
sphere, and

n;— R, _, 9B(s)
As ds”

The resulting path integral expression for the evolution op-
erator is

G(s, x, i; X', A') = exp(—cs) J [DB]..[Dp]é[B(0) — A1
X 3[B(s) — Alolx — x’ — j " dsB(s)]
0

x exp{b L " asm [p(s’)]}

X exp[i r ds'p(s’) - Q%] (A1)
0

This expression involves an integral d23(s’) at each time
over the unit sphere and so is a path integral over a compact
space. Alternatively, it can be viewed as an integral over all
the three-dimensional space in which the unit sphere lies,
with a constraint on the magnitude of B(s’) at each time.
Path integration of constrained systems is discussed in many
texts, with some of the original work available in Ref. 15.
The net result in this case is that the integration measure
[D8]4~ becomes

D, = (D8] T ] #l8%=) - 1.

0

o

and the measure [Dg] is over the three-dimensional space.
When we use the functional delta-function identity

&

H 5[8%(s") — 1] = J[qu}exp{i r ds‘¢(s)[1 — ,82(3’)]} ,

frary 0

the expression for the evolution operator becomes
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Glsx, Wi, ) = op(—ds) [ [DS][Dp]De18[8(0) — 7]

X 8[8(s) — A5 [x ot J y ds’ﬁ(s’)]
i}

k=]

X exp{i j ’ ds’¢p(s")[1 — 82(3’)]}

X exp{b F ds’II[p(s’}]}
0

X exp[z j ds'p(s’) - algisj}:[, (A2)

0

and now all the integration measures are over unhounded
spaces.

Equations (A1) and (A2) are equivalent path integral solu-
tions of the TDRT equation. Equation (A2) is frequently
more useful, however, because path integration is generally
easier to evaluate over an unbounded space than over a
bounded space. Although this particular expression cannot
be evaluated in closed form exactly, it is possible to construct
an approximate evaluation.

When the phase function is strongly forward peaked (as,
for example, in ocean water) it might be possible to charac-
terize it simply by the mean square of the scattering angle u
<« 1 and to approximate it by

(p) ~ 1 —%pz.

In this situation the integration over p(s’) is Gaussian and
can be evaluated to give

J [Dp]exp[— b?’u L i depQ(sf):Iexp{i E ds'p(s’) - %%)‘}

_ e Lo [ TaBlec) B
_exp{ Zb#J;)dSI: 3 ]}

When the integration function ¢(s’) is redefined as \(s’)/2bu
and when the x — x’ variable is Fourier transformed, the
expression for the evolution operator becomes

G(s, 0,7, ) = exp(-as) | DEIIDNBIB(0) ~ WI3(8(s) — 4]
] ¥ ’ L i B ’
X exp[ﬁL ds'A(s ):Iexp[ ;L ds’q - Bls ]]

cen{ - [ {2 o).

The Gaussian integral over 8 can be evaluated exactly by
translating 8 to the integration variable 5 by

B(s") = W(s’) + 5(s"),
where W(s’) is a functional of A and has the decomposition

W(s) = Aaf(s) + A'f(s — s') — ibpag(s’),

g(s) = F deD(s, t).
0
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The quantities D and f satisfy the equations

diNg o
[— ( ,) + z?\(s’)] f(s) =0,
ds

[_ (i) + st'>] D(s,s") =6(s' =5"),  (A3)

as’

with boundary conditions

f(0) =0,
f(s) =1,
D(0,s”) =0,
D(s,s”) = 0.

Note that an exact solution for D in terms of fis

fls)f(s — $5)
fs = s")f(s") + F(s)f(s = s7)

D(s/,s") = (A4)

where s> = max{s’, s”} and s< = min{s’, s”}.
After translation, the path integral to be evaluated is

j [Da16[n(0)]5[n(s)]

L T < (0]
TS A ’
Xexp( 2b”]ﬂ ds {[ P ] + i)y (s)
and has the solution

exp [% Tr log(D)] . (A5)

The path integral over p, 8, and A has been reduced to a path
integral over just A and is

Gls a4 40 = f [DNlexp[T'Gs, g, 4, 7/, V)],
where

1 §
I'(s, @, A, 7, ) = —as + > Tr log(D) + —— j ds'\(s)
2 Zbﬂ 0

5 1 5
—u‘.f ds’q-W(s’) *T] ds’

0 2bu Jo
X {[MT 4 sx(s')Wﬁ(sf)}-
as’

This exact path integral expression cannot be evaluated
analytically. However, one of its potentially useful features
is that there is no explicit small-angle restriction—and prob-
ably no implicit small-angle restriction. An approximate
evaluation of the integral should produce an expression that
is equally valid for all angles # and #".

The steps to an approximate evaluation beginl* with the
definition of a function A.(s’), which characterizes the rate at
which W converts from the initial direction of propagation i’
to the final direction A. This function is defined by the
condition

oI
OA(E)

When the definitions of T', W, f, and D are used, this condi-
tion is the implicit functional equation

8buD,(t, £) = 1 — W), (A6)

(A=21,) =0.
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and the ¢ subscript implies that A = Acin this expression. By
expanding T in a functional Taylor series around the func-
tion A,

mrG = a " dto(t ST t')
I‘()\c'i'ﬂ'}"-'l—‘{ c) EL f-l;} fﬁ()mg( .

When only this quadratic expansion is kept, the leading-
order approximation is
), (AT)

2
&

G(s,q, b, 7') = exp(I‘r)exp(— —;— Tr log

NG

and
Ll 2 b (¢, )D& L bt yW.o) - W
POR@ g e DD m g D W We(e).

What remains to be done is to solve Egs. (A3) and (A86) by
using Eq. (A4) and to substitute the solutions into Eq. (A7).
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