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Gilligan: A Prototype Framework

1 Introduction

This document describes a prototype environmental scene simulator, called Gilligan, for simulating and ren-
dering scenes containing ocean surfaces, interaction of water surfaces with objects on the water, and clouds.
At present the scene simulation does not include an atmospher, terrain, foliage, targets, or emissions from tar-
gets. The simulation is intended to render images across an arbitrary number of channels in the hyperspectral
range of 12µm – 400nm (longwave IR to UV).

As a prototype environmental scene simulator, Gilligan is assembled from a collection of existing software
components and new code. Some of the existing software components are modified in some ways to assist
integrating them together. Some existing components are Open Source tools that provide convenient and
standardized capabilities.

Simulation of environment components (water surfaces and clouds) can be carried out on the CPU. Water
surface simulation can optionally be carried out on the GPU directly.

Hyperspectral rendering of the scene can be accomplished with a raytrace rendering on the CPU, and can
optionally carry out Global Illumination-like calculations. Both water surfaces and clouds can be rendered
on the GPU, with water surfaces rendered in a tradional OpenGL pipeline for mesh rendering with a GLSL
shader; and clouds rendered with a CUDA based ray march volume renderer.

Part I of the document covers ocean surface and interactive water simulation and rendering. Part II covers
cloud modeling and rendering. Both Parts also cover the software framework for Gilligan, how simulation,
modeling, and rendering processes fit together, and which software components already exist and which are
new in Gilligan.

Gilligan is considered a prototype for several reasons:

• It contains a number of existing components that were not written originally for use in an environmental
scene simulator, or even with each other.

• It is being assembled as quickly as possible, eliminating rigid and time consuming unit testing and
standards for code quality. Instead the assembly is relying on developer experience and limiting goals
for the outcome.

• There are limited goals for the performance of Gilligan, which serves primarily as a proof of concept
tool.

• There has been no review or implementation of coding or API standards from TrueView or other
systems.

At the end of each Part, there are references to additional material of interest, and some appendices
containing whole documents that provide more detail on the immediate topics of the the document.

2 Simulation of Random Ocean Wave Surfaces

The statistical properties of wave heights of fully-developed and fetch-limited ocean surfaces have been the
subject of a large amount of research and publication. An excellent summary of that work is Massel [2013].
From these statistical properties, random realizations of ocean surfaces can be generated. The choice of
using full developed oceans ensures conceptually that the statistics are stationary over time. It also allows
the ocean description to consist of a displacement of the wave height from a mean, flat ocean surface. The
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Gilligan: A Prototype Framework 2.1 Random Surface Realizations Using Fast Fourier Transforms

random realization generates a simulation of wave height displacements at a rectangular grid of points on
the flat ocean.

A key ingredient for these realizations is the power spectrum of spatial correlations of the waves, P (k),
for any particular wave vector k. The wave length of the wave associated with the wave vector is λ = 2π/k
where k = |k|, and the direction of travel of the wave is k/k.

2.1 Random Surface Realizations Using Fast Fourier Transforms

The procedure we follow for generating the random realization is described in detail in Deusen et al. [2004],
the relevant portion of which is reproduced in Appendix A. It begins with creating the random realization in
Fourier space, i.e. equation 42 of Appendix A. This is a two dimensional array of complex valued amplitudes.
Appendix A chooses a very simple model for the spatial spectrum. In section 2.3 we list many other models
for the spatial spectrum that have have stronger ties to experimental and phenomonological studies than the
Appendix A choice. For Gilligan, the user can select from the spectral models list in section 2.3.

The random realization of waves evolve in time according to equation 43 in Appendix A, where t is
the time at which the realization is to be generated in real space, and ω(k) is the dispersion relation for
the surface Bernoulli flow, where k = |k|. Section 2.2 presents several options for dispersion relationships.
Gilliganuses the combined form because all of the others can be achieved by appropriate choices of parameters
in the combined version.

In addition to dispersion, a drift current with velocity U would modify wave motion by introducing an
overall phase on the time evolution, so that the wave amplitude in Fourier space at time t is

h̃(k, t) =
{
h̃0(k) exp [iω(k) t] + h̃∗0(−k) exp [−iω(k) t]

}
exp (−ik ·UD t) (1)

The random surface realization in real space follows from applying a Fast Fourier Transform to the gridded
data for the Fourier space amplitude h̃(k, t). Properly normalized, this is

h(x, t) = FFT−1
(
h̃(k, t)

) 2π

Lx

2π

Ly
(2)

where Lx and Ly are the physical dimensions of the rectangular extent of the simulation.

2.2 Dispersion Relationships and Group Velocity

The dispersive nature of surface wave propagation is characterized by a temporal frequency ω that is driven
by the wavelength (via the magnitude of the wavevector, k) of the wave and physical properties like botton
depth and surface tension. The dispersion relationship also defines two velocities. The phase velocity is
defined as vp = ω(k)/k, and the group velocity is vg = dω(k)/dk.

Table 1 lists the commonly chosen dispersion relationships and their group velocities. The combined
dispersion relation is used in Gilligan.

2.3 Spectral Models

The spatial spectrum P (k) embodies the outcome of numerous experiments and phenomenological modeling
of the ocean surface. But there is no single model that is best to use. Researchers have built a variety of
models for a variety of oceanographic circumstances. Here we list the models incorporated into Gilligan, but
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Deep Water ω2 = g k vg = 0.5 (ω/k)

Shallow Water ω2 = g k tanh(kh) vg = 0.5 (ω/k)

(
1 +

kh(1−tanh2(kh))
tanh(kh)

)

Capillary Waves ω2 = g k (1 + (k`)2) vg = 0.5 (ω/k)
(

1 + 2 (k`)2

1+(k`)2

)

Combined ω2 = g k tanh(kh) (1 + (k`)2) vg = 0.5 (ω/k)

(
1 +

kh(1−tanh2(kh))
tanh(kh) + 2 (k`)2

1+(k`)2

)

Table 1: Dispersion and group velocity expressions.

will little discusson of their origin or suitability for particular conditions. More detail about these models is
available from Massel [2013].

The spatial spectrum is composed of three factors. The first is a frequency spectrum S(ω) arising from
analysis and modeling of time series data of the wave height of ocean waves, generated from instrumentaton
on anchored bouys. The frequency spectrum has no sensitivity to the directional distribution of the waves.
The second factor is a directional spectrum D(k, ω), providing the fractional amount of waves traveling in
the wave vector direction, usually relative to the wind direction in some way. The last factor is a Jacobian
of variable transformation that serves to normalize the frequency spectrum in term of wave vectors instead
of frequency, using the dispersion relationship.

P (k) = S(ω) D(k, ω)
vg(ω)

2k
(3)

where k = |k|, ω is the frequency associated with the wavevector k and the appropriate dispersion relationship
and group velocity vg.

In the remainder of this section a collection of models for S(ω) and D(k, ω) are listed. In general these
models were probably not created with a “mix and match” view toward them, but in Gilligan we allow the
user the option of selecting any combination of frequency spectrum and directional spectrum for the sake of
versatility.

2.3.1 Frequency Spectra

These frequency spectral are contained in section 3.2.3 of Massel [2013].

Pierson-Moskowitz

S(ω) = α g2 ω−5 exp

[
−5

4

(
ω

ωp

)4
]

(4)

where the parameters are
α 0.0081
ωp 0.879 g/U
g gravity (9.8 m/sec2)
U Wind speed

JONSWAP
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S(ω) = α g2 ω−5 exp

[
−5

4

(
ω

ωp

)4
]
γδ (5)

δ = exp

[
− (ω − ωp)2

2σ2
0 ω

2
p

]
(6)

where the new and redefined parameters are

α = 0.076

(
gX

U2

)−0.22

(7)

ωp = 7π
( g
U

) (gX
U2

)−0.33

(8)

γ = 3.3 (9)

σ0 =

{
σ′0 ω ≤ ωp
σ′′0 ω < ωp

(10)

σ′0 = 0.07 (11)

σ′′0 = 0.09 (12)

and X is the fetch.

Modified JONSWAP

S(ω) = β g2 ω−1
p ω−4 exp

[
−
(
ω

ωp

)4
]
γδ (13)

δ = exp

[
− (ω − ωp)2

2σ2
0 ω

2
p

]
(14)

where the new and redefined parameters are

β = 0.006 ν0.55 (15)

ωp = 7π
( g
U

) (gX
U2

)−0.33

(16)

γ =

{
6.489 + 6 log ν 1.0 ≤ ν < 5

1.7 0.83 < ν < 1
(17)

σ0 =

{
σ′0 ω ≤ ωp
σ′′0 ω < ωp

(18)

ν =
ωp U

2π g
(19)
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TMA

S(ω) = SJ(ω) r(ω∗) (20)

ω2
∗ = ω2 h / g (21)

r(ω∗) = f−2

[
1 +

2ω2
∗ f

sinh(2ω2∗f)

]−1

(22)

1 = f tanh(ω2
∗f) (23)

where h is the bottom depth, SJ(ω) is the JONSWAP frequency spectrum, and f is computed itera-
tively.

Multipeak

S(ω) = Sc(ω/ωp) + Sh(ω/ωp) (24)

Sc(ω/ωp) = A exp

[
−B

(
ω

ωp
− 1

)2
]

(25)

Sh(ω/ωp) = C

(
ω

ωp

)−n
exp

[
−7.987

(
ω

ωp

)−m]
(26)

where the new and redefined parameters are
A 1.835
B 22.2222
C 4.211
n 5
m 8

2.3.2 Directional Spectra

These directional spectral are contained in section 3.4 of Massel [2013].

Pierson

D(k, ω) =
2

π
cos (θ) (27)

cos θ =
k · Û
k

(28)

where Û is the wind direction unit vector.

Krylov
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D(k, ω) = 2s
Γ(2(s+ 1))

Γ2(s+ 1)
(cos(θ − θ0))

s
(29)

s = 1.8/ω∗ (30)

ω∗ = ω / ω (31)

(32)

where ω is the mean wave frequency, and θ0 is the wind direction.

Mitsuyasu

D(k, ω) =
22s−1

π

Γ2(s+ 1)

Γ(2s+ 1)

(
cos

(
θ − θ0

2

))2s

(33)

s/sp =





(
ω̃
ω̃p

)5

ω̃ ≤ ω̃p(
ω̃
ω̃p

)−2.5

ω̃ ≥ ω̃p
(34)

ω̃ =
ω U

g
(35)

ω̃p =
ωp U

g
(36)

sp = 11.5 ω̃−2.5
p (37)

JONSWAP

D(k, ω) =
22s−1

π

Γ2(s+ 1)

Γ(2s+ 1)

(
cos

(
θ − θ0

2

))2s

(38)

s/sp =

(
ω

ωp

)µ
(39)

sp =

{
6.97± 0.83 ω < ωp
9.77± 0.43 ω ≥ ωp (40)

µ =

{
4.06± 0.22 ω < ωp
−(2.33± 0.06)− (1.45± 0.45)

(
U
C − 1.17

)
ω ≥ ωp (41)

(42)

where C is the phase velocity C = ω/k.

von Mises

D(k, ω) =
1

2π I0(c)
exp [c cos(θ − θ0)] (43)

c =
log 2

1− cos
[
2 cos−1

(
0.50.5/s

)] (44)
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where I0 is the modifed Bessel function and s comes from the formula 34 for the Mitsuyasu directional
spectrum.

Hyperbolic

D(k, ω) =
1

2
β cosh−2 [β cos(θ − θ0)] (45)

β =





2.61 (ω/ωp)
1.3 0.56 < ω/ωp < 0.95

2.28 (ω/ωp)
−1.3 0.95 < ω/ωp < 1.6

1.24 otherwise
(46)

2.4 Horizontal Displacement

The spectral models of section 2.3 provide only for vertical displacements, whereas it is certainly true that
horizontal displacements also occur. As described in 4.6 of Appendix A, horisontal displacements follow
from the horizontal components of the equation defining the velocity potential. That equation leads to the
description of the horizontal displacements directly from the vertical displacement amplitude as

D(x, t) = FFT−1

(
−ik
k
h̃(k, t)

)
2π

Lx

2π

Ly
(47)

This approach is used in Gilligan, along with an optional adjustable parameter to let the user decide whether
to use horizontal displacements, and to artificially scale them if they chose.

2.5 Boundary Conditions

Because the ocean surface simulation uses Fast Fourier Transforms, the displacement data is periodic in each
direction with the period being the length of that side of the simulation, i.e. Lx and Ly. This periodicity
provides a convenient ability to tile one patch of simulation across an extended region of space, creating an
ocean surface much larger than Lx × Ly.

2.6 Multiple Layers of Displacement

An unfortunate artifact of this tiling is that a prominent wave can appear multiple times in a coherent line
along the line of site from time to time. Figure 1 shows this artifact in a render from the simulation and
rendering tool “RenderWorld”.

This artifact can be substantially suppressed through the application of multiple layers of displacement,
and through the impact of transmission loss and contrast reduction from the atmosphere. Atmospheric effects
are not the subject of this current implementation of Gilligan, but multiple layering is.

Figure 2 shows an image from “RenderWorld” in similar circumstances, but with 3 layers of surface
displacement. In this situation there is no artifact clearly visible. In practical usage, tiling artifacts have
always been adequately suppressed with 3 or fewer layers. The prescription for how these layers are chosen
is discussed in Gundersen [2015]. Gilligan allows for any number of layers to be used.

A consequence of using multiple layers of ocean displacement is that the spatial spectrum of the realization
can be altered. Spatial scales that appear in more than one layer contribute duplicate amounts of power to
the spectrum, producing artificial peaks in the spectrum. This can be calculated as a multiplicative factor
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Figure 1: Simulated and rendered frame of ocean water from RenderWorld. The repetition artifact is
clear throughout the frame, but particularly in the upper right portion of the image. Only one layer of
displacements were used.
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Figure 2: Simulated and rendered frame of ocean water from RenderWorld, using three layers of displacement.
There is no visible repetition artifact.
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on the spectrum. This multiplicative factor can be applied to each layer of simulation data, eliminating it.
Gilligan does not apply this correction currently.

To see the impact layering has on the spectrum of the waves, let us represent layer a in terms of a
continuous Fourier representation as

ha(x, t) =

∫
d2k

(2π)2
h̃Ca (k, t) exp(ik · x) (48)

The C superscript means that this is the continuous spectrum representation. When we construct the
actual amplitudes as a random representation with Fourier components h̃a(k, t), they are constructed within
the limited Fourier band driven by the maximum patch size (Lx, Ly) and the cell size (∆x,∆y)for the grid.
Consequently the realization has no Fourier components beyond that band. Expressing this band limitation as
a form of band filter in Fourier space, the relationship between the continuous amplitudes and the realization
amplitudes is

h̃Ca (k, t) = h̃a(k, t) Π(kx, Lx,∆x) Π(ky, Ly,∆y) (49)

where Π defines the band limit:

Π(k, L,∆) =





0 k < π/L
1 π/L < k < π/∆
0 k > π/∆

(50)

Suppose N surface realizations have been generated with different patch and cell sizes (Lax, L
a
y,∆x

a,∆ya),
and they are added together. The combined wave height is

h(x, t) =

∫
d2k

(2π)2
exp(ik · x)

N−1∑

a=0

h̃a(k, t) Π(kx, L
a
x,∆x

a) Π(ky, L
a
y,∆y

a) (51)

and so the Fourier representation of the combined wave height is

h̃C(k, t) =

N−1∑

a=0

h̃a(k, t) Π(kx, L
a
x,∆x

a) Π(ky, L
a
y,∆y

a) (52)

This height data is a random realization of an ocean surface from multiple sub-realizations. Each realization
originates from a common physically-motivated spatial spectrum P (k). Using ensemble averaging of these
realizations, the spatial spectrum of the combination is

PC(k) = 〈|h̃C(k, t)|2〉 (53)

=

N−1∑

a=0

〈|h̃a(k, t)|2〉 Π2(kx, L
a
x,∆x

a) Π2(ky, L
a
y,∆y

a) (54)

= P (k)

N−1∑

a=0

Π2(kx, L
a
x,∆x

a) Π2(ky, L
a
y,∆y

a) (55)

The spectrum of the combined waves is altered by the factor

B(k) =

N−1∑

a=0

Π2(kx, L
a
x,∆x

a) Π2(ky, L
a
y,∆y

a) (56)
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This function is zero on any scales that none of the sub-realizatons model, 1 on any scales modeled by only
one realization, and on any scale modeled by more than one realization it is the square of the number of
realizations modeling that scale. This factor induces alterations of the spectrum away from the physical
spectrum. But it can be corrected in the simulation by scaling all of the realizations by it, i.e.

h̃a(k, t) →
(

1

B(k)

)1/2

h̃a(k, t) (57)

This restores the spectrum of the combined waves to the desired physical spectrum. Gilligan includes the
option of applying this scaling in WaveSurfer.

3 Simulation of Interacting Wave Surfaces

The random realization approach in section 2.3 propagates linear waves accurately. It is limited in that it
does not provide for interaction with objects floating or moving on the surface. In section 5 of “Simulating
Ocean Water” (part of Deusen et al. [2004] and reproduced in Appendix A), there is a description of an
fast and effective method of handling sources of wave disturbance, and obstruction of waves by objects with
arbitrary shape intersecting the surface. The propagation algorithm described there is unstable generally, and
so damping has to be applied. The propagation algorithm was replaced with an accurate one in Tessendorf
[2014] that is based on FFTs and is very stable. This algorithm, named “eWave”, is mathematically identical
to that of the spectral model solution, but arranged in a way that supports interaction with objects. The
interactive character of eWave also allows it to simulate the interaction of “ambient waves”, i.e. ocean
surfaces produced from spectral models, with obstructions on the surface, by using the eWave surface to act
as the scattered wave component. Gilligan uses eWave.

A strength and a drawback of eWave is that the mechanism for interaction with surface obstructions is
very simple. The process amounts to (a) compute a 2D map of the intersection of obstructions, with a value
of 1 where there is no intersection and 0 where there is intersection; (b) multiply the simulation data by
that map or its compliment at several stages of the dynamic update. The computational cost of step (a)
depends on the complexity of the model of the obstruction and the density of simulation grid points, but is
typically not extremely expensive. Step (b) is trivial and very fast. Overall, this makes eWave an extremely
efficient algorithm for simulation of waves interacting with surface objects. However, an accurate physical
model of the surface disturbance produced by an object intersecting the water is much more complex that
this two step eWave procedure. An accurate physical model would include a careful evaluation of boundary
conditions, momentum conservation, and the flow field around the entire shape of the obstruction, including
below the surface. eWave should be viewed as an accurate simulation of linear wave propagation after the
obstruction produces a distrubance, with a simplistic model of the disturbance mechanism that could be
improved in the future.

Figure 3 is an example of a height field produced by eWave for a model of a sailing ship.
The remaining subsections below briefly describe the algorithms in eWave, and the complete update

procedure.

3.1 Linear Bernoulli Equation Dynamics using FFTs

For deep water waves, the linearized equations of motion on the free surface of the water update the behavior
of the wave height h(x, t) and velocity potential φ(x, t) at each 2D point x in the simulation region at each
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Figure 3: An example eWave calculation of the height field for a boat wake. This is a frame from a Maya
playblast showing a mesh displaced by the eWave height simulation.
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time t. The linearized equations of motion are

∂h(x, t)

∂t
+ UD(x, t) · ∇h(x, t) =

√
−∇2φ(x, t) + Sh(x, t) (58)

∂φ(x, t)

∂t
+ UD(x, t) · ∇φ(x, t) = −g h(x, t) + Sφ(x, t) (59)

where g is the gravitational constant, UD(x, t) is a drift current field that is input to the simulation, and Sh
and Sφ are input sources of disturbance of the wave height and velocity potential. These equations do not
model the physics of how these sources are computed, but allow for the presence of these sources.

The eWave solver for updating from time t to time t+ ∆t is a multistep procedure:

1. Add sources to the dynamic fields:

h1(x) = h(x, t) + ∆t Sh(x, t) (60)

φ1(x) = φ(x, t) + ∆t Sφ(x, t) (61)

2. Fourier transform the dynamic fields

h̃1(k) = FFT (h1(x)) (62)

φ̃1(k) = FFT (φ1(x)) (63)

3. Ignoring the drift current for the moment, propagate these fields forward in time in accordance with Tessendorf
[2014] (also in Appendix B)

h̃2(k) = cos (ω(k)∆t) h̃1(k) +
k

ω(k)
sin (ω(k)∆t) φ̃1(k) (64)

φ̃2(k) = cos (ω(k)∆t) φ̃1(k) − g

ω(k)
sin (ω(k)∆t) h̃1(k) (65)

where ω(k) is the dispersion relation for deep water.

4. Inverse Fourier transform the dynamic fields

h2(x) = FFT−1
(
h̃2(k)

)
(66)

φ2(x) = FFT−1
(
φ̃2(k)

)
(67)

5. If a drift current exists, apply an advection scheme (eWave uses Semi-Lagrangian, but in the future others could
be substituted)

h2(x) ← advect (h2(x),UD(x, t)) (68)

φ2(x) ← advect (φ2(x),UD(x, t)) (69)

6. Update to time t+ ∆t:

h(x, t+ ∆t) = h2(x) (70)

φ(x, t+ ∆t) = φ2(x) (71)
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This dynamic update scheme is sufficiently stable that no damping mechanism is ever needed to maintain
the stability. If a friction term is desired for other reasons, the wave height and velocity potential can be
modified in step 1 in this fashion:

h1(x) = h(x, t) e−∆t/τ + τ Sh(x, t)
(

1− e−∆t/τ
)

(72)

φ1(x) = φ(x, t) e−∆t/τ + τ Sφ(x, t)
(

1− e−∆t/τ
)

(73)

where τ is the relaxation time of the friction.

3.2 Generalized Dispersion

In circumstances more general than deep water, the dispersion relationship changes as described in section
2.2. In these situations, equations 64 and 65 continue to hold, but with a more general dispersion relationship.

3.3 Interaction with Objects Intersecting the Surface

eWave computes an interaction of the water surface with objects that intersect the water surface. These
obstructions interact with the water surface in three ways: (1) the obstruction prevents waves from propa-
gating to the interior of the objection, producing a corresponding scattered wave; (2) the obstruction can be
a source of displacement; and (3) the obstruction can act as a barrier to “ambient” ocean waves, producing
the corresponding scattered waves. The third item is the subject of the next subsection.

All interactions of objstructions with the water surface on controlled with a 2D map, called an obstruction
map, and has values ranging from 0 to 1. A value of 0 at a location of the map means that the obstruction
is present at that location and has full effect. A value of 1 means that the obstruction is not located at that
position and has no effect. A value between 0 and 1 means that the obstruction is close to that location
(“close” usually meaning within a grid point), and so a partial effect is allowed for. This obstruction map is
designated O(x).

The first interaction mechanism updates the wave surface by multiplying the wave height by the obstruc-
tion map:

hO(x) = O(x) h(x) (74)

This operation causes the wave height to satisfy the most basic boundary condition for obstructions, that
there are no waves at the location of the obstruction. The operation alone is sufficient to produce scattered
waves that form ripples and boat wakes, including Kelvin Wakes, simply by translating the location of the
obstruction during a sequence of frames.

The second effect uses the compliment of the obstruction map as a source of wave height disturbance, i.e.
as the Sh term in equation 60, in the form

Sh(x) = S0 (1−O(x)) (75)

with the scaling factor S0 chosen by the user. Figure 4 shows a breakdown of these elements of simulation
in eWave.

3.4 Interaction with Ambient Waves

Ambient waves come into eWave simulation as a height map hA(x, t) that has been created by other means.
For example, the output of wavesurfer spectral models qualifies. The most obvious aspect of ambient waves
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Figure 4: Breakdown of an eWave simulation. A boat travels at constant speed across the surface, while
artificial wave height sources exist around it. Top left: Source map constructed Sh in Gimp. The source is
on continuously throughout the simulation. Top right: The obstruction map from the boat at one frame.
As the boat moves, the black oval region moves from left to right in the map from frame to frame. The
obstruction map is also a source as described in equation 75, and added to the source map from the top left.
Bottom: rendering of the eWave surface and boat.
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is that they exist in the region of the obstruction, i.e. where O(x) = 0. Those waves are the ones that should
be reflecting from the obstruction.

The ambient waves located only inside the obstruction could be suppressed by adding

−hA(x, t) (1−O(x)) (76)

to the ambient waves. Alternatively, we can add this displacement to the eWave displacement, so that it
acts like a special source of displacement which propagates out of the obstruction. Hence the ambient wave
interaction is to update the eWave height to

h(x, t) − = hA(x, t) (1−O(x)) (77)

As with the interaction with obstructions, this method of interacting with ambient waves is only a very
limited physical model that omits issues of momentum conservation and mass conservation. However, it
captures the lowest level physical requirement that waves do not exist inside the obstruction, it is a very fast
computation, and it captures accurate propagation of the interaction away from the obstruction.

3.5 Horizontal Displacements

The mathematical pedigree of eWave is the same as spectral model-based ocean surfaces. As such, the
procedure described in section 2.4 is completely applicable here, without alteration.

3.6 Boundary Conditions

The propagation update procedure in section 3.1 uses FFTs on the wave height and velocity potential.
Consequently, these quantities are spatially periodic at their boundaries. It would be unfortunate for eWave
to compute a transient wave disturbance that propagates to other regions by virtue of periodicity. Boundary
conditions should be enforced that suppress propagation of waves past the boundaries.

A trim operation that uses linear tapering accomplishes this. The trim T (x) is applied to the dynamical
variables as

h(x) ← T (x) h(x) (78)

φ(x) ← T (x) φ(x) (79)

The trim is a product of two 1D trim operations

T (x) = Tx(x) Ty(y) (80)

Each of the 1D trims is a linear taper at locations close to the edges of the simulation:

Tx(x) =





x/L x/L < 1
|x− Lx|/L |x− Lx|/L < 1

1 otherwise
(81)

where the edge in the x direction is located at x = 0 and x = Lx, and L is the size of the linear taper region.
In practice, this trim procedure suppresses propagation across the periodic boundary, but it also frequently
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induces reflected waves, because the trim acts roughly like a very “soft” obstruction map. However, a
modification of the 1D trim to include a power low fall off as

Tx(x) =





(x/L)α x/L < 1
(|x− Lx|/L)

α |x− Lx|/L < 1
1 otherwise

(82)

has shown that a very small value of α, e.g. α = 0.05, both suppresses periodic propagation and reflections.
This is the method of choice for eWave boundary conditions.

3.7 eWave Update Scheme

Sections 3.1 through 3.6 are the collection of operations in an eWave simulation. The order in which those
steps are taken in a single update in time is:

1. Apply obstruction (section 3.3)

2. Apply ambient waves (section 3.4)

3. Apply trim (section 3.6)

4. Apply propagation (section 3.1)

5. Apply horizontal displacements (section 3.5)

6. Apply obstruction (section 3.3)

7. Apply trim (section 3.6)

4 Wave Simulation Platforms

Ocean surface and interactive water waves can be efficiently simulated on both CPU and GPU platforms.
Even on CPUs, a steady frame-by-frame update process can run in excess of 40 fps for a reasonably sized
grid (e.g. 512 × 512) and a quad-core processor. Multithreaded processing is most effective in the FFT
computation, and most OSS and commercial FFT packages support it. The CPU-based C++ code we are
using for ocean surfaces, called WaveSurfer, runs at these speeds. Similarly, the interactive water C++ code
we are using, called Ewave, also is dominated by FFT calculations, and so runs around 40 fps on CPUs for
reasonable grids.

For GPU-based simulation, CUDA codes will be written that implements the algorithms in WaveSurfer
and Ewave. This will use the FFT routines in the standard library that accompanies CUDA.

5 Rendering Wave Surfaces

Rendering an environment containing water surfaces and other elements brings together a variety of software
components and “glue” software that has them communicate with each other. A demonstration of glued
rendering is in figure 5 It uses several of the tools brought into Gilligan, but without a careful integration and
optimization of their code and functionality. The collection of tools and the process for each frame in this
demonstration is as follows:
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(a)

(b)

Figure 5: Demonstration of a rendered complex water water environment, showing (a) ocean surface over
long distances, atmospheric and water volume effects effects; (b) dynamic water surface motion related to
motion of other scene elements. 21
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Ocean Waves The utility WaveSurfer was used to create two layers of water surface: one representing wind
waves, and one representing long swells. Table 2 shows execution time for a frame of ocean surface
from WaveSurfer, as a function of the grid size. The wind wave grid was 512× 512, and the swell grid
was 2048× 2048.

Interactive Waves Interactive waves are produced when the shark fin and tail appear above the water
surface, and their intersection with the surface produce a wake using eWave. The input to eWave that
describes the height disturbance “source” is a map of the same size and resolution as the simulation
that describes where the source is present - essentiall values of 0 everywhere that the fin and tail do
not intersect the surface, and 1 where they do. This map is generated in Ash as the image in an
orthographic camera when the ocean surface and shark model are rendered with appropriate surface
shaders. Table 2 shows execution time for a frame of interactive waves, as a function of grid size. The
grid for this example was 1400× 600 with a resolution of 1 cm.

Water surface mesh The mesh uses level-of-detail meshing methods (Polack and LaMothe [2003]) to gen-
erate a grid that is high resolution near the camera and iteratively lower resolution away from the
camera. The surface mesh uses all three water surface simulations (two oceans and one interactive). In
figure 5 the mesh triangles have approximately 3 cm edges near the camera, and approximately 31 m
edges 8 km from the camera, for a total of just over 1 million triangles.

Sky and ocean floor The Sky is a HDR photograph, shown in figure 6 mapped onto an environment
sphere. The ocean floor is a flat plane with a fixed color. Figure 7 is the scene with the ocean surface
removed, revealing the skymap, bottom plane, shark model, and ship model.

Atmosphere and water volume Because the sky is an HDR photo, the impact of atmospheric volumetric
scattering and attenuation is “baked in” to the photo. However the scene also has a thin haze layer in
the atmosphere that is not part of the HDR photo. This atmospheric haze geometrically is a hydrostatic
profile of haze density, with a lapse rate of 50m. The shading of the haze consists of simple spectral
attenuation, and a constract color. The shader computes the analytically exact spectral transmission
between any two points. The constrast color is applied as the color times the spectral opacity between
the two points of interest. Under the water surface, the same shader was used to create a water volume
scattering and attenuation. The lapse rate underwater was set to 10000 m to effectively produce a
constant density field, and the spectral attenuation and constract parameters were set based on Figures
1 and 9 of Stentz [1975]. Figure 7 shows the impact of both atmosphere and underwater shaders for
attenuating light and adding contrast.

Ship and shark The ship and the shark are models from OBJ files. The ship includes texture maps, but
the shark is shaded as a solid color.

Rendering Shading of the water surface mesh included several contributions: reflections generated a ray
that was added to the stack of rays being rendered, as did refractions. From the intersection point,
a glitter contribution to the light was computed based on a “roughness” parameter based partly on
the unresolved wave glitter model in Tse et al. [1990]. The atmospheric attentuation and contrast
shader was also used. The scene was rendered with the Ash ray-trace renderer. All of the scene
geometry, shaders, light and camera were assembled via a python script. Python bindings exist for
Ash, WaveSurfer, and eWave, and the python script handles simulation control, scene assembly, render
control, and image output. The python script assembles each frame independent of any other frame,
including running eWave simulations, so that a render farm could be used. The ray tracer cast 40 rays
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Figure 6: High dynamic range photo of a sky used to render figure 5.

per pixel to suppress alias artifacts, and each ray cast spawned reflected/refracted rays up to 20 times,
although in practive the actual number of spawning events was typically below 5 per cast. The ray
tracer is multithreaded using OpenMP, and ran with 8 threads. Total execution time for a single frame
- wave surface generation, interactive wave simulation, mesh assembling, loading all geometry into Ash,
rendering, and image output - was approximately 5.5 minutes for each frame. However, this process is
far from optimized, and there is considerable room for speed up via the implementation in Gilligan.

This particular process does not represent the extent of capabilities of Gilligan, and is not a comprehensive
collection of the pre-Gilligan capabilities. This is just a snapshot of the process needed to create and render
this particular scene.

Regardless of the method of rendering a wave surface, the surface has to be assembled from a collection of
surface simulations. The collection consists of multiple layers of ocean surface waves with a range of spatial
scales, and zero or more eWave simulations of transient wave motion. The process for merging the assembly
into a unified surface is described in sectio 5.1.

The geometry of the unified surface can be represented in two ways within rendering engines. The highest-
quality, lowest-memory-footprint method is as a displacement map attached to simple geometry of the mean
ocean surface. A case study for creating unified water surfaces in the context of a renderman displacement
shader is contained in Gundersen [2015].

OpenGL rendering does not support displacement maps. Vertex shaders can handle some of the func-
tionality of displacement maps, but on-the-fly generation of micro-polygons is not yet easily accomplished.
Because of this, Gilligan supports only the second geometric representation, i.e. a displaced mesh of polygons,
as described in section 5.2.

The interaction of the light with the wave surface is modeled in Gilligan with three major components
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Grid Size Average FPS
WaveSurfer

128× 128 833
256× 256 215
512× 512 59

1024× 1024 14
eWave

128× 128 454
256× 256 59
512× 512 14

1024× 1024 2

Table 2: CPU simulation rates for various grid sizes, for one thread. Machine: Intel Core i5-2500 1.6 GHz.
Average FPS computed from the bash shell time command real usage for a routine that runs the surface
update 1000 times.

Figure 7: The scene rendered without the water surface, revealing the skymap, bottom plane, ship and shark
models.
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1. Specular reflection and refraction with Fresnel coefficients.

2. A microscopic model of reflection of unresolved waves. This can be significant when alignment of
camera, surface, and light source induce a lot of glitter in the image.

3. Blackbody emission based on the surface temperature and Fresnel transmissivity. This component is
extremely small in visible and UV bands, but important in short- and mid-wave IR, and dominant in
long-wave IR.

Each of these is described in the sections below, and an single comprehensive shading model containing all of
these presented. For iterative ray-trace renders in MaryAnn, the shading model includes the needed hooks
for handling multiple reflections/refractions.

5.1 Merging Multiple Surfaces

Both of the water simulation methods employed in Gilligan, FFT spectal models and eWave, are based on the
linearized Bernoulli equation for free surface motion. Within this framework, two solutions can be added to
produce another valid solution. Indeed, this is what makes it possible to use FFTs in the computation. The
concept of addition here means direct numerical addition of the wave height of two different simulations at
the same location, i.e. for two wave height simulations h1(x, t) and h2(x, t), the addition

hadd(x, t) = h1(x, t) + h2(x, t) (83)

is also a valid simulation. Similarly, if horizontal displacements are computed, they also can be directly added
together:

Dadd(x, t) = D1(x, t) + D2(x, t) (84)

This additive behavior extends to any number of simulated wave surfaces, and allows mixing of eWave and
ocean FFT simulations.

This general behavior is implemented in Gilligan via a base C++ class called WaveSurface, which provides
access to underlying simulation data via a standard interface. For a point x = (x, y) on the undisplaced
surface, the WaveSurface class provides virtual methods such as WaveHeight(x,y) for the wave height,
WaveCuspDisplacementX(x,y) and WaveCuspDisplacementY(x,y) for the components of D(x), and similar
access to other wave surface properties. A derived class called HdNWaves stores any number of WaveSurface
instantiations, and implements the virtual methods to carry out the needed additions to fulfill operations
like those in equations 83 and 84. This is a powerful mechanism for building complex wave surfaces from
components that are individually simulated for specific purposes.

5.2 Wave Surface as a Displaced Mesh

The geometry for the ocean surface begins with an undisplacement mesh, which consists of a collection of
points in space, Pi, i = 0, . . . , N − 1, each of which has three pieces of information: (1) a position in space
xi, a normal to the surface n̂i, and a list of edges connection point i to other points in the collection,
eji , j = 0, . . .Mi − 1. This is summarized by defining a mesh M as

M =
{
Pi | Pi ≡

(
xi, n̂i, {eji}

)
, i = 0, . . . N − 1

}
(85)

Typically, the undisplaced mesh is chosen as a rectangular grid of flat points connected as triangular faces.
In this situation it is convenient to use an index with two components, replacing the index i in equation 85
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with the pair ij, each index running in orthogonal directions. The undisplaced mesh has the form (assuming
the upward direction is the z component)

xij = ( x0 + i∆x, y0 + j∆y, 0) (86)

n̂ij = ( 0, 0, 1 ) (87){
ekij
}

= { i− 1j, ij − 1, i+ 1j, ij + 1, i− 1j − 1, i+ 1j + 1 } (88)

where (x0, y0) is an origin for the location of the mesh, and ∆x×∆y is the dimensions of a cell of the grid.
Displacement of this mesh modifies the point location and normal, but does not alter the connectivity of

the grid

xij ← xij + ẑ h(xij , t) (89)

n̂ij ← (ẑ − ~ε(xij , t)) /
(
1 + |~ε(xij , t)|2

)1/2
(90)

(91)

with ~ε being the slope of the displaced surface:

~ε(x, t) = ∇h(x, t) (92)

If horizontal displacements are included, this displacement becomes

xij ← xij + ẑ h(xij , t) + D(xij , t) (93)

n̂ij ←

(
(1, 0, 0) + ẑ εx + ∂D

∂x

)
×
(

(0, 1, 0) + ẑ εy + ∂D
∂y

)

∣∣∣
(

(1, 0, 0) + ẑ εx + ∂D
∂x

)
×
(

(0, 1, 0) + ẑ εy + ∂D
∂y

)∣∣∣
(94)

5.3 Material Shading

Both OpenGL rendering and CPU-based ray trace renderers separate the rendering operations into a multi-
step process. One of the key steps is Shading, which is the process of computing the amount of light leaving a
surface, based on the local surface structure, material properties that drive a BSDF (Bidirectional Scattering
Distribution Function) model, and the distribution of light incident on the surface from all light sources in
the scene. In ray trace and Global Illumination renderers, the shading process can also drive the generation
of additional rays representing reflected and transmitted light that interact with other elements of the scene.

For water surfaces, the BSDF model is specular reflection and transmission. The Fresnel reflectivity and
transmissivity are driven by the index of refraction as described in section 5.3.1.

Depending on the camera properties, viewing conditions, and wave simulation conditions, the camera
may be unable to resolve all of the detail of the waves in a pixel. This could lead to temporal and spatial
aliasing, which can be suppressed by increasing the quality of the sampling, at the cost of larger computational
resources. An alternative to increasing the computational effort is to modify the BSDF from being purley
specular, to one that averages the specular behavior over the distribution of waves that are unresolved.
This is very similar in concept to the Torrance-Sparrow model of BRDFs of rough surfaces. Numerous
oceanographic researchers have looked at the radiometric impact of unresolved waves, and a BRDF model
has been generated. More detail on this topic is in section 5.3.2.

For infrared wavelengths, blackbody emission becomes important and even dominant in some situations.
The model for this is discussed in section 5.3.4.

Finally all of this is put together into a unified shading model in section 5.3.7.
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5.3.1 Fresnel Reflection and Transmission

Specular reflection and transmission directions are described in section 6.1 of Appendix A. The reflectivity
and transmissivity for unpolarized light is equation 62 in Appendix A. These quantities depend on the ratios
of the indices of refraction of air and water. For Gilligan, we assume that the index of refraction of air is
1. For water, the index of refraction (IOR) is wavelength dependent. An excellent source of a model of the
IOR for water that covers are broad spectral range in UV to IR bands is IAPWS [1997]. This is the model
of water IOR that will be in Gilligan.

5.3.2 Unresolved Waves and Glitter

Unresolved surface waves contribute to the reflected radiance through a mechanism similar to that in the
Torrance-Sparrow model of the BRDF of a rough surface. This similarity was formalized into a specfic model
of reflectivity by Tse et al. [1990] (their equation 10) that is suitable for the Gilligan shading system. The
reflected glitter light is

Lglitter = Iinc
rflat

4 cos θ4
n cos θv

PU (~ε) (95)

where Iinc is the incident irradiance from sunlight, rflat is the Fresnel reflectivity of the flat water surface,
θn is the refracted angle with respect to the flat surface normal, θv is the viewing angle with respect to the
flat surface normal, and PU (~ε) is the probability density of unresolved surface slopes. As in Tse et al. [1990],
Gilligan uses a gaussian probability distribution for slope, with a variance derived from the spectral model
for the ocean surface and the spatial scale of the limits of resolution. Assuming the wave height spectrum is
P (k), the slope variance for any scale of resolution is

σ2
U (R) =

1

NP

∫ ∞

kmax

dk k (−k2) S(ω)

∫ π

0

dθ D(θ, k) (96)

where the normalization factor is

NP =

∫ ∞

0

dk k S(ω)

∫ π

0

dθ D(θ, k) (97)

and kmax = π/R is the wave number for smallest resolveable scale of the camera R, i.e. the resolution of an
individual pixel.

5.3.3 Whitecaps

Gilligan generates a whitecap map, which describes where whitecaps should exist on the ocean surface due to
peaking of wave heights, and how old the whitecap is post-generation. The map is not a suitable “texture”
of whitecap foamy detail, but acts as a guide for where to put whitecap texture in the scene. The whitecap
map can also act as a mixing parameter for the decay of the foamy texture.

The value at each pixel of the map is a number between 0 and 1. The value 0 means that no whitecap is
present at that location, and the pixel value is set to 1 when that location on the ocean surface has whitecap
generation (described below). Over time, if no more whitecaps are generated at a pixel, the value decays
exponentially in time, with a half-life that is input from the user to provide for the physics of foam decay
(see Tse et al. [1990]).

Generate of whitecap is detected from the following process: The ocean surface data includes horizontal
displacements, and also gradients of the horizontal displacement. These gradients in turn produce two
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Figure 8: Two examples of whitecap maps. The maps cover an approximately 500m × 500m area. Left:
Decay time of 8 seconds. Right: Decay time of 4 seconds.

eigenvalues that are dimensionless measures of the area compression of the horizontal displacement process
(see appendix A, section 4.6 for details on eigenvalue computation). When the minimum of the two eigenvalues
approaches 0, the peak of the wave is very sharp, and physically is the location where whitecaps are generated.
To update the whitecap map, a threshold value is provided by the user. At every location at which the
minimum eigenvalue falls below that threshold, the whitecap map is updated to the value 1. If that pixel is
not updated to 1, then its value is reduced by a factor of exp(−∆t/T ) for the exponential time decay, where
∆t is the time step in the simulation, and T is the whitecap half-life.

Figure 8 illustrates the data generated in whitecap maps. Area coverage of whitecaps depends on both
the decay time and the eigenvalue threshold.

5.3.4 Blackbody Emission

In Gilligan, blackbody emission assumes that the emissivity is the same as the Fresnel transmissivity, and
that there is a fixed temperature T for the ocean surface water that does not vary from place to place. The
emitted radiance is

Lblackbody = (1− rF ) Bλ(T ) (98)

where rF is the Fresnel reflectivity and Bλ(T ) is the Blackbody radiance for the particular wavelength λ and
temperature T .
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5.3.5 Skylight

In its most basic form, the contribution of skylight comes from specular reflection of the color of the sky

Lskylight = rF Lsky (99)

where rF is Fresnel reflectivity. Because Gilligan does not handle atmospheric models, Lsky will be an input
value.

5.3.6 Upwelling

In its most basic form, the contribution of upwelling light from below the water surface comes from specular
transmission of the color upward

Lupwelling = t↑F Locean (100)

where t↑F is the Fresnel transmissivity for upward transmission of light into the direction of the incoming ray
(view direction), and Locean is the color of light propagating upward from the ocean volume just below the
surface. Gilligan does not have a mechanism for simulating Locean, and instead uses an input value.

5.3.7 Unified Shading Model

Here all of the components of the surface shading are combined into a single model. At its basic level, the
unified shading model can be written as

Lwater surface = Lblackbody + Lglitter + Lsky + Lupwelling (101)

As described so far, this is a suitable shading model for an OpenGL render because it requires only local prop-
erties of the wave surface, a small set of input parameters, and some calculations based on that information.
The GPU renderer Ginger will use this shading model.

In the case of the ray trace renderer MaryAnn, the shading system is capable of launching reflected and
refracted rays and track the impact of more subtle effects like multiple reflections/refractions through waves,
underwater caustics, and structured water volumes and skies. However the shader will not implement all of
those capabilities. The shader will implement multiple reflections/refractions through the surface, but retain
input values for the sky and upwelling ocean color.

6 Simulation of Volumetric Clouds

The simulation of a cloud that is both ”fully formed” and evolving involves several steps of modeling the
cloud structure, including the spatial “noise”, then evolving over time several key parameters in the model.
Interleaved with the steps are options for storing the results in efficient sparse grids, or keeping the results
procedural for additional steps. Prior to rendering most of the operations should be committed to grid(s)
for the sake of render speed, but some aspects can optionally be left procedural during render in order to
capture detail with moderate cost in render time.

Gilligan’s system for modeling and rendering clouds is based on a procedural framework for creating
and manipulating volume data. It is capable of describing many kinds of volumetric data beyond clouds.
The procedural approach creates opportunities for altering the data processing workflow to generate vari-
ations,efficiencies, or research on new concepts. This section describes modeling, animation, simulation,
rendering, and data representation techniques that are all implemented in this procedural system.
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6.1 Sparse Grids for Clouds

For a variety of uses, volumetric data will need to be stored as values in 3D rectangular grids of voxels.
If the memory for the grid were naively allocated in an initialization phase, the size of the grid would be
substantially limited by the available memory on the CPU and/or GPU. For example, if only a grid for
density were allocated, with dimensions Nx ×Ny ×Nz, the required amount of memory would be

sizeof(float)×Nx ×Ny ×Nz. (102)

Assuming 32GB were available for this one grid, and that the grid is the same size in each direction, then the
maximum grid size is Nx = Ny = Nz = 2048. If this cloud is to cover a region of 1 km3, then it could only
be resovled to as small as 0.5 meters. This is very limiting on the size of the volume, and very demanding
on the size of the memory available.

A very efficient alternative is a flexible voxel allocation mechanism called “sparse grids”. Sparse grids
is a scheme for allocating memory for voxel data only in parts of the grid that have values differing from
a default value. Because clouds have large amounts of empty space around their shape and even within
their structure, the grid of density can avoid allocating memory for large fractions of the grid. This in turn
allows the options of having bigger grids covering larger volumes at finer resolution. Sparse grids can also be
hierarchical in their allocation strategy. In practice, 20003 grids and higher, with significant cloud structure,
have been created in situations in which the largest non-sparse grid that could be used was 1003, which is
less than 5MB. This example is extreme. The actual efficiency gain depends on the details of the cloud
spatial structure. In the opposite extreme, if the cloud had significant density in every voxel, the memory
usage would be a little higher than for a simple rectangular grid, because there is some memory usage for
the sparseness mapping.

Sparse grids can be implemented on the CPU and GPU such that they have the same data structure, so
that gridded data generated on the host can be transfered to the device without conversion. The details of
the sparse grid algorithm and implementation are given in appendix C.

6.2 Modeling Techniques for the Density Field

The construction of the density field for an individual cloud involves up to four steps of volumetric data
manipulation, each step refining the structure. This section describes each of these steps, followed by a
description of how these steps are implemented in Bishop. Chapter 3 of Appendix D describes most of these
steps in a very general way. For Gilligan, these steps use some alternative calculations that are faster that
the ones presented in Appendix D.

6.2.1 Base Cloud Geometry and Level Set

The starting point for creating the density volume of a cloud is with a basic, smooth, closed surface, created
as a polygonal model.

From the polygonal model for the basic surface, a level set representation, `(x) is generated on a grid with a
resolution appropriately chosen for the simulation. The level set representation of a surface is equivalent to the
polygonal geometry, but the volumetric information available for a level set makes volumetric manipulations
quicker to perform.

Note that the level set can be used to directly create a simple model for density inside the basic shape.
Equation 3.1 of Appendix D is a simple suggestion for a density field with very sharp transitions from full
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density to none. The full density value is a dimensionless value of 1. For physical simulations, it is necessary
to scale the value by a constant with appropriate units (e.g. g/cm3).

An alternative with more gradual transition is

ρbase(x) = clamp

(
`(x)

∆xskin
, 0, 1

)
(103)

In this form, the parameter ∆xskin is the “skin thickness” of a transition region that ramps from 0 density
to full on density. The function clamp is

clamp(f, a, b) =





a f < a
f a ≤ f ≤ b
b f > b

(104)

6.2.2 Cumulative Pyroclastic Displacement of the Base Cloud (Cumulo)

Pyroclastic displacement is a technique for using a noise field to create a shape with a bumpy surface. In
chapter 3 of Appendix D, the case is made for how this is useful in cloud modeling, and shows a particular
implementation of accumulating multiple iterations of pyroclastic displacement, a process called Cumulo.
For Gilligan the approach to iteration has been simplified so that it is easier to implement and more efficient,
without giving up the essential features of Cumulo.

The base shape to which displacement is applied is represented as a level set grid or signed distance
function. For example, the base shape may begin as a closed polygonal shape that provides a smooth hull
for the cloud, from which a level set is generated. This level set is designated `(x). We can think of this
level set as being a continuous field in space by using an interpolation scheme between the grid points. In
practice, tri-linear interpolation is very effective. The convention in Gilligan is that level sets and signed
distance functions are positive-valued inside the closed surface, and negative-valued outside.

From any point x in space, the location of the closest point on the surface is immediately available as
output of the Closet Point Transform (CPT),

XCPT (x) = x − `(x) ∇`(x) (105)

The CPT is an efficient tool for building the first layer of pyroclastic displacement. The displacement is
driven by a noise function, N(x) that returns a “noise” value at any point in space. Noise functions such
as Perlin noise, cellular noise, and others are frequently chosen. The noise function is typically extended
for more detail using fractal summation Ebert et al. [2002], which is assumed to be already implemented in
N(x). The displaced signed distance function is

`1(x) = `(x) + |N (XCPT (x))|γ (106)

The absolute value of the noise is used in order to create sharp, well-defined valleys between pyroclastic
“puffs”. The parameter γ controls the sharpness of the valleys. To illustrate this pyroclastic displacement,
figure 9(a) is a base shape (a sphere) rendered as a volume using equation 103 to generate density from `(x).
Figure 9(b) shows the volume of `1(x), after choosing scale and fractal values for the Perlin noise function
and choosing γ = 1. Figures 9(c) and 9(d) have other values of γ. These examples illustrate the extreme
ranges of structure achievable with pyroclastic displacement.

This displacement can be iterated. From `1 a “Procedural Point Transform” is constructed as

X2
PPT (x) = x − `1(x) ∇`1(x) (107)
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(a) (b)

(c) (d)

Figure 9: Variations of pyroclastic displacements for different values of γ, using fractal-summed Perlin noise.
(a) Base shape (sphere); (b) γ = 1; (c) γ = 0.15; (d) γ = 6.
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This is not a CPT because the input function `1 is not strictly a signed-distance function. Ideally we should
be using SDFs and CPTs in each level of iteration. Converting `1 to a SDF is an option, but takes extra
computation time that experience shows is not necessary in many circumstances.

In addition to creating the PPT, the iteration also requires a noise field. For this a fractal repetition of
the original noise field is used, i.e.

N2(x) = r N (x fj) (108)

The parameter r is called the roughness or lacunarity, fj is the frequency jump. With this noise field, the
iteration of pyroclastic displacement is

`2(x) = `1(x) +
∣∣N2(X2

PPT )
∣∣γ (109)

This iteration process is extendable to any number of iterations. Defining the next level of noise as

Nn+1(x) = r Nn (x fj) (110)

the n+ 1 iteration is

Xn+1
PPT (x) = x − `n(x) ∇`n(x) (111)

`n+1(x) = `n(x) +
∣∣Nn+1(Xn+1

PPT )
∣∣γ (112)

Figure 10 shows the progress through three levels of cumulo pyroclastic displacement.

6.2.3 Noise Stamping

The term stamping refers to the process of filling a 3D grid with values from a volumetric algorithm. For this
purpose, the grid can be thought of as a collection of pairs {xijk, vijk}, where xijk is the physical location
of gridpoint ijk, and vijk is the value stored at that location. The grid may be rectangular or some other
shape.

Noise stamping fills a grid with values from a noise function. Functions such as Fractal Summed Perlin
Noise return values at 3D locations that appear to be noise, although the algorithm does not involve a
pseudo-random number generator. Using fractal sums gives control over the range of detail. Other potential
noise functions are Fractal Summed Cellnoise, Band-limited FFT Turbulence, and many others Ebert et al.
[2002].

Simply filling the grid with values from noise functions fails to provide control over the shape of the
overall structure of the noise. To provide control, a geometric shape must be used to provide a boundary for
the region of stampling. Here we discuss two approaches:

Signed Distance Function
Any SDF can serve as a boundary guide. For example, the following could be used

vijk = max
(

0, N(xijk) (ρbase(xijk))
fade

)
(113)

where N is the noise function, ρbase is SDF-based soft mask defined in equation 103, and fade ≥ 0 is a
parameter to control the onset of the the ramp region of the boundary. Using the max function causes
the noise pattern to include holes. Figure 11(a) shows Fractal Summed Perlin noise inside a sphere.
The fade process helps to reduce the apparent boundary at the edge of the sphere, but it is difficult to
make it completely unobvious.
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(a) (b)

(c) (d)

Figure 10: Progressive build up of pyroclastic displacements, using Fractal Summed Perlin Noise as the base
noise function. (a) Base shape (sphere); (b) one layer of displacement by fractal-summed Perlin noise; (c)
two layers of displacement; (d) three layers of displacement.
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(a) (b)

Figure 11: Noise fields stamped into a voxel grid. Fractal Summed Perlin Noise as the base noise function.
(a) A single sphere of noise, with fading at the boundary roughness = 0.5. (b) 900 randomly distributed
small spheres stamped with noise; roughness = 0.75; xt = random. For both cases the number of octaves is
4 and the fjump is 2.2.

Replication over many SDFs.
The stamp process for a single SDF can be extended to stamping over many SDFs. The collection of
SDFs would be arranged to correspond to a base shape of interest. In order to provide more control and
more variability, associated with each SDF there is a collection of parameters for the noise. Since the
SDFs typically overlap, the noise at a given grid point has to be blended for all of the SDFs common
to that grid point. This sets up an iteration for the value at a grid point as

vm+1
ijk = max

(
vmijk, N

m+1(xijk)
(
ρm+1
base (xijk)

)fade)
(114)

where ρm+1
base is the m+1th SDF, and Nm+1 is the noise function set with the parameters for the m+1th

SDF. Figure 11(b) shows this method applied with 900 small spheres of noise stamping.

6.2.4 Advection

The fourth cloud-construction tool is advection. Advection arises in a dynamical context in many systems
involving fluid motion. Here advection is used as a way to mimic that structural impact of motion on the
volume of the cloud. The simplest way to apply advection to a field of density or temperature is a process
called Semi-Lagrangian advection. For example, a density field ρ(x) is transformed to the field ρSL(x) via
the operation

ρSL(x) = ρ (x − u(x) ∆t) (115)
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where u(x) is a velocity field to be discussed below, and ∆t is a timestep chosen based on the scenario of the
cloud being constructed. Semi-Lagrangian advection is the simplest and least-accurate approximation of the
solution for the advection equation. It is important to note that equation 115 can be rewritten as

ρSL(x) = ρ (XSL(x,∆t)) (116)

where XSL is a vector field with the form

XSL(x,∆t) = x − u(x) ∆t (117)

This vector field is an example of a mapping function called a Characteristic Map (CM), and is the basis of
a generalized advection discussed below.

The velocity field u(x) can be chosen from a mix of dynamical and statistical considerations, including a
wind vector field. A commonly used method is statistically motivated, using one of a several approaches to
create the field:

1. A spatial spectrum can drive the generations of a random realization of velocity values in a grid. A
natural spectrum to use could be the Kolmogorov -5/3 power-law, with soft cutoffs at the smallest and
largest scales. This approach is analogous to the spectrum-driven random ocean surface realization
process discussed in section 2.

2. Spatial patterns like Perlin Noise and others Ebert et al. [2002] are combined with fractal summation
to complex spatial noise. In this approach, the spatial noise is used to create vector-valued noise using
the parameter for translation along with various schemes for differentiation.

Figure 12 demonstrates the impact of Semi-Lagrangian advection on the density field. The time step
parameter ∆t is used to effectively scale the magnitude of the advection step in the Semi-Lagrangian al-
gorithm. Very large time steps can produce spatial structure that is less desireable. This is because the
Semi-Lagrangian algorithm is a low-quality approximation of advection, with the error growing rapidly as
the time step increases.

One way to adapt to this error is to break up the advection into multiple advections over smaller time
steps. For example, if the advection time were 3∆t, one advection would use the CM would be XSL(x, 3∆t).
Alternatively, advection could be applied 3 times, each with a time step of ∆t, which would be the CM
XSL (XSL (XSL (x,∆t) ,∆t) ,∆t) These CMs correspond to the same overall advection time, but produce
very different results because of the error in the Semi-Lagrangian algorithm, as illustrated in figure 13 by the
difference between 13(a) and 13(b).

Other advection approaches choose other approximations to advection. Reference Tessendorf [2015] and
Appendix E discuss a variety of advection schemes, and ways to evaluate them with different amounts
of accuracy. Figure 13 (c) and (d) show the impact of choosing an advection algorithm called Modified
MacCormack (which is more accurate than Semi-Lagrangian), and also of evaluating it with very high
precision by using many small steps in time.

Advection can impact the spatial structure of the cloud in many ways. The choice of advection algorithm
is one of the drivers. Another choice is the construction of the velocity field and the time step, and how many
advection substeps are used. Another driver is whether the CM is stored in a grid or evaluated analytically.
If the CM is stored in a grid, the resolution of the grid is also a driver of the eventual spatial structure of
the cloud. This choice of grid, grid resolution, or procedural CM is important becasue advection of material
induces fine spatial structure. In turbulence, there is a notion of an energy cascade from one scale of motion
to smaller scales (in 3D) or to large scales (in 2D), and the mechanism of this energy transfer between scales
is advection. This is turn means that the spatial scales represented in the CM have an impact on the details
of the fine structure that is created.
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(a) (b)

(c) (d)

Figure 12: Semi-Lagrangian advection applied on top of pyroclastic displacement. (a) Unadvected cloud (with
two layers of pyroclastic displacement). (b) Cloud in (a) advected with one small time step (∆t = 0.035)
over a noise velocity field. (c) Advected with time step 2∆t. (d) Advected time step 3∆t.
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(a) (b)

(c) (d)

Figure 13: Comparison of strategies to apply advection. (a) Semi-Lagrangian advection for a single step of
time 3∆t; (b) Three sequential semi-lagrangian advections, each with time step ∆t; (c) Modified-MacCormack
advection for a single step of time 3∆t; (d) Modified-MacCormack log-advection for 5 log-steps (32 subframe
steps) with total time 3∆t. See Tessendorf [2015] and Appendix E for definitions of various advection schemes.
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6.2.5 Bishop Workflow

For creating a single cloud, the task begins with a base shape for the cloud, in one of two forms: (1) a simple
closed-volume polygonal geometry that is converted into an sdf, or (2) a collection of particles with attached
attributes for a spherical radius and noise parameters.

For a base shape composed of polygonal geometry, all three modification processes are available as options
to generate the cloud density. For a collection of particles, both noise stamping and advection are options.
In all cases, choices of modification processes and parameter settings are made based on the desired outcome
for the cloud shape. The cloud data can be stored in grids at any step of the processing, and grids can be
written to disk for later use.

A cloud system can be assembled from a collection of individual clouds that have been accumulated in a
library. If the individual clouds overlap, their density and temperature are combined by using the values at
any point in space from the cloud with the largest density.

For GPU applications, the cloud fields (density, temperature, etc) are generated as sparse grids on the
CPU, then transfered to the GPU for rendering.

6.3 Modeling Techniques for the Temperature Field

For IR wavelengths, the temperature field in the cloud will be important. Gilligan will include two modeling
components for the temperature field. The basic level is a hydrostatic atmosphere behavior, in which the
temperature decreases with altitude in the cloud volume. The second component is a temperature fluctuation
within the cloud structure. The spatial structure of the temperature fluctuation will be assembled from the
three methods of modifying fields discussed in this section. The scaling magnitude of the fluctuations is a
user input.

6.4 Evolution of Cloud Structure

Clouds evolve. If the spatial structure is thought of as a random process evolving in time, the decoherence
time of a clouds can be as small at tens of seconds, up to many minutes. To capture this evolution, several
mechanisms will be available in Gilligan:

1. The base shape can evolve via animation of the polygonal geometry or animation of the particle
collection.

2. The parameters used in pyroclastic displacement can evolve.

3. The parameters in noise stamping can evolve.

4. The amount of advection can increase over time.

5. The advection velocity field could evolve based on the underlying procedure used to create it.

Simple animations of one or a few noise parameters can induce very natural evolution of the structure of a
cloud.
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7 Rendering Clouds

Clouds are rendered in Gilligan using ray marching. This algorithm is sufficiently simple to run on both
the CPU and GPU. Both emission and scattering are captured by ray marching, but the scattering process
currently in Gilligan is just single scattering.

7.1 Ray Marching

The ray marching algorithm in Gilligan is described in Appendix D. In addition, Gilligan uses acceleration
methods based on axis-aligned bounding boxes and kdtrees to accelerate the rendering by efficiently stepping
through empty portions of the volume. The scattering calculation is accelerated by pre-computing the
transmissivity to the light source and storing it in a Deep Shadow Map (DSM) grid (appendix D). Light
sources are modeled as point lights (directional lights set up as point lights at extreme distance). If the
point light is exterior to the volume, the DSM is stored in a frustum-shaped grid that is adapted to the
size of the render volume. If the light is interior to the volume, the DSM grid is rectangular and the same
size as the render volume. The resolution of the DSM grid affects the softness of the shadows created by
the transmissivity, i.e. lower number of grid points leads to softer shadows, but much faster computation of
the transmissivity. To improve the quality of the linear interpolation when the DSM is sampled, the values
actually stored in the grid are proportional to the log of the transmissivity. These values are interpolated
then exponentiated to recover the transmissivity. In all cases, the DSM grid is a sparse grid, and values are
not computed at grid points where the cloud density is zero, because the DSM value is not needed. This
approach speeds up the DSM generation and allows higher resolution grids because of the memory-savings
of the grid sparseness.

7.2 Material Shading

Material shading within the ray marcher generates the components of the spectral radiance at any point
along the ray march, based the local properties of the cloud. The two critical models are the choice of phase
function, and blackbody emission.

7.2.1 Single Scattering Phase Function

The ray marcher will have several pre-built choices for phase functions:

1. Uniform: a constant value of 1/4π for all scattering angles.

2. Henyey-Greenstein to capture strong forward scattering

3. Double Henyey-Greenstein to capture for strong forward scattering and a secondary backscatter peak.

4. Fournier-Forand to capture more features of natural materials than the others.

None of these phase functions are capable of producing rainbows or sundogs. More sophisticated phase
functions must be used for those phenomena.
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7.2.2 Blackbody Emission

For blackbody emission (the CE term in equation (A.3) in Appendix D), the formula for blackbody radiance
will be used in Gilligan based on the local value of the temperature field and the particular wavelengths
selected for rendering.

8 Rendering Platforms

Gilligan supports rendering on CPUs with a raytrace renderer, and rendering on GPUs with a hybrid of
OpenGL rendering and CUDA-based volumetric raymarching. Both rendering platforms feed the image data
to an image viewing package for display.

8.1 Rendering viewer: Skipper

Gilligan supports two methods of handling rendered images. One is to write the image to the filesystem
in OpenEXR format. This format supports float image data, any number of channels, and open metadata
inclusion. Routine experience with OpenEXR with images exceeding 40+ channels has been very good. To
aid efficiency, OpenEXR losslessly compresses each channel using zip. The metadata will include all of the
input parameters to the simulation and render, user info, timing and date information. To simplify access
to OpenEXR, Gilligan uses the OSS package OpenImageIO, which provides a common image read/write
framework to many file formats (e.g. JPG, TIFF, and PNG), while hiding the complexities and picadillos of
those image formats.

The second output mechanism is to pipe the image data directly to an image viewer, bypassing filesystems.
The Skipper image viewer will be based on pyside or glut, and use OpenGL to display the image, update
the image when a new or revised one becomes available, and allow scaling, scrubbing, gamma and brightness
corrections.

8.2 Rendering on CPU: MaryAnn

The CPU-based ray trace renderer in Gilligan is a repackaging and extension of a student-built renderer called
Ash. It is an efficient ray tracer that uses BVH to accelerate tracing, and C++-based shaders to control
many aspects of the rendering process, including surface shading. Although Ash is a straight-up ray tracer,
students have built Global Illumination renders from Ash based on path tracing, bi-directional path tracing,
and point-based global illumination by crafting suitable Ash shaders, without modifying the ray tracing
code. Scene assembly, material attachment, camera definition, and any other processing logic is conducted
in python scripts. All C++ features of Ash are accessble from python using binding generated using Swig
(Simple Wrapper Interface Generator).

MaryAnn is a repurposing of the Ash code base, and differs from the Ash code in several ways:

1. The Ash code base includes a number of student projects using Ash. These are absent from the MaryAnn
code.

2. MaryAnn includes a collection of python modules to streamline the generation and rendering of a scene
in a manner appropriate for the goals of Gilligan.
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Figure 14: Visual illustration of the data and conceptual connectivity of the component features of Gilligan.
Parentheses indicate the name of existing or planned software modules.

8.3 Rendering on GPU: Ginger

Water surfaces rendered on the GPU will be accomplished via the traditional OpenGL pipeline. GLSL
shaders for surface shading will be written. Vertex data will come into the OpenGL pipeline either via vertex
buffers (when the water surface is generated on the CPU), or via CUDA access to the vertex buffer memory
space when the water surface is generated on the GPU with CUDA. The combination of python scripts,
GLSL shaders, and CUDA to accomplish this is called Ginger.

9 Simulation and Rendering Framework

Figure 14 illustrates the connectivity of the various components of Gilligan. The clouds portion of the
framework is described in Part II of this document. The components labelled WaveSurfer, eWave, and Bishop
existed individually as C++ code prior to the creating of Gilligan. Much of the content of the CPU-based
renderer MaryAnn existed as a C++ renderer named Ash. The Python-based scene description component
called Thurston is a rewrite and refactoring of existing Python code. The completely new components in
Gilligan are the GPU renderer Ginger, the viewer Skipper, and the GPU portions of WaveSurfer, eWave, and
Bishop.

10 Existing Code

Priority is a numeric ranking, with higher values meaning higher importance and/or degree of difficulty.
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10.1 WaveSurfer

Description: Computes FFT-based spectral model ocean waves at any input time. Dispersion includes
parameters for deep, shallow, and capillary waves.

Platform: C++ and Python

Modifications Needed: (1) Add the various spectral models in section 2.3. (2) Add drift velocity option.

Modification Priority: 2

10.2 eWave

Description: Simulates dispersive water waves in response to sources and obstructions intersecting the water
surface. Simulates scattered waves from incident ambient waves scattering from obstructions.

Platform: C++ and Python

Modifications Needed: Wrapper code to encapsulate as a WaveSurface object.

Modification Priority: 1

10.3 Bishop

Description: A nearly-comprehensive collection of volume modeling and rendering tools. Modeling is struc-
tured as a procedural process that also supports gridded and particle data, and simulation of any
quantities. A volume renderer performs single-scatter raymarching. This is also a research tool for
studying approaches to rendering multiple scattering in radiative transfer.

Platform: C++ and Python

Modifications Needed: Add indexed sparse grid data structure (see Appendix C)

Modification Priority: 4

10.4 Ash

Description: Student-built efficient ray-trace renderer. Very flexible control via C++-based shaders for
material and other computations. Scenes are assembled in python. Ash will be cleaned of extraneous
student projects, bundled with new python scripts for scene simulation (see Thurston in section 11.9),
and renamed MaryAnn.

Platform: C++ and Python

Modifications Needed: New hyperspectral shader for water surfaces including reflection, refraction, and
blackbody emission.

Modification Priority: 3
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11 New Code

Priority is a numeric ranking, with higher values meaning higher importance and/or degree of difficulty.

11.1 Device-Agnostic C++ Model for Data and Processing

Description: Multiple components of Ginger must have the option of doing their processing on either the
CPU or the GPU. Data may exist on one device and need to be transfered to the other. This is an
attempt to develop a generic capability to standardize these common activities, and encapsulate them
in a small C++ framework. This will simplify the development of GPU functionality for each relevant
component, and provide a simple C++ interface for Python bindings to handle.

Priority: 10 (very high because it is a new development. In the event it is late or unworkable, there is a
backup plan to assure that GPU functionality happens, albeit in a less systematic and efficient fashion.)

Platform: C++ and CUDA

11.2 Fast Meshing of Water Surface

Description: The existing method in WaveSurfer and eWave to create a displaced mesh and import it into the
renderer is via an obj file created on the filesystem. The code for generating the obj data and writing
the file is in Python. Both of these aspects severely limit the speed of the complete similuation-render-
display cycle. A faster C++-based meshing routine is being written that will transfer the mesh data
directly to MaryAnn or Ginger without the intermediate filesystem delay. An alternative technique that
could be considered at a later date reference Tevs et al. [2008].

Priority: 5

Platform: C++ and CUDA

11.3 OpenGL Render of Water Surface

Description: When rendering in OpenGL on the GPU, the surface material properties are best handled using
a GLSL fragment shader. This is applicable when rendering on the GPU, regardless of whether the
displaced surface originates on the GPU or the CPU.

Priority: 4

Platform: C++ and OpenGL

11.4 CUDA Simulation of FFT Ocean Surface

Description: Implementation of WaveSurfer code in CUDA to construct the Fourier amplitudes, and generate
wave height and horizontal displacements using the CUDA FFT routine. These displacements will be
optionally combined with other displacements, and the combined surface will be applied to a mesh
already stored in a GPU vertex buffer. The CUDA computation is encapsulated within a purely C++
interface, which in turn has Python bindings, so that the user does not directly interact with CUDA.

Priority: 3
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Platform: C++ and CUDA

11.5 CUDA Simulation of Interactive Water Surface

Description: Implementation of eWave code in CUDA to construct the simulate wave height and velocity
potential, generating wave height and horizontal displacements using the CUDA FFT routine. These
displacements will be optionally combined with other displacements, and the combined surface will be
applied to a mesh already stored in a GPU vertex buffer. The CUDA computation is encapsulated
within a purely C++ interface, which in turn has Python bindings, so that the user does not directly
interact with CUDA.

Priority: 3

Platform: C++ and CUDA

11.6 Skipper Image Viewer

Description: Basic viewer of rendered images. Runs an OpenGL display of the image. The image is rep-
resented in OpenGL as a texture on a flat rectangular surface, allowing simple and responsive zoom
and translate, and adjustment of gamma and brightness interactively. User selects the channels to be
displayed. Display is refreshed when the image is updated or replaced, allowing it to act as a realtime
playback. Option to write an image to the filesystem in OpenEXR format.

Priority: 5

Platform: C++, Python, and Pyside or GLUT

11.7 Ginger GPU Renderer

Description: The assembled collection of python, C++, CUDA, and GLSL components for rendering a scene
using OpenGL rendering.

Priority: 3

Platform: Python, C++ and CUDA

11.8 MaryAnn CPU Renderer

Description: A repackaging of the Ash raytrace renderer and controling python scripts.

Priority: 2

Platform: Python, C++
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11.9 Thurston Scene Assembly and Control

Description: A collection of python scripts and C++-bound components to assemble geometry, simulations,
materials, light(s) and renderer (MaryAnn or Ginger), execute the assembled processes, render the scene,
and pass the rendered image to the Skipper image viewer.

Priority: 7

Platform: Python

12 Support

This work is supported by SPAWAR Systems Center Pacific under award number N66001-16-P-6865.
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Appendix A Siggraph Course Notes

This appendix contains the relevant content from reference Deusen et al. [2004].
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1 Introduction and Goals

These notes are intended to give computer graphics programmers
and artists an introduction to methods of simulating, animating, and
rendering ocean water environments. CG water has become a com-
mon tool in visual effects work at all levels of computer graphics,
from print media to feature films. Several commercial products are
available for nearly any computer platform and work environment.
A few visual effects companies continue to extend and improve
these tools, seeking to generate higher quality surface geometry,
complex interatctions, and more compelling imagery. In order for
an artist to exploit these tools to maximum benefit, it is important
that he or she become familiar with concepts, terminology, a little
oceanography, and the present state of the art.

As demonstrated by the pioneering efforts in the filmsWater-
world andTitanic, as well as several other films made since about
1995, images of cg water can be generated with a high degree of
realism. However, this level of realism has been mostly limited
to relatively calm, nice ocean conditions. Conditions with large
amounts of spray, breaking waves, foam, splashing, and wakes are
improving and approaching the same realistic look.

Three general approaches are currently popular in computer
graphics for simulating fluid motion, and water surfaces in partic-
ular. The three methods are all related in some way to the basic
Navier-Stokes equations at the heart of many applications. Com-
putational Fluid Dynamics (CFD) is one of the methods which has
recieved a great amount of attention lately. While many versions of
this technology have been in existence for some time, recent papers
by Stam [1], Fedkiw and Foster [2], and many others have demon-
strated that the numerical computation discipline and the computer
graphics discipline have connected well enough to produce useful,
interesting, and sometimes beautiful results. The primary draw-
back of CFD methods is that the computations are performed on
data structured in a 2D or 3D grid, called an Eulerian framework.
This gridded architecture limits the combined extent and flow detail
that can be computed. At present for example, it is practical to sim-
ulate with CFD waves breaking as they approach a shallow beach.
However, that simulation is not able to simulate a bay-sized region
of ocean while also simulating the breaking down to the detail of
spray formation, simply because the number of grid points needed
is prohibitively large.

A second method that is shows great promise is called Smoothed
Particle Hydrodynamics (SPH). This is a completely different ap-
proach to solving the Navier-Stokes equations. SPH imagines that
the volume of a fluid is composed of small overlapping regions, the
center of each region carrying some amount of mass and momen-
tum. The regions are allowed to move about within the fluid and ex-
perience forces due to pressure, strain, gravity, and others. But now
the center of each region acts as a particle, and the Navier-Stokes
equations are converted into equations of motion for discrete par-
ticles. This approach is called a Lagragian framework (as opposed
to the Eulerian framework in CFD). The fluid volume is not bound
to a grid geometry. SPH is a very useful method of simulation for
situations in which there is significant splashing or explosions, and
has even been used to simulated cracking in solids [3]. Using im-
plicit methods to construct a surface for the fluid, standard computer
graphics applications such as pouring water have been achieved [4].

Finally, the third method is the one that is the focus of these
notes, and unlike the CFD and SPH methods, this one is focused
on the more narrow goal of simulating the motion of the surface
of a body of water. Surface simulations are commonly generated
from the CFD and SPH methods, but the surface is generated by
algorithms that are added to those fluid simulations, for example by
tracking a type of implicit surface called a level set. In choosing
to focus on the surface structure and motion, we eliminate much of
the computation and resolution limits in the CFD and SPH meth-

ods. Of course when we eliminate those computations we have lost
certain types of realistic motion, most notably the breakup of the
surface with strong changes in topology. In place of that compu-
tation we substitute a mixture of knowledge of oceanographic phe-
nomenology and computational flexibility to achieve realistic types
of surfaces that cannot practically be achieved by the others. In that
sense, this phemonological approach should be considered comple-
mentary – not competitive – to the CFD and SPH methods, since
all three work best in different regimes of fluid motion.

Broadly, the reader should come away from this material with

1. an understanding of the important physical concepts for ocean
surface propagation, most notably the concept of dispersion
and types of dispersion relationships.

2. an understanding of some algorithms that generate/animate
water surface height fields suitable for modeling waves as big
as storm surges and as small as tiny capillaries;

3. an understanding of the basic optical processes of reflection
and refraction from a water surface;

4. an introduction to the color filtering behavior of ocean water;

5. an introduction to complex lighting effects known as caus-
tics and godrays, produced when sunlight passes through the
rough surface into the water volume underneath; and

6. some rules of thumb for which choices make nice looking
images and what are the tradeoffs of quality versus compu-
tational resources. Some example shaders are provided, and
example renderings demonstrate the content of the discussion.

Before diving into it, I first want to be more concrete about what
aspect of the ocean environment we cover (or not cover) in these
notes. Figure 1 is a rendering of an oceanscape produced from mod-
els of water, air, and clouds. Light from the clouds is reflected from
the surface. On the extreme left, sun glitter is also present. The
generally bluish color of the water is due to the reflection of blue
skylight, and to light coming out of the water after scattering from
the volume. Although these notes do not tackle the modeling and
rendering of clouds and air, there is a discussion of how skylight
from the clouds and air is reflected from, or refracted through, the
water surface. These notes will tell you how to make a height-field
displacement-mapped surface for the ocean waves with the detail
and quality shown in the figure. The notes also discuss several ef-
fects of the underwater environment and how to model/render them.
The primary four effects are sunbeams (also called godrays), caus-
tics on underwater surfaces, blurring by the scattering of light, and
color filtering.

There are also many other complex and interesting aspects of the
ocean environment that will not be covered. These include break-
ing waves, spray, foam, wakes around objects in the water, splashes
from bodies that impact the surface, and global illumination of the
entire ocean-atmosphere environment. There is substantial research
underway on these topics, and so it is possible that future versions
of this or other lecture notes will include them. I have included a
brief section on advanced modifications to the basic wave height al-
gorithm that produce choppy waves. The modification could feasi-
bly lead to a complete description of the surface portion of breaking
waves, and possibly serve to drive the spray and foam dynamics as
well.

There is, of course, a substantial body of literature on ocean sur-
face simulation and animation, both in computer graphics circles
and in oceanography. One of the first descriptions of water waves in
computer graphics was by Fournier and Reeves[12] , who modeled
a shoreline with waves coming up on it using a water surface model
called Gerstner waves. In that same issue, Darwin Peachey[13]
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Figure 1: Rendered image of an oceanscape.

presented a variation on this approach using basis shapes other than
sinusoids.

In the oceanographic literature, ocean optics became an inten-
sive topic of research in the 1940s. S.Q. Duntley published[17] in
1963 papers containing optical data of relevance to computer graph-
ics. Work continues today. The field of optical oceanography has
grown into a mature quantitative science with subdisciplines and
many different applications. One excellent review of the state of
the science was written by Curtis Mobley[18].

In these lectures the approach we take to creating surface waves
is close to the one outlined by Masten, Watterberg, and Mareda[11],
although the technique had been in use for many years prior to
their paper in the optical oceanography community. This approach
synthesizes a patch of ocean waves from a Fast Fourier Transform
(FFT) prescription, with user-controllable size and resolution, and
which can be tiled seamlessly over a larger domain. The patch con-
tains many octaves of sinusoidal waves that all add up at each point
to produce the synthesized height. The mixture of sinusoidal am-
plitudes and phases however, comes from statistical, emperically-
based models of the ocean. What makes these sinusoids look like
waves and not just a bunch of sine waves is the large collection of
sinusoids that are used, the relative amplitudes of the sinusoids, and
their animation using the dispersion relation. We examine the im-
pact of the number of sinusoids and resolution on the quality of the
rendered image.

In the next section we begin the discussion of the ocean environ-
ment with a broad introduction to the global illumination problem.
The radiosity equations for this environment look much like those
of any other radiosity problem, although the volumetric character of
some of the environmental components complicate a general imple-
mentation considerably. However, we simplify the issues by ignor-
ing some interactions and replacing others with models generated
by remote sensing data.

Practical methods are presented in section 4 for creating realiza-
tions of ocean surfaces. We present two methods, one based on a
simple model of water structure and movement, and one based on
summing up large numbers of sine waves with amplitudes that are
related to each other based on experimental evidence. This sec-
ond method carries out the sum using the technique of Fast Fourier
Transformation (fft), and has been used effectively in projects for
commercials, television, and motion pictures.

After the discussion of the structure and animation of the water
surface, we focus on the optical properties of water relevant to the

graphics problem. First, we discuss the interaction at the air-water
interface: reflection and refraction. This leaves us with a simple
but effective Renderman-style shader suitable for rendering water
surfaces in BMRT, for example. Next, the optical characteristics of
the underwater environment are explored.

Finally, please remember that these notes are a living
document. Some of the discussion of the various top-
ics is still very limited and incomplete. If you find a
problem or have additional questions, please feel free to
contact me at jerry@finelightvisualtechnology.com. The
latest version of this course documents are hosted at
http://www.finelightvisualtechnology.com

2 Radiosity of the Ocean Environment

The ocean environment, for our purposes, consists of only four
components: The water surface, the air, the sun, and the water
volume below the surface. In this section we trace the flow of
light through the environment, both mathematically and schemat-
ically, from the light source to the camera. In general, the radiosity
equations here are as coupled as any other radiosity problem. To a
reasonable degree, however, the coupling can be truncated and the
simplified radiosity problem has a relatively fast solution.

The light seen by a camera is dependent on the flow of light en-
ergy from the source(s) (i.e. the sun and sky) to the surface and
into the camera. In addition to specular reflection of direct sun-
light and skylight from the surface, some fraction of the incident
light is transmitted through the surface. Ultimately, a fraction of the
transmitted light is scattered by the water volume back up through
the interface and into the air. Some of the light that is reflected or
refracted at the surface may strike the surface a second time, pro-
ducing more reflection and refraction events. Under some viewing
conditions, multiple reflections and refractions can have a notice-
able impact on images. For our part however, we will ignore more
than one reflection or refraction from the surface at a time. This
not only makes the algorithms and computation easier and faster,
but also is reasonably accurate in most viewing conditions and pro-
duces visually realistic imagery.

At any point in the environment above the surface, including at
the camera, the total light intensity (radiance) coming from any di-
rection has three contributions:

LABOV E = rLS + rLA + tULU , (1)

with the following definitions of the terms:

r is the Fresnel reflectivity for reflection from a spot on the surface
of the ocean to the camera.

tU is the transmission coefficient for the lightLU coming up from
the ocean volume, refracted at the surface into the camera.

LS is the amount of light coming directly from the sun, through
the atmosphere, to the spot on the ocean surface where it is
reflected by the surface to the camera.

LA is the (diffuse) atmospheric skylight

LU is the light just below the surface that is transmitted through
the surface into the air.

Equation 1 has intentionally been written in a shorthand way that
hides the dependences on position in space and the direction the
light is traveling.

While equation 1 appears to have a relatively simple structure,
the termsLS , LA, andLU can in principle have complex depen-
dencies on each other, as well on the reflectivity and transmissivity.
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There is a large body of research literature investigating these de-
pendencies in detail [19], but we will not at this point pursue these
quantitative methods. But we can elaborate further on the coupling
while continuing with the same shorthand notation. The direct light
from the sunLS is

LS = LTOA exp{−τ} , (2)

whereLTOA is the intensity of the direct sunlight at the top of the
atmosphere, andτ is the “optical thickness” of the atmosphere for
the direction of the sunlight and the point on the earth. Both the
diffuse atmospheric skylightLA and the upwelling lightLU can be
written as the sum of two terms:

LA = L0
A(LS) + L1

A(LU ) (3)

LU = L0
U (LS) + L1

U (LA) (4)

These equations reveal the potential complexity of the problem.
While bothLA andLU depend on the direct sunlight, they also
depend on each other. For example, the total amount of light pene-
trating into the ocean comes from the direct sunlight and from the
atmospheric sunlight. Some of the light coming into the ocean is
scattered by particulates and molecules in the ocean, back up into
the atmosphere. Some of that upwelling light in turn is scattered in
the atmosphere and becomes a part of the skylight shining on the
surface, and on and on. This is a classic problem in radiosity. It
is not particularly special for this case, as opposed to other radios-
ity problems, except perhaps for the fact that the upwelling light
is difficult to compute because it comes from volumetric multiple
scattering.

Our approach, for the purposes of these notes, to solving this
radiosity problem is straightforward: take the skylight to depend
only on the light from the sun, since the upwelling contribution
represents a “tertiary” dependence on the sunlight; and completely
replace the equation forLU with an empirical formula, based on
scientific observations of the oceans, that depends only on the di-
rect sunlight and a few other parameters that dictate water type and
clarity.

Under the water surface, the radiosity equation has the schematic
form

LBELOW = tLD + tLI + LSS + LM , (5)

with the meaning

t is the Fresnel transmissivity for transmission through the water
surface at each point and angle on the surface.

LD The “direct” light from the sun that penetrates into the water.

LI The “indirect” light from the atmosphere that penetrates into
the water.

LSS The single-scattered light, from both the sun and the atmo-
sphere, that is scattered once in the water volume before ar-
riving at any point.

LM The multiply-scattered light. This is the single-scattered light
that undergoes more scattering events in the volume.

Just as for the above water case, these terms are all related to each
other is relative complex ways. For example, the single scattered
light depends on the direct and indirect light:

LSS = P (tLI) + P (tLD) (6)

with the quantityP being a linear functional operator of its argu-
ment, containing information about the single scattering event and
the attenuation of the scattered light as it passes from the scatter

Figure 2: Illustration of multiple reflections and transmission
through the air-water interface.

point to the camera. Similarly, the multiply-scattered light is de-
pendent on the single scattered:

LM = G(tLI) +G(tLD) . (7)

The functional schematic quantitiesP andG are related, since mul-
tiple scattering is just a series of single scatters. Formally, the two
have an operator dependence that has the form

G ∼ P ⊗ P ⊗
{
1 + P +

1

2!
P ⊗ P +

1

3!
P ⊗ P ⊗ P + . . .

}

∼ P ⊗ P ⊗ exp(P ) . (8)

At this point, the schematic representation may have outlived its
usefullness because of the complex (and not here defined) meaning
of the convolution-like operator⊗, and because the expression for
G in terms ofP has created an even more schematic view in terms
of an exponentiatedP . So for now we will leave the schematic
representation, and journey on with more concrete quantities the
rest of the way through.

The formal schematic discussion put forward here does have a
mathematically and physically precise counterpart. The field of
study in Radiative Transfer has been applied for some time to wa-
ter optics, by a large number researchers. The references cited are
excellent reading for further information.

As mentioned, there is one additional radiosity scenario that can
be important to ocean rendering under certain circumstances, but
which we will not consider. The situation is illustrated in figure 2.
Following the trail of the arrows, which track the direction light
is travelling, we see that sometimes light coming to the surface
(from above or below), can reflect and/or transmit through the sur-
face more than once. The conditions which produce this behavior
in significant amounts are: the wave heights must be fairly high,
and the direction of viewing the waves, or the direction of the light
source must be nearly grazing the surface. The higher the waves
are, the less grazing the light source or camera need to be. This
phenonmenon has been examined experimentally and in computer
simulations. It is reasonably well understood, and we will ignore it
from this point on.

3 Mathematics, Physics, and Experi-
ments on the Motion for the Surface

In this section we take a look at the mathematical problem we are
trying to solve. We simplify the mathematics considerably by ap-
plying a series of approximations. How do we know these approx-
imations are any good? There are decades of oceanographic re-
search in which the ocean surface motion has been characterized
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by measurements, simulations, mathematical analysis, and experi-
mentation. The approximations we apply in this section are not per-
fect, and there are many circumstances in the real world in which
they break down. But they work extraordinarily well for most con-
ditions at sea. To give you some idea of how well they work, we
show some experimental work in section 4 that has been done which
clearly shows these approximations at work in the real world.

3.1 Bernoulli’s Equation

The starting point of the mathematical formulation of ocean surface
motion is the incompressible Navier-Stokes equations. Chapter 2
of [14] provides a thorough derivation of Bernoulli’s equation from
Navier-Stokes. We provide here the short version, and refer you to
Kinsman’s or some other textbook for details.

The incompressible Navier-Stokes equations for the velocity
u(x, t) of a fluid a any positionx at any timet are

∂u

∂t
+ u · ∇ u = −∇p+ F (9)

∇ · u(x, t) = 0 (10)

In these equations,p(x, t) is the pressure on the fluid, andF(x, t)
is the force applied to the fluid. In our application, the force is
conservative, soF = −∇U for some potential energy function
U(x, t).

For ocean surface dynamics due to conservative forces like grav-
ity, it turns out to be worthwhile to restrict the type of motion to a
class calledpotential flow. This is a situation in which the velocity
has the form of a gradient:

u(x, t) = ∇ φ(x, t) (11)

This restriction has the important effect of reducing the number de-
grees of freedom of the flow from the three components of velocity
u to the single one of thepotential velocityfunctionφ. In fact, us-
ing this gradient form, the four Navier-Stokes equations transform
into the two equations

∂φ

∂t
+

1

2
(∇φ)2 = −p− U (12)

∇2 φ(x, t) = 0 (13)

Equation 12 is called Bernoulli’s equation. As a fully nonlinear
reduction of the Navier-Stokes equations, Bernoulli’s equation is
capable of simulating a variety of surface dynamics effects, includ-
ing wave breaking in shoaling shallow water (the bottom rises from
deep water up to a beach). For more detail on numerical simulations
of Bernoulli’s equation in 3D, see [23].

3.2 Linearization

For our purposes, we want to reduce the complexity of Bernoulli’s
equation even further by applying two restrictions: linearize the
equations of motion, and limit evaluation of the equations to just
points on the surface itself, ignoring the volume below the sur-
face. This may seem like an extreme restriction, but when com-
bined with some phenomenolical knowledge of the ocean, this re-
strictions work very well.

The first restriction is to linearize Bernoulli’s equation. This is
simply the task of removing the quadratic term1/2(∇φ)2. Elimi-
nating this term means that we are most likely restricted to surface
waves that are not extremely violent in their motion, at least in prin-
ciple. So Bernoulli’s equation is reduced further to

∂φ

∂t
= −p− U (14)

All of the quantitiesφ, p, andU are still evaluated at 3D pointsx
on the surface and in the water volume.

The second restriction is to evaluation quantities only on the wa-
ter surface. To do this we have to first characterize what we mean by
the surface. We will take the surface to be a dynamically changing
height field,h(x⊥, t), that is a function of only the horizontal posi-
tion x⊥ and timet. For convenience, we define the mean height of
the wate surface as the zero value of the height. With this definition
of wave height, the gravity-induced potential energy termU is

U = g h (15)

andg is the gravity constant, usually9.8m/sec2 in metric units.
Restricting to just the water surface has several important conse-

quences. One of the first consequences is for mass conservation. In
the incompressible Navier-Stokes equation, mass is conserved via
the mass flux equation

∇ · u(x, t) = 0 (16)

When we chose to consider only potential flow, this mass conserva-
tion equation became

∇2 φ(x, t) = 0 (17)

If we label the horizontal portion of the position vector asx⊥, so
thatx = (x⊥, y), andy is the coordinate pointing down into the
water volume, then the mass conservation equation restricted to the
surface looks in more detail like

{
∇2

⊥ +
∂2

∂y2

}
φ(x⊥, t) = 0 (18)

Now, when you look at this equation and see thatφ now depends
only on thex⊥ on the surface, you might be tempted to throw out
the∂2/∂y2 part of the equation, because there does not appear to
be a dependence. That would produce useless results. Instead, what
works better in this odd world of partial differential equations is to
allowφ to be an arbitrary function (at least with respect to this mass
conservation equation) and to define they-derivative operator to be

∂

∂y
= ±

√
−∇2

⊥ (19)

so that the operator∇2 is zero. We will use this approach for any
quantity evaluated on the water surface whenever we need a verti-
cal derivative. Of course, this introduces an unusual operator that
contains a square root function.

Another consequence of restricting ourselves to just the surface
is that the pressure remains essentially constant, and we can choose
to have that constant be 0. With this and the rest of the restrictions,
Bernoulli’s equation has been linearized to

∂φ(x⊥, t)

∂t
= −g h(x⊥, t) (20)

There is one final equation that must be rewritten for this situ-
ation. Recall that the velocity potentialφ is used to compute the
3D fluid velocity as a gradient,u = ∇φ. The vertical component
of the velocity must now use equation 19. In addition, the vertical
velocity of the fluid is the same at the speed of the surface height.
Combining these we get

∂h(x⊥, t)

∂t
=
√

−∇2
⊥ φ(x⊥, t) (21)

These last two equations, 20 and 21, are the final equations of
motion that are needed to solve for the surface motion. They can
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also be converted into a single equation. For example, if we take a
derivative with respect to time of equation 21, and use 20 to sub-
stitute for the time derivative of the velocity potential, we get the
single equation for the evolution of the surface height.

∂2h(x⊥, t)

∂t2
= −g

√
−∇2

⊥ h(x⊥, t) (22)

This still involves the unusual operator
√

−∇2
⊥. However, tak-

ing two more time derivatives converts it to a more normal two-
dimensional Laplacian for the equation

∂4h(x⊥, t)

∂t4
= g2∇2

⊥ h(x⊥, t) (23)

This form is frequently the starting point for building mathematical
solutions to the surface wave equation.

3.3 Dispersion

It turns out that the equations we have built for surface height –
whether in the form of equations 20 and 21, or equation 22, or equa-
tion23 – reduce to one primary lesson about surface wave propaga-
tion. This lesson is embodied in a simple mathematical relationship
called theDispersion Relation, which is the focus of this section.
Our goal here is to obtain that simple expression from the math-
ematics above, understand some of its meaning, and demonstrate
that, even though it appears unrealistically simplistic, the Disper-
sion Relation is in fact present in natural ocean waves and can be
measured experimentally.

Lets just use the version of the surface evolution equation in
equation 23 for convenience. The other two versions could be used
and arrive at the same answer using a slightly different set of ma-
nipulations. Note that the equation of motion for the surface height
is linear in the surface height. So as with any linear differential
equation, the general solution of the equation is obtained by adding
up any number of specific solutions. So lets find a specific solution.
It turns out that all specific solutions have the form

h(x⊥, t) = h0 exp {ik · x⊥ − iωt} (24)

The 2D vectork and the numbersω andh0 are generic parameters
at this point. If we use this form of a solution in equation 23, it
turns into an algebraic equation like this:

h0

{
ω4 − g2k2

}
= 0 (25)

( andk is the magnitude of the vectork ). For this solution, there
are only two possibilities:

1. h0 = 0. Then the surface height is flat, and the solution is not
very interesting.

2. ω = ±√
gk andh0 can be anything. This is the interesting

solution.

What we have found here is that the entire Navier-Stokes fluid dy-
namics problem, reduced to an evolution equation for the water sur-
face and approximated to something that can be solved relatively
easily, amounts to a single equation imposing the constraint that the
temporal frequencyω of surface height movements is connected to
the spatial extent of a the propagating wavek = |k|. This relation-
ship,ω = ±√

gk is theDispersion Relationmentioned earlier.
Note in particular that there is no constraint placed on the ampli-

tudeh0. But if the Navier-Stokes equation does not have anything
to say about the amplitude, how do we give it a value? One way
is by imposing initial conditions on the height and on its vertical
speed. For ocean surface simulation in the next section, we will use

Figure 3: A slice through a 3D PSD showing that the observed
wave energy follows the deep water dispersion relation very well.

an alternate method, a statistical procedure to generate random real-
izations of the amplitude, guided by measurements of the variance
properties of wave height on the open ocean.

So the question remaining is just how reasonable is the disper-
sion relation for modelling realistic ocean surface waves? This is
where lots of experimental research can come into play. Although
there have been many decades of research on ocean wave proper-
ties using devices placed in the water to directly measure the wave
motion at a point, here we look at some relatively new research that
involves measuring wave properties remotely with a camera in a
plane.

The AROSS [24] is a panchromatic camera mounted in a special
hosing on the nose of a small airplane. Attached to the camera is
navigation and GPS instrumentation which allow the camera po-
sition, viewing direction, and orientation to be measured for each
frame. After the plane flys a circular orbit around a spot over the
ocean, this data can be used to remap images of the ocean into a
common reference frame, so that the motion of the aircraft has been
removed (except for lighting variations). This remapping allows
the researchers to use many frames of ocean imagery, typically 1-2
minutes worth, in some data processing to look for the dispersion
relation.

The data processing that AROSS imagery is subjected to gen-
erates something called a 3D Power Spectral Density (PSD). This
is obtained by taking the Fourier Transform of a time series of im-
agery in time, as well as Fourier Transforms in the two spatial di-
rections of images. The output of these 3 Fourier Transforms is a
quantity that is closely related to the amplitudesh0(k, ω) for each
spatial and temporal frequency. These are then absolute squared
and smoothed or averaged in some way so that the output is a nu-
merical approximation of a statistical average of|h0(k, ω)|2.

But how does a 3D PSD help us decide whether the dispersion
relation appears in nature? If the imagery found only dispersion
constrained surface waves, then the 3D PSD should have the value
0 for all values ofk, ω that do not satisfy the dispersion relation. So
mostly we would expect the 3D PSD to only have significant values
in a narrow set ofk, ω values.

Figure 3 show a plot of the 3D PSD generated from AROSS im-
ages [24]. From the 3D volumetric PSD, this plot figure is a plane
sliced through the volume. When sliced like this, the dispersion
relation is a curve on the slice, shown as two dotted curves. The
data is plotted as contours of PSD intensity, color-coded by the key
on the right. PSD levels following the dispersion relation curves
are much higher than in other regions. This shows that the motion
of the surface waves on all scales includes a very strong dispersion
relation style of motion. There are other types of motion certainly,
which the PSD figure shows as intensity levels away from the dis-
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Figure 4: Site at which video data was collected in 1986, near Zuma
Beach, California.

persion curves. But the dispersion motion is the strongest feature
of this data.

Relatively simple experiments can be done by anyone with ac-
cess to a video camera and a hilltop overlook of an ocean. For
example, figure 4 is a frame from a video segment showing wa-
ter coming into the beach near Zuma Beach, California. The video
camera was located on hill overlooking the beach, in 1986. In 1993,
the region of video frames indicated in the figure was digitized, to
produce a time series of frames containing just water surface.

Figure 5 shows the actual 3D PSD from the image data. There
are two clear branches along the dispersion relationship we have
discussed, with no apparent modification by shallow water affects.
There is also a third branch that is approximately a straight line
lying between the first two. Examination of the video shows that
this branch comes from a surfactant layer floating on the water in
part of the video frame, and moving with a constant speed. Exclud-
ing the surface layer, this data clearly demonstrates the validity of
the dispersion relationship, and demonstrates the usefulness of the
linearized model of surface waves.

4 Practical Ocean Wave Algorithms

In this section we focus on algorithms and practical steps to build-
ing height fields for ocean waves. Although we will be occupied
mostly by a method based on Fast Fourier Transforms (FFTs), we
begin by introducing a simpler description called Gerstner Waves.
This is a good starting point for several reasons: the mathematics is
relatively light compared to FFTs, several important oceanographic
concepts can be introduced, and they give us a chance to discuss
wave animation. After this discussion of Gerstner waves, we go
after the more complex FFT method, which produces wave height
fields that are more realistic. These waves, called “linear waves” or
“gravity waves” are a fairly realistic representation of typical waves
on the ocean when the weather is not too stormy. Linear waves are
certainly not the whole story, and so we discuss also some meth-
ods by which oceanographers expand the description to “nonlinear
waves”, waves passing over a shallow bottom, and very tiny waves
about one millimeter across called capillary waves.

In the course of this discussion, we will see how quantities like
windspeed, surface tension, and gravitational acceleration come
into the practical implementation of the algorithms.

Figure 5: Slice from a 3D Power Spectral Density grayscale plot,
from processed video data.

4.1 Gerstner Waves

Gerstner waves were first found as an approximate solution to the
fluid dynamic equations almost 200 years ago. There first appli-
cation in computer graphics seems to be the work by Fournier and
Reeves in 1986 (cited previously). The physical model is to de-
scribe the surface in terms of the motion of individual points on the
surface. To a good approximation, points on the surface of the water
go through a circular motion as a wave passes by. If a point on the
undisturbed surface is labelledx0 = (x0, z0) and the undisturbed
height isy0 = 0, then as a single wave with amplitudeA passes by,
the point on the surface is displaced at time t to

x = x0 − (k/k)A sin(k · x0 − ωt) (26)

y = A cos(k · x0 − ωt) . (27)

In these expressions, the vectork, called the wavevector, is a
horizontal vector that points in the direction of travel of the wave,
and has magnitudek related to the length of the wave (λ) by

k = 2π/λ (28)

The frequencyw is related to the wavevector, as discussed later.
Figure 6 shows two example wave profiles, each with a different

value of the dimensionless amplitude kA. For valueskA < 1, the
wave is periodic and shows a steepening at the tops of the waves as
kA approaches 1. ForkA > 1, a loop forms at the tops of the wave,
and the “insides of the wave surface are outside”, not a particularly
desirable or realistic effect.

As presented so far, Gerstner waves are rather limited because
they are a single sine wave horizontally and vertically. However,
this can be generalized to a more complex profile by summing a
set of sine waves. One picks a set of wavevectorski, amplitudes
Ai, frequenciesωi, and phasesφi, for i = 1, . . . , N , to get the
expressions

x = x0 −
N∑

i=1

(ki/ki)Ai sin(ki · x0 − ωit+ φi) (29)
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Figure 6: Profiles of two single-mode Gerstner waves, with differ-
ent relative amplitudes and wavelengths.

y =

N∑

i=1

Ai cos(ki · x0 − ωit+ φi) . (30)

Figure 7 shows an example with three waves in the set. Interest-
ing and complex shapes can be obtained in this way.

4.2 Animating Waves: The Dispersion Relation

The animated behavior of Gerstner waves is determined by the set
of frequenciesωi chosen for each component. For water waves,
there is a well-known relationship between these frequencies and
the magnitude of their corresponding wavevectors,ki. In deep wa-
ter, where the bottom may be ignored, that relationship is

ω2(k) = gk . (31)

The parameterg is the gravitational constant, nominally
9.8m/sec2. This dispersion relationship holds for Gerstner waves,
and also for the FFT-based waves introduced next.

There are several conditions in which the dispersion relationship
is modified. When the bottom is relatively shallow compared to
the length of the waves, the bottom has a retarding affect on the
waves. For a bottom at a depthD below the mean water level, the
dispersion relation is

ω2(k) = gk tanh(kD) (32)

Notice that if the bottom is very deep, the behavior of thetanh
function reduces this dispersion relation to the previous one.

A second situation which modifies the dispersion relation is sur-
face tension. Very small waves, with a wavelength of about 1 cm or
less, have an additional term:

ω2(k) = gk(1 + k2L2) , (33)

and the parameterL has units of length. Its magnitude is the scale
for the surface tension to have effect.

Using these dispersion relationships, it is very difficult to create
a sequence of frames of water surface which for a continuous loop.
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Figure 7: Profile of a 3-mode Gerstner wave.

In order to have the sequence repeat after a certain amount of time
T for example, it is necessary that all frequencies be multiples of
the basic frequence

ω0 ≡ 2π

T
. (34)

However, when the wavevectorsk are distributed on a regular lat-
tice, itis impossible to arrange the dispersion-generated frequencies
to also be on a uniform lattce with spacingω0.

The solution to that is to not use the dispersion frequences, but
instead a set that is close to them. For a given wavenumberk, we
use the frequency

ω̄(k) =

[[
ω(k)

ω0

]]
ω0 , (35)

where[[a]] means take the integer part of the value ofa, andω(k) is
any dispersion relationship of interest. The frequenciesω̄(k) are a
quantizationof the dispersion surface, and the animation of the wa-
ter surface loops after a timeT because the quantized frequencies
are all integer multiples ofω0. Figure 8 plots the original disper-
sion curve, along with quantized dispersion curves for two choices
of the repeat timeT .

4.3 Statistical Wave Models and the Fourier Trans-
form

Oceanographic literature tends to downplay Gerstner waves as a re-
alistic model of the ocean. Instead, statistical models are used, in
combination with experimental observations. In the statistical mod-
els, the wave height is considered a random variable of horizontal
position and time,h(x, t).

Statistical models are also based on the ability to decompose
the wave height field as a sum of sine and cosine waves. The
value of this decomposition is that the amplitudes of the waves
have nice mathematical and statistical properties, making it sim-
pler to build models. Computationally, the decomposition uses Fast
Fourier Transforms (ffts), which are a rapid method of evaluating
the sums.
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The fft-based representation of a wave height field expresses the
wave heighth(x, t) at the horizontal positionx = (x, z) as the sum
of sinusoids with complex, time-dependent amplitudes:

h(x, t) =
∑

k

h̃(k, t) exp (ik · x) (36)

wheret is the time andk is a two-dimensional vector with com-
ponentsk = (kx, kz), kx = 2πn/Lx, kz = 2πm/Lz, and
n and m are integers with bounds−N/2 ≤ n < N/2 and
−M/2 ≤ m < M/2. The fft process generates the height field
at discrete pointsx = (nLx/N,mLz/M). The value at other
points can also be obtained by switching to adiscretefourier trans-
form, but under many circumstances this is unnecessary and is not
applied here. The height amplitude Fourier components,h̃(k, t),
determine the structure of the surface. The remainder of this sub-
section is concerned with generating random sets of amplitudes in
a way that is consistent with oceanographic phenomenology.

For computer graphics purposes, the slope vector of the wave-
height field is also needed in order to find the surface normal, angles
of incidence, and other aspects of optical modeling as well. One
way to compute the slope is though a finite difference between fft
grid points, separated horizontally by some 2D vector∆x. While
a finite difference is efficient in terms of memory requirements, it
can be a poor approximation to the slope of waves with small wave-
length. An exact computation of the slope vector can be obtained
by using more ffts:

ε(x, t) = ∇h(x, t) =
∑

k

ik h̃(k, t) exp (ik · x) . (37)

In terms of this fft representation, the finite difference approach
would replace the termik with terms proportional to

exp (ik ·∆x)− 1 (38)

which, for small wavelength waves, does not well approximate the
gradient of the wave height. Whenever possible, slope computation
via the fft in equation 37 is the prefered method.

The fft representation produces waves on a patch with horizontal
dimensionsLx ×Lz, outside of which the surface is perfectly peri-
odic. In practical applications, patch sizes vary from 10 meters to 2
kilometers on a side, with the number of discrete sample points as
high as 2048 in each direction (i.e. grids that are2048 × 2048, or
over 4 million waves). The patch can be tiled seamlessly as desired
over an area. The consequence of such a tiled extension, however, is
that an artificial periodicity in the wave field is present. As long as
the patch size is large compared to the field of view, this periodicity
is unnoticeable. Also, if the camera is near the surface so that the
effective horizon is one or two patch lengths away, the periodicity
will not be noticeable in the look-direction, but it may be apparent
as repeated structures across the field of view.

Oceanographic research has demonstrated that equation 36 is a
reasonable representation of naturally occurring wind-waves in the
open ocean. Statistical analysis of a number of wave-buoy, photo-
graphic, and radar measurements of the ocean surface demonstrates
that the wave height amplitudesh̃(k, t) are nearly statistically sta-
tionary, independent, gaussian fluctuations with a spatial spectrum
denoted by

Ph(k) =
〈∣∣h̃∗(k, t)

∣∣2
〉

(39)

for data-estimated ensemble averages denoted by the brackets〈 〉.
There are several analytical semi-empirical models for the wave

spectrumPh(k). A useful model for wind-driven waves larger than
capillary waves in a fully developed sea is thePhillips spectrum

Ph(k) = A
exp
(
−1/(kL)2

)

k4
|k̂ · ŵ|2 , (40)

whereL = V 2/g is the largest possible waves arising from a con-
tinuous wind of speedV , g is the gravitational constant, and̂w is
the direction of the wind.A is a numeric constant. The cosine factor
|k̂·ŵ|2 in the Phillips spectrum eliminates waves that move perpen-
dicular to the wind direction. This model, while relatively simple,
has poor convergence properties at high values of the wavenumber
|k|. A simple fix is to suppress waves smaller that a small length
` � L, and modify the Phillips spectrum by the multiplicative fac-
tor

exp
(
−k2`2

)
. (41)

Of course, you are free to “roll your own” spectrum to try out
various effects.

4.4 Building a Random Ocean Wave Height Field

Realizations of water wave height fields are created from the prin-
ciples elaborated up to this point: gaussian random numbers with
spatial spectra of a prescribed form. This is most efficiently accom-
plished directly in the fourier domain. The fourier amplitudes of a
wave height field can be produced as

h̃0(k) =
1√
2
(ξr + iξi)

√
Ph(k) , (42)

whereξr andξi are ordinary independent draws from a gaussian
random number generator, with mean 0 and standard deviation 1.
Gaussian distributed random numbers tend to follow the experi-
mental data on ocean waves, but of course other random number
distributions could be used. For example, log-normal distributions
could be used to produce height fields that are vary “intermittent”,
i.e. the waves are very high or nearly flat, with relatively little in
between.

Given a dispersion relationω(k), the Fourier amplitudes of the
wave field realization at timet are

h̃(k, t) = h̃0(k) exp {iω(k)t}
+ h̃∗

0(−k) exp {−iω(k)t} (43)
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This form preserves the complex conjugation propertyh̃∗(k, t) =

h̃(−k, t) by propagating waves “to the left” and “to the right”. In
addition to being simple to implement, this expression is also effi-
cient for computingh(x, t), since it relies on ffts, and because the
wave field at any chosen time can be computed without computing
the field at any other time.

In practice, how big does the Fourier grid need to be? What
range of scales is reasonable to choose? If you want to generate
wave heights faster, what do you do? Lets take a look at these
questions.

How big should the Fourier grid be?The values ofN andM
can be between 16 and 2048, in powers of two. For many
situations, values in the range 128 to 512 are sufficient. For
extremely detailed surfaces, 1024 and 2048 can be used. For
example, the wave fields used in the motion picturesWater-
world andTitanic were 2048×2048 in size, with the spacing
between grid points at about 3 cm. Above a value of 2048, one
should be careful because the limits of numerical accuracy for
floating point calculations can become noticeable.

What range of scales is reasonable to choose?The answer to this
question comes down to choosing values forLx, Lz, M , and
N . The smallest facet in either direction isdx ≡ Lx/M or
dz ≡ Lz/N . Generally,dx and dz need never go below
2 cm or so. Below this scale, the amount of wave action is
small compared to the rest of the waves. Also, the physics
of wave behavior below 2 cm begins to take on a very differ-
ent character, involving surface tension and “nonlinear” pro-
cesses. From the form of the spectrum, waves with a wave-
length larger thanV 2/g are suppressed. So make sure thatdx
anddz are smaller thanV 2/g by a substantial amount (10 -
1000) or most of the interesting waves will be lost. The se-
cret to realistic looking waves (e.g. figure 12 (a) compared to
figure 12 (c)) is to haveM andN as large as reasonable.

How do you generate wave height fields in the fastest time?The
time consuming part of the computation is the fast fourier
transform. Running on a 1+ GHz cpu,512 × 512 FFTs can
be generated at nearly interactive rates.

4.5 Examples: Height Fields and Renderings

We now turn to some examples of waves created using the fft ap-
proach discussed above. We will show waves in two formats: as
greyscale images in which the grey level is proportional to wave
height; and renderings of oceanscapes using several different ren-
dering packages to illustrate what is possible.

In the first set of examples, the grid size is set toM = N = 512,
with Lx = Lz = 1000 meters. The wind speed is a gale force at
V = 31 meters/second, moving in the x-direction. The small-wave
cutoff of ` = 1 meter was also used. Figure 9 is a greyscale rep-
resentation of the wave height: brighter means higher and darker
means lower height. Although produced by the fft algorithms de-
scribed here, figure 9 is not obviously a water height field. It may
help to examine figure 10, which is a greyscale depiction of the
x-component of the slope. This looks more like water waves that
figure 9. What is going on?

Figures 9 and 10 demonstrate a consequence of water surface
optics, discussed in the next section: the visible qualities of the
surface structure tend to be strongly influenced by the slope of the
waves. We will discuss this in quantitative detail, but for now we
willl summarize it by saying that the reflectivity of the water is a
strong function of the slope of the waves, as well as the directions
of the light(s) and camera.

To illustrate a simple effect of customizing the spectrum model,
figure 11 is the greyscale display of a height field identical to figure

Figure 9: A surface wave height realization, displayed in greyscale.

Figure 10: The x-component of the slope for the wave height real-
ization in figure 9.
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Figure 11: Wave height realization with increased directional de-
pendence.

9, with the exception that the directional factor|k̂ · ŵ|2 in equation
40 has been changed to|k̂ ·ŵ|6. The surface is clearly more aligned
with the direction of the wind.

The next example of a height field uses a relatively simple shader
in BMRT, the Renderman-compliant raytracer. The shader is shown
in the next section. Figure 12 shows three renderings of water sur-
faces, varying the size of the grid numbersM andN and making
the facet sizesdx anddz proportional to1/M and1/N . So as we
go from the top image to the bottom, the facet sizes become smaller,
and we see the effect of increasing amount of detail in the render-
ings. Clearly, more wave detail helps to build a realistic-looking
surface.

As a final example, figure 13 is an image rendered in the com-
mercial package RenderWorld by Arete Entertainment. This ren-
dering includes the effect of an atmosphere, and water volume scat-
tered light. These are discussed in the next section. But clearly,
wave height fields generated from random numbers using an fft pre-
scription can produce some nice images.

4.6 Choppy Waves

We turn briefly in this section to the subject of creating choppy
looking waves. The waves produced by the fft methods presented
up to this point have rounded peaks and troughs that give them the
appearance of fair-weather conditions. Even in fairly good weather,
and particularly in a good wind or storm, the waves are sharply
peaked at their tops, and flattened at the bottoms. The extent of this
chopping of the wave profile depends on the environmental condi-
tions, the wavelengths and heights of the waves. Waves that are
sufficiently high (e.g. with a slope greater than about 1/6) eventu-
ally break at the top, generating a new set of physical phenonema
in foam, splash, bubbles, and spray.

The starting point for this method is the fundamental fluid dy-
namic equations of motion for the surface. These equations are ex-
pressed in terms of two dynamical fields: the surface elevation and
the velocity potential on the surface, and derive from the Navier-
Stokes description of the fluid throughout the volume of the water
and air, including both above and below the interface. Creamer

Figure 12: Rendering of waves with (top) a fairly low number of
waves (facet size = 10 cm), with little detail; (middle) a reasonably
good number of waves (facet size = 5 cm); (bottom) a high number
of waves with the most detail (facet size = 2.5 cm).

Figure 13: An image of a wave height field rendered in a commer-
cial package with a model atmosphere and sophisticated shading.
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Figure 14: A comparison of a wave height profile with and without
the displacement. The dashed curve is the wave height produced by
the fft representation. The solid curve is the height field displaced
using equation 44.

et al[16] set out to apply a mathematical approach called the ”Lie
Transform technique” to generate a sequence of ”canonical trans-
formations” of the elevation and velocity potential. The benefit of
this complex mathematical procedure is to convert the elevation and
velocity potential into new dynamical fields that have a simpler
dynamics. The transformed case is in fact just the simple ocean
height field we have been discussing, including evolution with the
same dispersion relation we have been using in this paper. Start-
ing from there, the inverse Lie Transform in principle converts our
phenomenological solution into a dynamically more accurate one.
However, the Lie Transform is difficult to manipulate in 3 dimen-
sions, while in two dimensions exact results have been obtained.
Based on those exact results in two dimensions, an extrapolation
for the form of the 3D solution has been proposed: a horizontal dis-
placement of the waves, with the displacement locally varying with
the waves.

In the fft representation, the 2D displacement vector field is com-
puted using the Fourier amplitudes of the height field, as

D(x, t) =
∑

k

−i
k

k
h̃(k, t) exp (ik · x) (44)

Using this vector field, the horizontal position of a grid point of
the surface is nowx + λD(x, t), with heighth(x) as before. The
parameterλ is not part of the original conjecture, but is a conve-
nient method of scaling the importance of the displacement vector.
This conjectured solution does not alter the wave heights directly,
but instead warps the horizontal positions of the surface points in
a way that depends on the spatial structure of the height field. The
particular form of this warping however, actually sharpens peaks in
the height field and broadens valleys, which is the kind of nonlin-
ear behavior that should make the fft representation more realistic.
Figure 14 shows a profile of the wave height along one direction
in a simulated surface. This clearly shows that the “displacement
conjecture” can dramatically alter the surface.

The displacment form of the this solution is similar to the algo-
rithm for building Gerstner waves [12] discussed in section 4. In
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Figure 15: A time sequence of profiles of a wave surface. From top
to bottom, the time between profiles is 0.5 seconds.

that case however, the displacement behavior, applied to sinusoid
shapes, was the principle method of characterizing the water sur-
face structure, and here it is a modifier to an already useful wave
height representation.

Figure 15 illustrates how these choppy waves behave as they
evolve. The tops of waves form a sharp cusp, which rounds out
and disappears shortly afterward.

One ”problem” with this method of generating choppy waves
can be seen in figure 14. Near the tops of some of the waves, the
surface actally passes through itself and inverts, so that the outward
normal to the surface points inward. This is because the amplitudes
of the wave components can be large enough to create large dis-
placements that overlap. This is easily defeated simply by reducing
the magnitude of the scaling factorλ. For the purposes of computer
graphics, this might actually be a useful effect to signal the pro-
duction of spray, foam and/or breaking waves. We will not discuss
here how to carry out such an extension, except to note that in order
to use this region of overlap, a simple and quick test is needed for
deciding that the effect is taking place. Fortunately, there is such a
simple test in the form of the Jacobian of the transformation from
x tox+ λD(x, t). The Jacobian is a measure of the uniqueness of
the transformation. When the displacement is zero, the Jacobian is
1. When there is displacement, the Jacobian has the form

J(x) = JxxJyy − JxyJyx , (45)

with individual terms

Jxx(x) = 1 + λ
∂Dx(x)

∂x

Jyy(x) = 1 + λ
∂Dy(x)

∂y



5 INTERACTIVE WAVES FROM DISTURBANCES 3-13

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

He
igh

t

Position

Water Surface Profiles

Basic Surface
Choppy Surface

Folding Map

Figure 16: Wave height profile with and without the displacement.
Also plotted is the Jacobian map for choppy wave profile.

Jyx(x) = λ
∂Dy(x)

∂x

Jxy(x) = λ
∂Dx(x)

∂y
= Jyx

andD = (Dx, Dy). The Jacobian signals the presence of the over-
lapping wave bacause its value is less than zero in the overlap re-
gion. For example, figure 16 plots a profile of a basic wave without
displacement, the wave with displacement, and the value ofJ for
the choppy wave (labeled ”Folding Map”). The ”folds” or overlaps
in the choppy surface are clearly visible, and align with the regions
in whichJ < 0. With this information, it should be relatively easy
to extract the overlapping region and use it for other purposes if
desired.

But there is more that can be learned from these folded waves
from a closer examination of this folding criterion. The Jacobian
derives from a2 × 2 matrix which measures the local uniqueness
of the choppy wave mapx → x+ λD. This matrix can in general
be written in terms of eigenvectors and eigenvalues as:

Jab = J−ê
−
a ê

−
b + J+ê

+
a ê

+
b , (a, b = x, y) (46)

whereJ− andJ+ are the two eigenvalues of the matrix, ordered
so thatJ− ≤ J+. The corresponding orthonormal eigenvectors are
ê− andê+ respectively. From this expression, the Jacobian is just
J = J−J+.

The criterion for folding thatJ < 0 means thatJ− < 0 and
J+ > 0. So the minimum eigenvalue is the actual signal of the on-
set of folding. Further, the eigenvectorê− points in the horizontal
direction in which the folding is taking place. So, the prescrip-
tion now is to watch the minimum eigenvalue for when it becomes
negative, and the alignment of the folded wave is parallel to the
minimum eigenvector.

We can illustrate this phenomenon with an example. Figures 17
and 18 show two images of an ocean surface, one without choppy
waves, and the other with the choppy waves strongly applied. These
two surfaces are identical except for the choppy wave algorithm.
Figure 19 shows the wave profiles of both surfaces along a slice
through the surfaces. Finally, the profile of the choppy wave is

plotted together with the value of the minimum eigenvalue in figure
20, showing the clear connection between folding and the negative
value ofJ−.

Incidentally, computing the eigenvalues and eigenvectors of this
matrix is fast because they have analytic expressions as

J± =
1

2
(Jxx + Jyy)± 1

2

{
(Jxx − Jyy)

2 + 4J2
xy

}1/2
(47)

for the eigenvalues and

ê± =
(1, q±)√
1 + q2±

(48)

with

q± =
J± − Jxx

Jxy
(49)

for the eigenvectors.

5 Interactive Waves from Disturbances

The Fourier based approach to water surface evolution described in
the section 4 has several limitations that make in unworkable for
really interactive applications. Fundamentally, the Fourier method
computes the wave height everywhere in one FFT computation.
You cannot choose to compute wave height in limited areas of a
surface grid without completely altering the calculation. You either
get the whole surface, or you don’t compute it. This makes it very
hard to customize the wave propagation problem from one location
to another. So it you want to put some arbitrarily-shaped object
in the water, move it around some user-constructed path, the FFT
method makes it difficult to compute the wave response to the shape
and movement of the object. So if you want to have an odd looking
craft moving around in the water, and maybe going up and down
and changing shape, the FFT method is not the easiest thing to use.
Also, if you want to have a shallow bottom, with a sloping beach or
underwater sea mound or some other variability in the depth of the
water, the FFT method again is a challenge use.

Fortunately in the last few years an alternative scheme has
emerged which allows fast construction of a water surface in re-
sponse to interactions with objects in the water and/or variable bot-
tom depth. The heart of the method is an approach to computing
the propagation which does not use the FFT method at all. The fun-
damental mathematics of this interactive method is described in the
reference [22], and is refered to asiWave. Here we very quickly run
through the approach and show some examples in action.

At its heart the iWave method returns to the linearized equation
for the wave height, 22. We can turn the time derivatives into finite
time differences for a time step∆t, and get an explicit expression
for the wave height:

h(x, t+∆t) = 2h(x, t)− h(x, t−∆t)

− g(∆t)2
√

−∇2 h(x, t) (50)

This form can be used to explicitly advance the surface wave height
from one frame to the next. The hard part of course is figuring out
how to calculate the last term, with the square root of the Laplacian
operator.

The solution is to use convolution. The wave height is kept on
a rectangular grid of points (the dimensions of which donot have
to be powers of two), and we make use of the fact that any linear
operation on a grid of data values can be converted into a convolu-
tion of some sort. The details of the numerical implementation are
contained in [22].

But the real, amazing, property of iWave is that wave interaction
with objects on the water surface is evaluated with a very simple
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Figure 17: Simulated wave surface without the choppy algorithm
applied. Rendered in BMRT with a generic plastic shader.

Figure 18: Same wave surface with strong chop applied. Rendered
in BMRT with a generic plastic shader.
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Figure 19: Profiles of the two surfaces, showing the effect of the
choppy mapping.
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Figure 20: Plot of the choppy surface profile and the minimum
eigenvalue. The locations of folds of the surface are clearly the
same as where the eigenvalue is negative.

linear operation that amount to an image masking. For this pur-
pose, an object in the water is described as a grid of mask values,
zero meaning the object is present, 1 if the object is not present,
and along the edges of the object values between 0 and 1 are use-
ful as an antialiasing. Applying this mask to the wave height grid,
the waves are effectively removed at grid points that the object is
located at. With just this simple procedure, waves that are incident
on the object reflect off of it in a realistic way. Figure 21 is a frame
from a sequence, showing the wave height computed using iWave
with several irregularly shaped objects.

Ordinarily, simulating waves that interact with an object on the
water surface should involve a careful treatment of boundary con-
ditions, matching water motion to the object on the boundary of
the geometry, and enforcing no-slip conditions. This is a complex
and time consuming computation that involves a certain amount of
numerical black art. It is suprising that a simple process like mask-
ing the wave height, as described above, should not be sufficient.
Yet, with the iWave procedure, correct-looking reflection/refraction
waves happen in the simulation. It is not yet clear just how quanti-
tatively accurate these interactions are. Figure 22 shows a rendered
scene with a high resolution calculation of waves interacting with
the hull of the ship.

5.1 Modifications for shallow water

Wave simulations based on the FFT method can simulate shallow
water effects by using the dispersion relationship in equation 32.
This only applies to aflat bottom. It would be nice to simulate wave
propagation onto a beach, or pasta shallow subsurface sea mount, or
over a submarine that is just below the surface. The iWave method
is a great way of doing those things. Recall that the iWave method
converts the mathematical operation

g
√

−∇2 h (51)

into a convolution, so that effectivelyg
√
−∇2 becomes a convolu-

tion kernel. A shallow bottom with depthD changes this term to
(compare with the dispersion relationship)

g
√

−∇2 tanh
(√

−∇2D
)

h (52)

This operation can also be converted into a convolution, with
g
√
−∇2 tanh

(√
−∇2D

)
becomes a convolution kernel.

How is this applied to a variable-depth bottom? The convolution
kernel is a 13x13 matrix[22]. So we could build a collection of
kernels over a range of depth valuesD. At each point on the grid, a
custom kernel is constructed for the actual depth at that grid point
by interpolating from the set of prebuilt values. Figure 23 is the
wave height from a simulation using this technique. The bottom
slopes from deep on the right hand side, to a depth of 0 on the left
edge. In addition, there is a subsurface sea mount on the right.

There are three important behaviors in this simulation that occur
in real shallow water propagation:

1. Waves in shallow regions have large amplitudes that in deep
regions.

2. As waves approach a beach, they pile up together and have a
higher spatial frequency.

3. The subsurface sea mount causes a diffraction of waves.

In addition to these capabilities, iWave can also compute other
quantities, such as cuspy waves and surface velocity.
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(a)

(b)

(c)

Figure 21: A sequence of frames from an iWave simulation, show-
ing waves reflecting off of objects in the water. The objects are the
black regions. In the upper left there is also diffraction taking place
as waves propagate the narrow channel and emerge in the corner
region.

Figure 22: Frame from a simulation and rendering showing waves
interacting with a ship.

Figure 23: Frame from an iWave simulation with a variable depth
shallow bottom.
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6 Surface Wave Optics

The optical behavior of the ocean surface is fairly well understood,
at least for the kinds of quiescent wave structure that we consider
in these notes. Fundamentally, the ocean surface is a near perfect
specular reflector, with well-understand relectivity and transmis-
sity functions. In this section these properties are summarized, and
combined into a simple shader for Renderman. There are circum-
stances when the surface does not appear to be a specular reflector.
In particular, direct sunlight reflected from waves at a large distance
from the camera appear to be spread out and made diffuse. This
is due to the collection of waves that are smaller than the camera
can resolve at large distances. The mechanism is somewhat similar
to the underlying microscopic reflection mechnanisms in solid sur-
faces that lead to the Torrance-Sparrow model of BRDFs. Although
the study of glitter patterns in the ocean was pioneered by Cox and
Munk many years ago, the first models of this BRDF behavior that
I am aware of were developed in the early 1980’s. At the end of this
section, we introduce the concepts and conditions, state the results,
and ignore the in-between analysis and derivation.

Throughout these notes, and particularly in this section, we ig-
nore one optical phenomenon completely: polarization. Polariza-
tion effects can be strong at a boundary interface like a water sur-
face. However, since most of computer graphics under considera-
tion ignores polarization, we will continue in that long tradition. Of
course, interested readers can find literature on polarization effects
at the air-water interface.

6.1 Specular Reflection and Transmission

Rays of light incident from above or below at the air-water interface
are split into two components: a transmitted ray continuing through
the interface at a refracted angle, and a reflected ray. The intensity
of each of these two rays is diminished by reflectivity and trans-
missivity coefficients. Here we discussed the directions of the two
outgoing rays. In the next subsection the coefficients are discussed.

6.1.1 Reflection

As is well known, in a perfect specular reflection the reflected ray
and the incident ray have the same angle with respect to the surface
normal. This is true for all specular reflections (ignoring roughen-
ing effects), regardless of the material. We build here a compact
expression for the outgoing reflected ray. First, we need to build up
some notation and geometric quantities.

The three-dimensional points on the ocean surface can be la-
belled by the horizontal positionx and the waveheighth(x, t) as

r(x, t) = x+ ŷh(x, t) , (53)

whereŷ is the unit vector pointing straight up. At the pointr, the
normal to the surface is computed directly from the surface slope
ε(x, t) ≡ ∇h(x, t) as

n̂S(x, t) =
ŷ − ε(x, t)√
1 + ε2(x, t)

(54)

For a ray intersecting the surface atr from directionn̂i, the direc-
tion of the reflected ray can depend only on the incident direction
and the surface normal. Also, as mentioned before, the angle be-
tween the surface normal and the reflected ray must be the same
as the angle between incident ray and the surface normal. You can
verify for yourself that the reflected direction̂nr is

n̂r(x, t) = n̂i − 2n̂S(x, t) (n̂S(x, t) · n̂i) . (55)

Note that this expression is valid for incident ray directions on either
side of the surface.

6.1.2 Transmission

Unfortunately, the direction of the transmitted ray is not expressed
as simply as for the reflected ray. In this case we have two guid-
ing principles: the transmitted direction is dependent only on the
surface normal and incident directions, and Snell’s Law relating the
sines of the angles of the incident and transmitted angles to the in-
dices of refraction of the two materials.

Suppose the incident ray is coming from one of the two media
with index of refractionni (for air, n = 1, for water,n = 4/3
approximately), and the transmitted ray is in the medium with index
of refractionnr. For the incident ray at angleθi to the normal,

sin θi =
√

1− (n̂i · n̂S)2 = |n̂i × n̂S | (56)

the transmitted ray will be at an angleθt with

sin θt = |n̂t × n̂S | . (57)

Snell’s Law states that these two angles are related by

ni sin θi = nt sin θt . (58)

We now have all the pieces needed to derive the direction of trans-
mission. The direction vector can only be a linear combination of
n̂i andn̂S . It must satisfy Snell’s Law, and it must be a unit vector
(by definition). This is adequate to obtain the expression

n̂t(x, t) =
ni

nt
n̂i + Γ(x, t) n̂S(x, t) (59)

with the functionΓ defined as

Γ(x, t) ≡ ni

nt
n̂i · n̂S(x, t)

±
{
1−

(
ni

nt

)2

|n̂i × n̂S(x, t)|2
}1/2

. (60)

The plus sign is used inΓ whenn̂i · n̂S < 0, and the minus sign is
used when̂ni · n̂S > 0 .

6.2 Fresnel Reflectivity and Transmissivity

Accompanying the process of reflection and transmission through
the interface is a pair of coefficients that describe their efficiency.
The reflectivityR and transmissivityT are related by the constraint
that no light is lost at the interface. This leads to the relationship

R+ T = 1 . (61)

The derivation of the expressions forR andT is based on the elec-
tromagnetic theory of dielectrics. We will not carry out the deriva-
tions, but merely write down the solution

R(n̂i, n̂r) =
1

2

{
sin2(θt − θi)

sin2(θt + θi)
+

tan2(θt − θi)

tan2(θt + θi)

}
(62)

Figure 24 is a plot of the reflectivity for rays of light traveling down
onto a water surface as a function of the angle of incidence to the
surface. The plot extends from a grazing angle of 0 degrees to per-
pendicular incidence at 90 degrees. As should be clear, variation of
the reflectivity across an image is an important source of the “tex-
ture” or feel of water. Notice that reflectivity is a function of the
angle of incidence relative to the wave normal, which in turn is di-
rectly related to the slope of the surface. So we can expect that a
strong contributor to the texture of water surface is the pattern of
slope, while variation of the wave height serves primarily as a wave
hiding mechanism. This is the quantitative explanation of why the
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Figure 24: Reflectivity for light coming from the air down to the
water surface, as a function of the angle of incidence of the light.

surface slope more closely resembles rendered water than the wave
height does, as we saw in the previous section when discussing fig-
ure 10.

When the incident ray comes from below the water surface, there
are important differences in the reflectivity and transmissivity. Fig-
ure 25 shows the reflectivity as a function of incidence angle again,
but this time for incident light from below. In this case, the re-
flectivity reaches unity at a fairly large angle, near 41 degrees. At
incidence angles below that, the reflectivity is one and so there is no
transmission of light through the interface. This phenomenon isto-
tal internal reflection, and can be seen just by swimming around in
a pool. The angle at which total internal reflection begins is called
Brewster’s angle, and is given by, from Snell’s Law,

sin θBi =
nt

ni
= 0.75 (63)

or θBi = 48.6 deg. In our plots, this angle is90− θBi = 41.1 deg.

6.3 Building a Shader for Renderman

From the discussion so far, one of the most important features a ren-
dering must emulate is the textures of the surface due to the strong
slope-dependence of reflectivity and transmissivity. In this section
we construct a simple Renderman-compliant shader using just these
features. Readers who have experience with shaders will know how
to extend this one immediately.

The shader exploits that fact that the Renderman interface al-
ready provides a built-in Fresnel quantity calculator, which pro-
videsR, T , n̂r, andn̂t using the surface normal, incident direction
vector, and index of refraction. The shader for the air-to-water case
is as follows:

surface watercolorshader(
color upwelling = color(0, 0.2, 0.3);
color sky = color(0.69,0.84,1);
color air = color(0.1,0.1,0.1);
float nSnell = 1.34;
float Kdiffuse = 0.91;
string envmap = "";
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Figure 25: Reflectivity for light coming from below the water sur-
face, as a function of the angle of incidence of the light.

)
{

float reflectivity;
vector nI = normalize(I);
vector nN = normalize(Ng);
float costhetai = abs(nI . nN);
float thetai = acos(costhetai);
float sinthetat = sin(thetai)/nSnell;
float thetat = asin(sinthetat);
if(thetai == 0.0)
{

reflectivity = (nSnell - 1)/(nSnell + 1);
reflectivity = reflectivity * reflectivity;

}
else
{

float fs = sin(thetat - thetai)
/ sin(thetat + thetai);

float ts = tan(thetat - thetai)
/ tan(thetat + thetai);

reflectivity = 0.5 * ( fs*fs + ts*ts );
}
vector dPE = P-E;
float dist = length(dPE) * Kdiffuse;
dist = exp(-dist);

if(envmap != "")
{

sky = color environment(envmap, nN);
}
Ci = dist * ( reflectivity * sky

+ (1-reflectivity) * upwelling )
+ (1-dist)* air;

}

There are two contributions to the color: light coming downward
onto the surface with the default color of the sky, and light coming
upward from the depths with a default color. This second term will
be discussed in the next section. It is important for incidence angles
that are high in the sky, because the reflectivity is low and transmis-
sivity is high.
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Figure 26: Simulated water surface with a generic plastic surface
shader. Rendered with BMRT.

Figure 27: Simulated water surface with a realistic surface shader.
Rendered with BMRT.
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This shader was used to render the image in figure 27 using the
BMRT raytrace renderer. For reference, the exact same image has
been rendered in 26 with a generic plastic shader. Note that the
realistic water shader tends to highlight the tops of the the waves,
where the angle of incidence is nearly 90 degrees grazing and the
reflectivity is high, while the sides of the waves are dark, where
angle of incidence is nearly 0 that the reflectivity is low.

7 Water Volume Effects

The previous section was devoted to a discussion of the optical be-
havior of the surface of the ocean. In this section we focus on the
optical behavior of the water volume below the surface. We begin
with a discussion of the major optical effects the water volume has
on light, followed by an introduction to color models researchers
have built to try to connect the ocean color on any given day to un-
derlying biological and physical processes. These models are built
upon many years of in-situ measures off of ships and peers. Fi-
nally, we discuss two important effects, caustics and sunbeams, that
sometimes are hard to grasp, and which produce beautiful images
when properly simulated.

7.1 Scattering, Transmission, and Reflection by
the Water Volume

In the open ocean, light is both scattering and absorbed by the vol-
ume of the water. The sources for these events are of three types:
water molecules, living and dead organic matter, and non-organic
matter. In most oceans around the world, away from the shore lines,
absorption is a fairly even mixture of water molecules and organic
matter. Scattering is dominated by organic matter however.

To simulate the processes of volumetric absorption and scatter-
ing, there are five quantities that are of interest: absorption coef-
ficient, scattering coefficient, extinction coefficient, diffuse extinc-
tion coefficient, and bulk reflectivity. All of these coefficients have
units of inverse length, and represent the exponential rate of atten-
uation of light with distance through the medium. The absorption
coefficienta is the rate of absorption of light with distance, the
scattering coefficientb is the rate of scattering with length, the ex-
tinction coefficientc is the sum of the two previous onesc = a+ b,
and the diffuse extinction coefficientK describes the rate of loss
of intensity of light with distance after taking into account both ab-
sorption and scattering processes. The connection betweenK and
the other parameters is not completely understood, in part because
there are a variety of ways to defineK in terms of operational mea-
surements. Different ways change the details of the dependence.
However, there is a condition called theasymptoticlimit at very
deep depths in the water, at which all operational definitions ofK
converge to a single value. This asymptotic value ofK has been
modeled in a variety of ways. There is a mathematically precise
result that the ratioK/c depends only onb/c, the single scatter
albedo, and some details of the angular distribution of individual
scattering distributions. Figure 28 is an example of a model of
K/c for reasonable water conditions. Models have been gener-
ated for the color dependence ofK, most notably by Jerlov. In
1990, Austin and Petzold performed a revised analysis of spectral
models, including new data, to produce refined models ofK as a
function of color. For typical visible light conditions in the ocean,
K ranges in value from 0.03/meter to 0.1/meter. It is generally true
thata < K < c.

One way to interpret these quantities for a simulation of water
volume effects is as follows:

1. A ray of sunlight enters the water with intensityI (after los-
ing some intensity to Fresnel transmission). Along a path un-
derwater of a lengths, the intensity at the end of the path is
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Figure 28: Dependence of the Diffuse Extinction Coefficient on the
Single Scatter Albedo, normalized to the extinction.

I exp(−cs), i.e. the ray of direct sunlight is attenuated as fast
a possible.

2. Along the path through the water, a fraction of the ray is scat-
tered into a distribution of directions. The strength of the scat-
tering per unit length of the ray isb, so the intensity is propor-
tional tobI exp(−cs).

3. The light that is scattered out of the ray goes through poten-
tially many more scattering events. It would be nearly im-
possible to track all of them. However, the sum whole out-
come of this process is to attenuate the ray along the path from
the original path to the camera asbI exp(−cs) exp(−Ksc),
wheresc is the distance from the scatter point in the ocean to
the camera.

A fifth quantity of interest for simulation is the bulk reflectivity
of the water volume. This is a quantity that is intended to allow
us to ignore the details of what is going on, treat the volume as a
Lambertian reflector, and compute a value for bulk reflectivity. That
number is sensitive to many factors, including wave surface condi-
tions, sun angle, water optical properties, and details of the angular
spread. Nevertheless, values of reflectivity around 0.04 seem to
agree well with data.

7.2 The Underwater POV: Refracted Skylight,
Caustics, and Sunbeams

Now that we have underwater optical properties at hand, we can
look at two important phenomena in the ocean: caustics and sun-
beams.

7.2.1 Caustics

Caustics, in this context, are a light pattern that is formed on sur-
faces underwater. Because the water surface is not flat, groups of
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Figure 29: Rendering of a caustic pattern at a shallow depth (5
meters) below the surface.

light rays incident on the surface are either focussed or defocussed.
As a result, a point on a fictitious plane some depth below the ocean
surface receives direct sunlight from several different positions on
the surface. The intensity of light varies due to the depth, orig-
inal contrast, and other factors. For now, lets write the intensity
of the pattern asI = Ref I0, with I0 as the light intensity just
above the water surface. The quantityRef is the scaling factor that
varies with position on the fictitious plane due to focussing and de-
focussing of waves, and is called acaustic pattern. Figure 29 shows
an example of the caustic patternRef . Notice that the caustic pat-
tern exhibits filaments and ring-like structure. At a very deep depth,
the caustic pattern is even more striking, as shown in figure 30.

One of the important properties of underwater light that produce
caustic patterns is conservation of flux. This is actually a simple
idea: suppose a small area on the ocean surface has sunlight passing
through it into the water, with intensityI at the surface. As we
map that area to greater depths, the amount of area within it grows
or shrinks, but most likely grows depending on whether the area
is focussed or defocussed. The intensity at any depth within the
water is proportional to inverse of the area of the projected region.
Another way of saying this is that if a bundle of light rays diverges,
their intensities are reduced to keep the product of intensity time
area fixed.

Simulated caustic patterns can actually be compared (roughly)
with real-world data. In a series of papers published throughout the
1970’s, 1980’s, and into the 1990’s, Dera and others collected high-
speed time series of light intensity[21]. As part of this data collec-
tion and analysis project, the data was used to generate a probability
distribution function (PDF) for the light intensity. Figure 31 shows
two PDFs taken from one of Dera’s papers. The two PDF’s were
collected for different surface roughness conditions: rougher wa-
ter tended to suppress more of the high magnitude fluctuations in
intensity.

Figure 32 shows the pdf at two depths from a simulation of the
ocean surface. These two sets do not match Dera’s measurements
because of many factors, but most importantly because we have
not simulated the environmental conditions and instrumentation in
Dera’s experiments. Nevertheless, the similarity of figure 32 with

Figure 30: Rendering of a caustic pattern at great depth (100 me-
ters) below the surface.

Figure 31: PDF’s as measured by Dera in reference [21].

Dera’s data is an encouraging point of information for the realism
of the simulation.

7.2.2 Godrays

Underwater sunbeams, also called godrays, have a very similar ori-
gin to caustics. Direct sunlight passes into the water volume, fo-
cussed and defocussed at different points across the surface. As the
rays of light pass down through the volume, some of the light is
scattered in other directions, and a fraction arrives at the camera.
The accumulated pattern of scattered light apparent to the camera
are the godrays. So, while caustics are the pattern of direct sun-
light that penetrates down to the floor of a water volume, sunbeams
are scattered light coming from those shafts of direct sunlight in
the water volume. Figure 33 demonstrates sunbeams as seen by a
camera looking up at it.
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8 Appendix: Sample code for interactive
water surfaces

The code listed in this appendix is a working implementation of the
iWave algorithm. As listed below,iwavepaint looks like a crude
paint routine. The user can paint in two modes. Wheniwavepaint
starts up, it begins running an iWave simulation on a small grid
(200x200 with the settings listed). This grid is small enough that
the iWave simulation runs interactively on cpus around 1 GHz and
faster. The running of the simulation is not apparent since there are
no disturbing waves at start up. The interface looks like figure 34.
In the default mode at start up, the painting generates obstructions
that show up in black and block water waves. Figure 35 shows
an example obstruction that has been painted. Hitting the ’s’ key
changes the painting mode to painting a source disturbance on the
water surface. As you paint the disturbance,iwavepaintpropagates
the disturbance, reflecting off of any obstructions you may have
painted. Figure 36 shows a frame after source has been painted
inside the obstructed and allows a brief period of time to propagate
inside the obstruction and exit, creating a diffraction pattern at the
mouth of the obstruction.

A few useful keyboard options:

o Puts the paint mode into obstruction painting. This may be se-
lected at any time.

s Puts the paint mode into source painting. This may be selected
at any time.

//------------------------------------------------
//
// iwave_paint
//
// demonstrates the generation and interaction of
// waves around objects by allowing the user to
// paint obstructions and source, and watch iwave
// propagation.
//
// author: Jerry Tessendorf
// jerry@finelightvisualtechnology.com
// August, 2003
//
// This software is in the public domain.
//
//-------------------------------------------------

//-------------------------------------------------
//
// usage:
//
// iwave_paint is an interactive paint program
// in which the user paints on a water surface and
// the waves evolve and react with obstructions
// in the water.
//
// There are two paint modes. Typing ’o’ puts the
// program in obstruction painting mode. When you
// hold down the left mouse button and paint, you
// will see a black obstruction painted. This
// obstruction may be any shape.
//
// Typing ’s’ puts the program in source painting
// mode. Now painting with the left mouse button
// down generates a source disturbance on the water
// surface. The waves it produces evolve if as you
// continue to paint. The waves bounce of off any
// obstructions that have been painted or are
// subsequently painted.
//
// Typing ’b’ clears all obstructions and waves.
//
// Typing ’=’ and ’-’ brightens and darkens the display
// of the waves.
//
// Pressing the spacebar starts and stops the wave
// evolution. While the evolution is stopped, you
// can continue painting obstructions.
//
//
// This code was written and runs under Linux. The
// compile command is
//
// g++ iwave_paint.C -O2 -o iwave_paint -lglut -lGL
//
//
//-------------------------------------------------

#include <cmath>
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Figure 34: Theiwavepaintwindow at startup.

Figure 35: Theiwavepaintwindow with obstruction painted.

Figure 36: Theiwavepaintwindow after painting source inside the
obstruction and letting it propagate out.

#ifdef __APPLE__
#include <GLUT/glut.h>

#else
#include <GL/gl.h> // OpenGL itself.
#include <GL/glu.h> // GLU support library.
#include <GL/glut.h> // GLUT support library.

#endif

#include <iostream>

using namespace std;

int iwidth, iheight, size;
float *display_map;
float *obstruction;
float *source;

float *height;
float *previous_height;
float *vertical_derivative;

float scaling_factor;
float kernel[13][13];

int paint_mode;
enum{ PAINT_OBSTRUCTION, PAINT_SOURCE };

bool regenerate_data;
bool toggle_animation_on_off;

float dt, alpha, gravity;

float obstruction_brush[3][3];
float source_brush[3][3];

int xmouse_prev, ymouse_prev;

//--------------------------------------------------------
//
// Initialization routines
//
//
// Initialize all of the fields to zero
void Initialize( float *data, int size, float value )
{

for(int i=0;i<size;i++ ) { data[i] = value; }
}

// Compute the elements of the convolution kernel
void InitializeKernel()
{

double dk = 0.01;
double sigma = 1.0;
double norm = 0;

for(double k=0;k<10;k+=dk)
{

norm += k*k*exp(-sigma*k*k);
}

for( int i=-6;i<=6;i++ )
{

for( int j=-6;j<=6;j++ )
{

double r = sqrt( (float)(i*i + j*j) );
double kern = 0;

for( double k=0;k<10;k+=dk)
{

kern += k*k*exp(-sigma*k*k)*j0(r*k);
}

kernel[i+6][j+6] = kern / norm;
}

}
}

void InitializeBrushes()
{

obstruction_brush[1][1] = 0.0;
obstruction_brush[1][0] = 0.5;
obstruction_brush[0][1] = 0.5;
obstruction_brush[2][1] = 0.5;
obstruction_brush[1][2] = 0.5;
obstruction_brush[0][2] = 0.75;
obstruction_brush[2][0] = 0.75;
obstruction_brush[0][0] = 0.75;
obstruction_brush[2][2] = 0.75;

source_brush[1][1] = 1.0;
source_brush[1][0] = 0.5;
source_brush[0][1] = 0.5;
source_brush[2][1] = 0.5;
source_brush[1][2] = 0.5;
source_brush[0][2] = 0.25;
source_brush[2][0] = 0.25;
source_brush[0][0] = 0.25;
source_brush[2][2] = 0.25;

}

void ClearObstruction()
{

for(int i=0;i<size;i++ ){ obstruction[i] = 1.0; }
}

void ClearWaves()
{

for(int i=0;i<size;i++ )
{
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height[i] = 0.0;
previous_height[i] = 0.0;
vertical_derivative[i] = 0.0;

}
}

//----------------------------------------------------

void ConvertToDisplay()
{

for(int i=0;i<size;i++ )
{

display_map[i] = 0.5*( height[i]/scaling_factor + 1.0 )*obstruction[i];
}

}

//----------------------------------------------------
//
// These two routines,
//
// ComputeVerticalDerivative()
// Propagate()
//
// are the heart of the iWave algorithm.
//
// In Propagate(), we have not bothered to handle the
// boundary conditions. This makes the outermost
// 6 pixels all the way around act like a hard wall.
//

void ComputeVerticalDerivative()
{

// first step: the interior
for(int ix=6;ix<iwidth-6;ix++)
{

for(int iy=6;iy<iheight-6;iy++)
{

int index = ix + iwidth*iy;
float vd = 0;
for(int iix=-6;iix<=6;iix++)
{

for(int iiy=-6;iiy<=6;iiy++)
{

int iindex = ix+iix + iwidth*(iy+iiy);
vd += kernel[iix+6][iiy+6] * height[iindex];

}
}
vertical_derivative[index] = vd;

}
}

}

void Propagate()
{

// apply obstruction
for( int i=0;i<size;i++ ) { height[i] *= obstruction[i]; }

// compute vertical derivative
ComputeVerticalDerivative();

// advance surface
float adt = alpha*dt;
float adt2 = 1.0/(1.0+adt);
for( int i=0;i<size;i++ )
{

float temp = height[i];
height[i] = height[i]*(2.0-adt)-previous_height[i]-gravity*vertical_derivative[i];
height[i] *= adt2;
height[i] += source[i];
height[i] *= obstruction[i];
previous_height[i] = temp;
// reset source each step
source[i] = 0;

}
}

//------------------------------------------
//
// Painting and display code
//

void resetScaleFactor( float amount )
{

scaling_factor *= amount;
}

void DabSomePaint( int x, int y )
{

int xstart = x - 1;
int ystart = y - 1;
if( xstart < 0 ){ xstart = 0; }
if( ystart < 0 ){ ystart = 0; }

int xend = x + 1;
int yend = y + 1;
if( xend >= iwidth ){ xend = iwidth-1; }
if( yend >= iheight ){ yend = iheight-1; }

if( paint_mode == PAINT_OBSTRUCTION )
{

for(int ix=xstart;ix <= xend; ix++)
{

for( int iy=ystart;iy<=yend; iy++)
{

int index = ix + iwidth*(iheight-iy-1);
obstruction[index] *= obstruction_brush[ix-xstart][iy-ystart];

}
}

}
else if( paint_mode == PAINT_SOURCE )
{

for(int ix=xstart;ix <= xend; ix++)
{

for( int iy=ystart;iy<=yend; iy++)
{

int index = ix + iwidth*(iheight-iy-1);
source[index] += source_brush[ix-xstart][iy-ystart];

}
}

}
return;

}

//----------------------------------------------------
//
// GL and GLUT callbacks
//
//----------------------------------------------------

void cbDisplay( void )
{

glClear(GL_COLOR_BUFFER_BIT );
glDrawPixels( iwidth, iheight, GL_LUMINANCE, GL_FLOAT, display_map );
glutSwapBuffers();

}

// animate and display new result
void cbIdle()
{

if( toggle_animation_on_off ) { Propagate(); }
ConvertToDisplay();
cbDisplay();

}

void cbOnKeyboard( unsigned char key, int x, int y )
{

switch (key)
{

case ’-’: case ’_’:
resetScaleFactor( 1.0/0.9 );
regenerate_data = true;
break;

case ’+’: case ’=’:
resetScaleFactor( 0.9 );
regenerate_data = true;
break;

case ’ ’:
toggle_animation_on_off = !toggle_animation_on_off;

case ’o’:
paint_mode = PAINT_OBSTRUCTION;
break;

case ’s’:
paint_mode = PAINT_SOURCE;
break;

case ’b’:
ClearWaves();
ClearObstruction();
Initialize( source, size, 0.0 );
break;

default:
break;

}
}

void cbMouseDown( int button, int state, int x, int y )
{

if( button != GLUT_LEFT_BUTTON ) { return; }
if( state != GLUT_DOWN ) { return; }
xmouse_prev = x;
ymouse_prev = y;
DabSomePaint( x, y );

}

void cbMouseMove( int x, int y )
{

xmouse_prev = x;
ymouse_prev = y;
DabSomePaint( x, y );

}

//---------------------------------------------------

int main(int argc, char** argv)
{

// initialize a few variables
iwidth = iheight = 200;
size = iwidth*iheight;

dt = 0.03;
alpha = 0.3;
gravity = 9.8 * dt * dt;

scaling_factor = 1.0;
toggle_animation_on_off = true;
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// allocate space for fields and initialize them
height = new float[size];
previous_height = new float[size];
vertical_derivative = new float[size];
obstruction = new float[size];
source = new float[size];
display_map = new float[size];

ClearWaves();
ClearObstruction();
ConvertToDisplay();
Initialize( source, size, 0 );

InitializeBrushes();

// build the convolution kernel
InitializeKernel();

// GLUT routines
glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutInitWindowSize( iwidth, iheight );

// Open a window
char title[] = "iWave Demo";
int Window_ID = glutCreateWindow( title );

glClearColor( 1,1,1,1 );

glutDisplayFunc(&cbDisplay);
glutIdleFunc(&cbIdle);
glutKeyboardFunc(&cbOnKeyboard);
glutMouseFunc( &cbMouseDown );
glutMotionFunc( &cbMouseMove );

glutMainLoop();
return 1;

};



Gilligan: A Prototype Framework

Appendix B eWave Dynamics Algorithm

eWave is an improvement of the iWave algorithm Deusen et al. [2004]. In iWave the first order differential
equations for the motion, the Bernoulli equation and continuity equation, are converted into one second
order differential equation for the wave height, then solved by a finite-difference-in-time scheme. iWave is
unstable to strong inputs. In eWave, the coupled first order equations are retained and solved exactly via
an exponential map solver. With this approach, eWave is very stable and very accurate. The processing
for interaction with objects intersecting the water remains unchanged from iWave. This appendix contains
reference Tessendorf [2014] with the eWave solution.
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eWave: Using an Exponential Solver on the

iWave Problem

Jerry Tessendorf

March 16, 2014

1 iWave Dynamics

The iWave equations of motion for the surface displacement h and velocity
potential φ are:

∂h(x, t)

∂t
=

√
−∇2φ(x, t) (1)

∂φ(x, t)

∂t
= −gh(x, t) (2)

(3)

To see how the exponential solver approach helps, it would be good to set
up a different way to express these equations in terms of a couplet

W (x, t) =

[
h(x, t)
φ(x, t)

]
(4)

The couplet has the equation of motion

∂W (x, t)

∂t
=M W (x, t) (5)

where M is the matrix

M =

[
0
√
−∇2

−g 0

]
(6)

2 eWave: Exponential Solution

Equation 5 has the exact exponential solution

W (x, t) = exp {Mt} W (x, 0) (7)

1



This can be built more explicitly, because if you work it out, you see the following
identities:

M2 = −
[

1 0
0 1

]
g
√
−∇2 (8)

M3 = −M g
√
−∇2 (9)

M2n =

[
1 0
0 1

] (
−g
√
−∇2

)n
(10)

M2n+1 = M
(
−g
√
−∇2

)n
(11)

So, if we expand the exponential into a Taylor series:

exp {Mt} =

∞∑

n=0

(M)ntn

n!
(12)

and separate the powers into even and odd sets

exp {Mt} =
∞∑

n=0

(M)2nt2n

(2n)!
+

∞∑

n=0

(M)2n+1t2n+1

(2n+ 1)!
(13)

Using the identities above,

exp {Mt} =

[
1 0
0 1

] ∞∑

n=0

(−g
√
−∇2t2)n

(2n)!
+ Mt

∞∑

n=0

(−g
√
−∇2t2)n

(2n+ 1)!
(14)

The first infinite series is the series for the cosine, and the second is the series

for the sine. So if we define ω̂ ≡
√
g
√
−∇2

exp {Mt} =

[
1 0
0 1

]
cos (ω̂t) +

M
ω̂

sin (ω̂t) (15)

=

[
cos (ω̂t)

√
−∇2

ω̂ sin (ω̂t)
−g
ω̂ sin (ω̂t) cos (ω̂t)

]
(16)

The nice thing about this is that, because g and ∇2 are not time dependent
quantities, this solution is exact for any value of time t. This is the exact solution
for any time period:

h(x, t+ ∆t) = cos (ω̂∆t) h(x, t) +

√
−∇2

ω̂
sin (ω̂∆t) φ(x, t) (17)

φ(x, t+ ∆t) = cos (ω̂∆t) φ(x, t) − g

ω̂
sin (ω̂∆t) h(x, t) (18)

In real space, the tricky part of this is the complex way that ∇2 is in the
solution. Using convolution on this would be similar to the old iWave approach,
but still better because the dynamics has been integrated already.

2



3 FFT Form

In Fourier space, the appearance of ∇2 simplifies considerable, because now the
operator ω̂ becomes the dispersion relation ω̂ → ω(k) =

√
gk, where k is the

absolute magnitude of the Fourier vector. For the initial Fourier amplitudes
h̃(k) and φ̃(k)

h̃(k, t+ ∆t) = cos (ω(k)∆t) h̃(k, t) +
k

ω(k)
sin (ω(k)∆t) φ̃(k, t) (19)

φ̃(k, t+ ∆t) = cos (ω(k)∆t) φ̃(k, t) − g

ω(k)
sin (ω(k)∆t) h̃(k, t) (20)

Equations 19 and 20 are what is in the FFTDynamics code.

4 Convolution Form

If we want to evaluate the dynamics as a convolution, the FFT form can be
used to construction the convolutions. In convolution form, there are three
convolution kernels that apply as

h(x, t) = C(x) ⊗ h(x) + S(x) ⊗ φ(x) (21)

φ(x, t) = C(x) ⊗ φ(x) − T (x) ⊗ h(x) (22)

where ⊗ denotes spatial convolution and the convolution kernels are:

C(x) =

∫
d2k

(2π)2
eik·x cos (ω(k)∆t) (23)

S(x) =

∫
d2k

(2π)2
eik·x sin (ω(k)∆t)

k

ω(k)
(24)

T (x) =

∫
d2k

(2π)2
eik·x sin (ω(k)∆t)

g

ω(k)
(25)

Explicitly in terms of integration, these convolutions are:

h(x, t) =

∫
d2y C(x− y) h(y) + S(x− y) φ(y) (26)

φ(x, t) =

∫
d2y C(x− y) φ(y) − T (x− y) h(y) (27)

The practical implementation of convolution is as a moving window filter on
the 2D gridded data for h and φ. Imagining these quantities have values hij ,
φij on the rectangular grid, the time updates are

hij(t+ ∆t) =

N/2∑

k,l=−N/2

Ckl hi+k j+l(t) + Skl φi+k j+l(t) (28)

3



φij(t+ ∆t) =

N/2∑

k,l=−N/2

Ckl φi+k j+l(t) − Tkl hi+k j+l(t) (29)

Where N is the size of the square moving window, and Ckl, Skl, and Tkl are the
values our the kernels at discrete grid intervals. Strategies for obtaining these
discrete kernels are discussed below.

Theoretically, if we take the limit that N is the size of the full simulation
grid and apply periodic boundary conditions, the moving window filter produces
identical results to the FFT approach, although the FFT approach is dramati-
cally faster at it. But the moving window filter opens up many other strategies
that can be applied when simple periodic boundary conditions are no longer fea-
sible, and assuming that a small-enough window size N produces results that
look good. In iWave, the smallest window size recommended was 13×13, but
here a size that looks good will probably be larger, perhaps 30×30 or larger
depending on the circumstances and desired visual qualities. In general, the
larger the value of N , the better the quality of the propagation motion.

5 Boundary Conditions

The convolution approach breaks away from the constraint that the fields h
and φ be periodic. That freedom also imposes a requirement that boundary
conditions be specified when applying the convolution. Here are a few different
strategies. Note that all of these strategies can be applied in a single simulation
by choosing different ones on each boundary.

5.1 Periodic

Of course, periodic boundary conditions can still be imposed, simply by wrap-
ping the indexing of i+ k and j + l in the convolution sums.

5.2 Fixed Ghost Values

When the values of i + k or j + l extend beyond the bound of the grid, ghost
values for h and φ can be prescribed.

5.3 Tiled Simulation Grids

If you are running independent eWave simulations on multiple grids that butt
up agains each other, the simultions can be coupled via the boundary conditions.
When the values of i+k or j+ l extend beyond the bound of one grid, values for
h and φ can be retrieved from the adjoining grid. This will naturally propagate
waves and momentum between simulation grids without requiring extending
each grid with gridpoints for ghost values (although ghost values is one approach
to implementing the approach here).

4



6 Convolution Kernel Construction

The approach below is to find expressions for the convolution kernels C, S, and
T . There are two methods we will look at. The first is a highly theoretical
way that produces practically poor performance. The second is a brute-force
method that is fast, flexible, and works.

6.1 The Impractical Theoretical Way

For the deep water case, using the symmetries of the integrands, we can define
the dimensionless variable ξ as

ξ2 =
gt2

|x| (30)

Using this variable, these convolution kernels can be written as

C(x) =
1

|x|2 C(ξ) (31)

S(x) =
1

|x|5/2√g S(ξ) (32)

T (x) =

√
g

|x|3/2 T (ξ) (33)

where

C(ξ) =

∫ ∞

0

du u J0(u) cos(
√
u ξ) (34)

S(ξ) =

∫ ∞

0

du u3/2 J0(u) sin(
√
u ξ) (35)

T (ξ) =

∫ ∞

0

du u1/2 J0(u) sin(
√
u ξ) (36)

While this approach to generating the convolution kernels may prove in-
teresting in the future, trying to apply these formula has not yet produced a
practically useful approach.

6.2 The Practical Brute-Force Way

The simplest way to quickly and accurately construct C, S, and T as N ×
N moving window filters is to use FFTs to directly evaluate the integrals in
equations 23 – 25. The procedure is as follows:

1. Create three grids, one each for C, S, and T . The dimensions of these grids
should not be N × N . They should be the dimensions of the simulation
grid for h and φ. This is to ensure that spatial scales properly contribute
to the filter values.

5



2. Assuming you are using an FFT package like FFTW, initialize the values
in the three grids to 0, with the single gridpoint i = 0, j = 0 initialized to
∆x∆y.

3. FFT the three grids to Fourier space. All of the grid points should now
have identical values, and the exact value depends on (a) with FFT pack-
age you use, and (b) the number of grid points.

4. For each gridpoint in each grid, multiply the value in the gridpoint by
the integrand in the corresponding equation. For the C grid, multiply
by cos (ω(k)∆t), the S grid by sin (ω(k)∆t) k

ω(k) , and the T grid by

sin (ω(k)∆t) g
ω(k) .

5. Inverse FFT the three grids back to real space. Be sure to apply the
normalization that the FFT package requires.

6. The three grids should now be filled with values of C, S, and T for any
moving window size up the size of the full simulation grid.

7. Choose a value for N , create three N ×N filter grids, and fill them with
values from the larger C, S, T grids just generated.

8. You can now discard the full-sized C, S, and T grids.

6
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1 Introduction

Volume rendering is a method for creating images from a three dimensional
set of particles. Volume rendering has a wide variety of applications. Medical
technology uses volume rendering in Computer Tomography (CT) scans and
Magnetic Resonance Imaging (MRI). Scientific visualization applications of-
ten use volume rendering techniques. Volume rendering is often used in
the digital special effects to render amorphous and/or gaseous elements like
clouds, dust, smoke, or flames 5. Something like a cloud can be more re-
alistically modeled by a volume of particles than the traditional graphics
paradigm of representing objects as surfaces. This more realistic modeling in
turn leads to a more realistic image. Volume renderers can take into account
factors such as how light travels through various mediums and the effects of
light scattering. The elements to be rendered are modeled as sets of volu-
metric data within a 3D grid. This grid is conceptually made up of 1x1x1
cubes called voxels 2. Each voxel stores a density and a color of the particle
at that specific voxel.

One of the key limitations of traditional volume rendering is memory size.
If at each voxel we store a single 4 byte floating point number and three 4
byte floats representing the RGB color at this voxel, we end up storing 16
bytes for every voxel. A single voxel is inconsequential in terms of memory
usage. However, volume rendering utilizes large grids of voxels to work. The
larger the volume to be rendered and the more detailed the volume needs
to be, the larger the array of voxels. Rendering a 10003 grid with 16 bytes
allocated for each grid point would require a minimum of 15 GB of main

1
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Figure 1: A set of volume rendered clouds

memory, well beyond most machines. Also, it is very likely that a substantial
majority of voxels are empty, meaning that much of the memory allocated
is unused and therefore redundant. An ideal situation would involve storing
only non-empty voxels in memory, with the understanding that if a voxel is
not in memory, then it contains specified default values. This is the basic
idea upon which sparse grids are built. Sparse grids, as opposed to dense
grids that allocate memory for each grid point, regardless of its value, only
store a portion of the data 4. When the volume renderer attempts to access
data at a grid point, the sparse grid must determine whether this grid point
is actually allocated and return the appropriate values.

2 Background

Sparse Grids

Sparse grids are not appropriate for all situations. If there are no memory
management concerns, or if the importance of shorter render times outweighs
decreasing the size of the data, then sparse grids will not likely be of much
use. Even in situations where using less memory is an important goal, sparse
grids may not be a useful solution. There is a threshold of data a sparse
grid can hold beyond which the sparse grid is less memory efficient. This
threshold varies depending on the implementation. Since sparse grids store
memory in a noncontinuous fashion, extra information must be stored to
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retrieve the correct data. This information will end up being more of a
burden on memory if too much of the grid is allocated. Sparse grids are
useful for a specific class of problems. If the application contains a grid that
is mostly empty and for which better memory usage justifies slower rendering
speeds, sparse grids are appropriate. The added computation in looking up
values is a sparse grid is what causes the slowdown in render time.

OpenCL

Specifically, we are interested in building and analyzing the performance of
sparse grid implementations in OpenCL. OpenCL is a programming frame-
work designed to take advantage of the heterogeneous nature of modern
computer systems 1. One of the major benefits of OpenCL is the ability to
execute code on graphical processing units (GPU). GPUs are highly parallel,
with many threads of execution. This inherent parallelism combined with
the fast floating point processing cores used in GPUs makes these devices
very appealing for solving parallelizable problems (like volume rendering).
OpenCL seeks to take advantage of the attributes of the GPU. Programs
written for OpenCL must have a host and at least one kernel written in or-
der to function. The host program, written in a language like C or C++,
is tasked with setting up the kernel and handling interactions between the
kernel and the rest of the system.

Common tasks performed by the kernel include discovering what OpenCL
devices are in the system, loading a kernel, choosing the appropriate OpenCL
device for the kernel to run on, and loading data onto the OpenCL device.
OpenCL devices are usually CPUs and GPUs, and the host program can
specify what type of OpenCL device a kernel is to run on. Kernels are
written in OpenCL C, a C like language with some alterations. The kernels
written for the volume renderers used in this paper utilize the data parallel
programming model. In other words, a set of input data is split up and a
sequence of operations is performed on each element of the input data in
separate threads of execution. In this case, kernels contain the sequence of
operations. This same kernel is run concurrently on many threads.

Each data element is given a unique global id, and using this id, each
thread spawned is given a different elements id. The host program specifies
the number of threads to spawn, which is often the number of data elements
to be processed. One of the important factors in OpenCL is device memory.
Since the CPU the host is executing on and the device executing the kernel are
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almost always different, data the kernel needs must be loaded into the devices
global memory. For most systems, this device memory is smaller than main
memory, especially if the device in question is a GPU. Thus, efficient memory
management is even more important when using OpenCL. OpenCL is an
attractive language for volume renderers because of the speedup provided
by GPU concurrency, but memory limitations are a serious concern. Sparse
grids are a valuable extension that can potentially greatly expand the size of
renderable grids.

Related Work

Several popular libraries already exist that utilize sparse grids. Field3D is
an open source C++ library originally developed by Sony Pictures Image-
works 2. While Field3D uses dense grids by default (which are generally
much faster but bigger), the library does have sparse grid options available.
Field3D uses a scheme similar to the Block-partition sparse grid implementa-
tion described below. In a nutshell, Field3D divides the grid into multi-voxel
blocks. These blocks are only allocated when a voxel within a given block is
set. Field3D has some additional functionality not found in our implementa-
tions, such as deallocating blocks and iterating over blocks. This functionality
was not necessary for our purposes and thus was not added.

Gigavoxel is a system developed by Cyril Crassin, Fabrice Neyret, Sylvain
Lefebvre, and Elmar Eisemann 3. It uses N3-trees to store and access voxel
data. Each node of an N3-tree can be subdivided into N33 children. N3-
trees are a more generalized form of octrees, which are N3 trees with N =
2. Different values of N can be used to achieve different performance goals.
If N is small, the data structure will be more memory efficient. If N is large,
the data structure will allow for quicker traversal. Each node in Gigavoxels
N3-tree stores either a block of pointers or a single value. The single value
represents a value that is shared by all elements in the particular N3 sized
block. Usually this will be zero, representing an empty block. All node data
and blocks of voxels are stored in texture memory. Gigavoxel is capable of
rendering 20483 sized RGBA data in real time on GPUs.
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3 C++/C implementations

Before attempting to build an OpenCL volume renderer, a number of imple-
mentations of sparse grids were created. These implementations were ana-
lyzed and compared based on memory usage, lookup time, and load time.
The grids described below were implemented as C++ classes with a com-
mon API. The one C struct implemented was written to match this API as
closely as possible. Several variations are made where appropriate, but the
important methods are :

get(int,int,int) - given an index for each dimension, return the value at grid
point
set(float,int,int,int) - given an index for each dimension, set the grid point to
the given float value
init(int,int,int) - given dimensions for x, y, and z components, initialize the
grid
In addition, all sparse implementations have an additional method
setDefVal(float) - sets the default value for the grid

Non Sparse Implementation

As a baseline for comparison, a dense grid class was implemented. Given
X,Y, and Z dimensions for the grid, a 1D float array of size X ∗ Y ∗ Z is
dynamically allocated. Assuming an indexing scheme from 0 to N-1, grid
point (i,j,k) would be accessed by indexing into the array

index = i + j ∗X + k ∗X ∗ Y (1)

This value is used both when getting and setting this grid point. Since there
is very little computation and the memory is all allocated beforehand, both
operations are performed very quickly.

C++STL Maps

Two implementation of sparse grids were created using the Map class from
C++s Standard Template Library (STL). Abstractly, maps are a set of
(key,value) pairs. A map can store a value with a unique key. If given a
potential key, a map will either indicate that the key does not exist or re-
turn the corresponding value. The C++ STL map class is templated; a type
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must be specified for both the key and the value. In both implementations
described below, the value type is float, while the key type varies based on im-
plementation. Note that the map class is not currently portable to OpenCL;
these two implementations served as a baseline for completely sparse grids.

The first implementation has a key,value type of < int, float >; given
an int key, there would potentially be a float value. This associative storage
of data is very similar to the general idea of sparse grids and a sparse grid
can easily be implemented using an < int, float > map. First, a default
float value must be defined. Though commonly 0.0 (grid points with no data
would have no density) , the value is application specific. The grid must
then be initialized with the X, Y, and Z dimensions of the grid. Though
no memory is allocated, the grid dimensions must still be known for correct
getting and setting. When a value F is to be set set at grid point (i,j,k), the
key value pair to be inserted into the map will be (i + j ∗X + k ∗X ∗ Y, F ).
This insertion is only performed if F 6= defV al. In this way, only relevant
data is stored in the grid. When getting a value from position (i,j,k) on the
grid, if the map does not contain key i + j * X + k * X * Y, then the default
value is returned. If i + j ∗ X + k ∗ X ∗ Y does have an associated value,
it is returned. Whereas the dense grid had O(k) set and get methods, the
complexity of the set and get methods for the map< int, float > sparse grid
is O(log n), where n is the number of elements in the map.

The second implementation of sparse grids using STL maps has a key,value
pair type of < int,map < int,map < int, float >>>. Each of the three ints
in the key,value pair type correspond to a dimension of the grid. The get
method works by checking for (i,j,k) if any value has been stored with an X
index of i, if so whether any value has also been stored with Y value of j, and
so on. Setting works in a similar though reverse way. The benefits of this
implementation may not be initially obvious behind the layers of abstraction.
The main benefit of this implementation is that there is no need for prede-
fined grid dimensions. This allows for practically infinite sized grids, as long
as the indices are valid ints and there is available memory. Grid data can be
positioned anywhere without having to specify an offset as in other grid im-
plementations. The benefits described above also come at a large cost. The
set and get methods of the map< int,map < int,map < int, f loat >>>
sparse grid are O((log n)3).



3 C++/C IMPLEMENTATIONS 7

Red-Black Tree

Since the C++ STL map is not something that can be used in an OpenCL
kernel, one of the potential avenues pursued by the authors was creating
a sparse grid with an underlying data structure that would be compatible
with OpenCL and also improve upon either the render time or the memory
overhead. It was decided that the underlying data structure for storing non-
empty grid points would be a binary search tree. The key for organizing the
nodes of the tree is the i + j ∗ X + k ∗ X ∗ Y , which is unique for each
grid point. Binary search trees insert smaller keys into the left sub-tree and
larger values into the right sub-tree. It is very possible that a user of the grid
class would start at grid point (0,0,0) and loop over the acceptable values
of i,j, and k to initialize their grid. This potentially leads to the worst case
scenario for the tree, in which it essentially becomes a linked list of right
sub-trees. Since this possibility could easily occur in use, it was decided to
use a self balancing tree, specifically a red-black tree. While this may incur a
hit in inserting new nodes, this should decrease the look up time, especially
in the worst case. The red-black tree implementation of a sparse grid was
written in C. Instead of a C++, a struct was used, and all methods had
an additional SparseGrid * parameter. Notice that this implementation (as
well as all sparse implementations) does introduce memory overhead for each
non-empty value added to the grid. Pointers to the left and right subtrees
and a key value must be stored for each float to be stored in the tree. This
overhead means that for grids where greater than 25% of the grid points are
non-empty, the sparse grid implementation is actually less memory efficient.

Block-Partition

The method for sparsely storing voxel data described here is similar to the
scheme used by Field3D 2. This implementation partitions the grid in into
cubes of one or more voxels. Often the grid is partitioned so that each block
(the partition size) is a power of two in each dimension 4. This is implemented
as an array of float* all originally set to null. When an element is to be set
at a certain grid point, the correct block is found. If this block has not been
allocated, the entire block containing the grid point will be allocated as an
array of size (partSize)3. The value is then set at the appropriate index in
the appropriate block array. If the block has already been created, then the
only step is having the correct element of the array is set. Looking up a value
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involves indexing to the correct block. If this block is null, the default value
should be returned. If the block is allocated, the correct value within the
block should be returned.

Unlike previous spare grids implemented, the block-partition method does
not attempt to only store filled voxels. Block-partition instead attempts to
use the inherent spatial locality of particles within most grids. In the entities
we are often trying to render, like clouds, if a specific voxel is filled, it is
very likely that most if not all of its adjacent voxels will also be filled. This
property does not hold along the outer edges of the entity, and it is possible
there are non filled areas within the entity, but for the majority of parti-
cles spatial locality should apply. This coupled with the expensive cost of
dynamically allocating space makes building grids using this algorithm gen-
erally faster than other implementations. Implementations like those using
the STL maps and red-black trees carry a high cost in terms of the amount
of data necessary to get to organize the grid (ex: the pointers for the left
and sub-trees). In block-partition method, only one extra value is created
for every partSize3 voxels. While not all of these voxels may be used, the
majority of them will likely be used for most volumes. It is not unlikely
that for many sets of data the block-partition method may be more memory
efficient than other sparse implementations discussed. Another very tangi-
ble benefit of this scheme is its handling of dynamically allocating memory.
The first grid point to be set in a block should be about as slow as other
implementations since the block must be allocated before the value can be
set. However, later values placed into that block will be inserted almost as
quickly as in the dense grid (there is some extra computation involved in
finding the correct block), since the space has already been allocated. This
is one of the ways that this implementation takes advantage of the spatial
locality of most data. The computational complexity of setting and getting
values in partition-block grids is O(k). This is the same order of complexity
as dense grids. The multiplicative constant for dense grids is lower, so sets
and gets on a dense grid will still run faster than the block-partition grid.

Comparison

With five different implementations of grids written, we were interested in
seeing how these grids would work in use. The two important metrics of
sparse grids are time and memory usage. Multiple grid sizes were used in
testing; the tests were repeated with both a 2563 grid and a 5123 resolution
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grid of a wisp The grids contained only floats, no color element was taken
into account. The rendered 5123 grid used for testing.

Figure 2: The rendered 5123 grid used for testing

To get a sense of how long each grid takes to set and access data, the
time it took for each implementation to build a grid and iteratively get every
point in the grid was measured. Loading a grid is a test of the speed of each
grids set method. Iterating over a grid in turn gives an idea of the relative
time it takes each grid to look a value up. This test was repeated fifteen
times, one immediately after the other. The results of the first five runs were
discarded, since they almost always tended to be much less consistent than
the latter runs. The load time and iteration time of the next ten runs were
then averaged. The results of this testing were displayed below.

Several trends are worth discussing from this chart. Immediately appar-
ent is the time inefficiency of the 3 nested STL maps implementation. This
is not unexpected given its high computational complexity compared to the
other grids, but its load and iteration times almost double that of the next
slowest implementation. Unless the added benefit of not having to predefine
maximum grid dimensions far outweigh the time costs displayed here, this
implementation is not of much practical worth. The single STL map and
the red-black implementation achieved similar results, which is not surpris-
ing. Maps like the ones found in the STL can be implemented using tree
structures, and the two implementations were both O(log n) for setting and
getting voxel data. The red-black tree performed slightly better, but this
could potentially be attributed to a number of things like differences be-
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Figure 3: CPU Grid Implementations - Time

tween the gcc and g++ compilers, extra overhead by the templates used in
STL maps, or that the red-black implementation was written specifically for
grids. This chart also makes it clear that sparse grids take the bigger time
hit in accessing data. The sparse grids (nested map excluded) all performed
about as well as the dense grid when it came to loading data. The dense grid
iterates over both lists faster than it loads them. The opposite is true for the
sparse grid implementations. The block-partition grid, which is clearly the
most efficient sparse grid from a time standpoint, is twice as slow in iterating
over its data as loading it. This means that getting a value is about four
times slower for block-partition grids than for a dense grid.

Time is only one metric to analyze sparse grids. The other important
metric is memory usage. To track memory usage, a 2563 and a 5123 grid were
again loaded into memory. Valgrind, a tool that tracks memory allocation
of programs, was used to see how much memory was being allocated in the
process of loading each grid. The results are displayed below.

It is obvious that all of the sparse grids are much more memory efficient
than the dense grid at storing data. Interestingly, the most efficient sparse
grid (for these two images, which are representative of the majority of images
rendered) is the block-partition grid, which does not attempt to contain only
non-empty values. This is likely the case because the overhead incurred by
the STL map and red-black tree implementations place a far greater burden
on memory than the array of pointers to blocks and the unused but still
allocated voxels.
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Figure 4: CPU Grid Implementations - Memory

Based on the tests we ran, the partition-block scheme of sparse grids is
the clear winner. It is significantly faster and more memory efficient than
any of its sparse counterparts. It is also clearly the most scalable, which is
an important attribute for these grids considering that their purpose is in
rendering larger grids of data. It is for these reasons that the sparse grids
used in our volume renderers use block-partition grids.

4 OpenCL implementations

Non-sparse

To serve as a foundation for building volume renderers utilizing sparse grids,
we started with volume renderer with a C++ host that set up the volume
to be rendered and the appropriate OpenCL setup. The renderer used two
OpenCL kernels. The first kernel calculates and builds a deep shadow map
for the volume. The second kernel performs the ray marching 5 and creates
the image data, which is then returned to the host and written to an image
file in the requested format. The shadow map kernel was removed during
development to allow for more space in GPU memory.

Single Level of Abstraction

The original sparse grid implementation of a volume renderer in OpenCL fea-
tures a system based on the partition-block implementation described above.



4 OPENCL IMPLEMENTATIONS 12

The grid is built in the C++ code and loaded onto the GPU to be used by the
kernel. Due to the nature of memory on a GPU, one major deviation is made
from the C++ implementation. The C++ implementation kept an array of
pointers to blocks of grid points, initially set to null. When a grid point was
being set within a null block, space for the block would be dynamically allo-
cated and the array of pointers would then point to their respective blocks.
The problem with this implementation is that when the array is loaded into
the graphics cards memory, the values of those array indexes are pointing to
memory locations in a totally different address space, in main memory. To
fix this problem, the initial array of pointers is replaced with an int array of
the same size. Initially all values in the array are set to -1. Using the same
indexing scheme described to index into the array of pointers with a given
(i,j,k), whenever a location is accessed for the first time, its value is changed
from -1 to one less than the total number of locations indexed to so far. The
first location accessed will be given a value of 0, the second location accessed
will be given a value of 1, etc. These new values will be used to index into a
second array of floats containing the actual values. Each time a new block is
indexed, the float array will have to be reallocated with partSize3 more floats
to accommodate a new partition. All of the newly allocated floats must be
initialized to the default value.

Figure 5: A 4x4x2 grid with a partition size of 2

Once both arrays are built in this fashion, getting a value from the grid is
a two step process. The first step involves looking up the indexed int array
value. If this is -1, then the default value is immediately returned. Otherwise,
the array value is used to index into the correct partition in the float array,
and then the correct value within the partition is returned. This difference
allows the spare grid to be loaded and correctly work on the GPU. The
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sparse grid was updated so that OpenCLs float4 type could also be stored
at each data point. A separate array of float4s was kept and values were
added and gotten identically to the float array. In the volume renderer the
first three values of the float4 stored RGB color information. The original
volume renderer using dense grids was heavily modified to accommodate the
sparse grid implementation. Aside from trivial API differences between the
grid classes on the C++ side, the majority of the changes to the C++ code
involved getting all of the extra data needed by the sparse grid loaded onto
the GPU. The sparse grid needs the mapping int array, the partition size,
and the default values for the float and float4 arrays in addition to what is
required of the dense grid. The kernels were altered to handle the additional
arguments and the sparse data. The original dense grids relied on direct
access to the arrays and were rewritten to correctly access the appropriate
data.

Multiple Levels of Abstraction

Most of the overhead associated with the block-partition scheme hinges on
the size of each partition. Larger partitions mean a smaller int array for
mapping, but also means that more potentially unused grid points are being
allocated. Conversely, depending on the size of the grid, it is possible that
making the partition size will cause the total memory usage of the system to
go up because of the increased size of the mapping array. In addition, it is
possible that many of the integer blocks will be unused, containing a default
value of -1. One way to alleviate this issue is to extend the idea of sparse grids
so that the mapping array is itself sparsely stored into partitions. Adding
an additional array of ints adds a layer of complexity both conceptually
and computationally, but given a sparse enough grid the improvements in
in memory usage are substantial. When setting a value at a grid point, the
class must first check if the correct mapping partition has been allocated,
allocate if necessary, and then do the same with the data partition before
setting the value. Value look up also has the extra step of checking if the
mapping partition has been allocated. The doubly sparse grid implemented
here has the same partition size for both levels, though a natural extension
might be to have separate partition sizes for each level.



5 RESULTS 14

Figure 6: An 8x8x4 double sparse grid

5 Results

Optimization

Several improvements were made to the two sparse renderers after achieving
basic functionality. In the original version of the sparse renderer, only grids
in which each dimension was a multiple of the partition size would correctly
renderer. The double sparse renderer, in turn, would only correctly render
with dimensions the multiple of the square of the partition size. Grids not
fitting these requirements would produce images with noise around the edges.
This noise was the result of the extra space created by dividing the grid into
blocks; since the grid does not evenly divide into the blocks, a subset of the
blocks will contain space for data that should not exist. This extra space
would cause incorrect some indirect indexing into the sparse grid and thus
distort the image. This was resolved by forcing non-multiple grid dimensions
to the next highest multiple (a 1013 grid will be forced to a 1043 grid for
single sparseness), ensuring the image produced will never have this issue.

Other changes were made to the renderers to improve performance in
terms of both speed and memory usage. The deep shadow map kernel and
its associated grid were removed from later versions of all three renderers.
This change decreased both the render time of the image and the memory
usage of the GPU since the shadow map data no longer had to be loaded
on the card and there were fewer computations to perform in the ray march
kernel. During the development and refinement of these renderers, we found
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that a partition size of four seems to produce optimal results for the test
volume. The optimal partition size varies between volumes and the value
that seemed the best compromise between render time and memory size.

Testing

Memory

In addition to creating an image, each renderer returns pertinent information
like the partition size used, amount of time spent on the GPU, and the
number of blocks allocated (for the sparse grids). From this data it is easy
to calculate the amount of memory necessary to successfully create and store
a grid. To compare the three renderers, the same image was rendered on
each renderer. If a render was successful, the grid size was increased in each
dimension by 250 voxels. When a grid gets too large for the GPU to store,
an allocation failure flag is thrown and the render terminates. The results of
testing are shown below. The results discussed below were generated by an
Nvidia GeForce 9600M GT with 256 MB of memory. Additional tests were
run on WHATEVER CHORTLES CARD IS and comparisons between the
gathered data can be found later in the text.

Figure 7: Voxel Allocation in Sparse Renderers

The non-sparse implementation was only able to successfully render a 1003

grid before exhausting the memory. The renderer using single sparse grid
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was able to successfully render grids up to 12503, over three thousand times
larger than the non-sparse renderer. The double sparse grid implementation
achieved 27503, six times larger than the single sparse renderer and over
twenty thousand times larger than the non-sparse renderer. The sparse grid
renderers are able to hold much greater volumes because they only allocate a
very minute percentage of the voxels in the grid ( < 0.1 % in most cases). As
a result, grids can be orders of magnitude larger. There is also a substantial
gain in the additional layer of sparseness added for the double sparse renderer.
Notice that the percentage of voxels allocated is much closer between the
two sparse renderers than between either sparse renderer and the non-sparse
one. Often, they differ by only a few thousandths of a percent. This would
seem to imply that the majority of the savings are coming from making the
mapping sparse as well. As the number of allocated map blocks reported
from the double sparse implementation indicates, the vast majority of blocks
are empty in the single sparse implementation. Significant memory savings
are made by making the map sparse as well. These savings only increase
with the size of the actual grid, since the number of allocated blocks in the
double sparse implementation stays roughly the same across grid sizes.

Render Time

The significant gains made by the sparse grid implementations in terms of
memory footprint do come at the cost of render time. The non-sparse ren-
derer may store all of its values, but because it does so, looking up a density
value is as simple as directly indexing into an array. The single sparse ren-
derer must perform a set of operations to see if the desired voxel has been
allocated and if so what its values are. Having to perform these additional
operations means a slower render. The double sparse renderer must essen-
tially perform this set of operations twice to look up a value, and as a result
is noticeably slower than even the single sparse render.

Several trends, however, do appear in the data. Immediately clear is the
fact that there is an inverse relation between grid size and render time for
sparse grids. This relation is especially pronounced in the double sparse im-
plementation results, which decrease by approximately 40% over the range
of grid sizes. In smaller grids, render times are larger and there is a large
change in render time between grid sizes. As grid sizes get larger, render
time starts to decrease and there is less of a difference between the render
time of different sized grids. These results may initially seem counterintu-
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Figure 8: Render Times Using Different Grid Sizes

itive. Conventional wisdom would seem to imply that as grid size increased,
so too should the time it takes to render the grid. Notice that render time
trends are similar to the trend displayed percentage of map blocks allocated
as grid sizes increase. Both start large with a fast rate of change and end
with smaller values and a slow rate of change. A smaller percentage of allo-
cated blocks with increasing grid size implies that the rate of filled blocks in
the grid is increasing at a slower rate the number of unfilled blocks. In other
words, the majority of blocks added with an increase in grid size will go unal-
located. While this is not necessarily desirable from a memory management
perspective, it is actually a source of speed up when rendering a volume. If
in the course of the look up function, the look up function finds that the
desired voxel is not allocated, the look up function immediately returns the
default value. This means that the majority of the computations needed to
actually find the correct value are skipped, and the lookup function is much
faster as a result. This speedup, combined with the parallel nature of graph-
ics cards, leads to the shorter render times displayed in the double sparse
implementation results. This same basic principle also applies to the single
sparse renderer.
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Card Scalability

CHORTLE RESULTS WOULD GO HERE
Several tests were run also run on WHATEVER CHORTLES CARD

IS with MEM MB of memory. While the results clearly show that this is a
more powerful card that can store much larger sparse grids, the trends remain
largely the same. The benefits of these grids translate with more powerful
cards.

Other

These results show that for many volume rendering applications in which
memory is the limiting factor, sparse grids are valuable tools that can greatly
increase the functionality of said application. If the volume needs to be ren-
dered as fast as possible, or if the volume is mostly filled, sparse grids are
probably not appropriate. Our results show that a single layer of sparseness
allows grids with orders of magnitude more voxels for a relatively modest
increase in render time. These memory savings come occur because only a
minute percentage of voxels in the grid are actually allocated. More time is
needed to render because additional computations are needed to correctly in-
dex to the allocated voxels. Eventually memory in a single level of sparseness
the limiting factor becomes the size of the map used to index to allocated
voxels rather than the voxels themselves. This limitation is solved by mak-
ing the map itself sparse, creating a double level of sparseness. This double
sparse renderer is slower than its less sparse counterpart, but also can ren-
der much larger volumes. With increasing grid size, these sparse renderers
actually take less time to render. This is because the vast majority of voxels
added by the increased grid size will be unallocated. Unallocated voxels can
be looked up much faster than allocated voxels, which helps speed up the
render. We recommend that a volume be rendered with the lowest degree
of sparseness possible. Rendering an image using a sparse grid which can
rendered with a non sparse renderer only increases the render time without
real benefits. The value in sparse grids is in rendering grids so large they
could not normally be rendered.
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6 Conclusion

There are many possible methods of reducing the memory size of large vol-
ume grids. We implemented sparse grids using C++ STL maps, red-black
trees, and block-partitions. Overall, block-partition sparse grids seem to be
the most efficient method of storing volumetric data. Implementing block-
partition grids in OpenCL allows large volume grids to be rendered on GPUs,
which typically do not have as much RAM as CPUs. Using block-partition
grids reduces memory usage but increases render time. Potential future work
involves the use of texture memory on the GPU. Texture memory provides
faster access time than global memory. To use texture memory for sparse
grids, we envision writing the one-dimensional, sparse RGBA data to the
two-dimensional texture memory. We would choose an texture width that
is some power of two in order to speed up indexing calculations. The logi-
cal extension of what has been presented in this paper would be to design
a triply sparse grid. This could be useful for volumes that are extremely
large but mostly empty. In general, however, there will be diminishing re-
turns on adding extra levels of sparse mapping. Every extra layer of sparse
mapping increases data access time significantly. Another potential improve-
ment would be to find the optimal partition size or sizes computationally on
the host before sending the data to the kernel. Generally, a partition size
of around 4 is most memory efficient, but in some cases a larger partition
size might save memory. We could develop an algorithm that analyzes that
volume grid on the host and determines which partition size would result in
the least possible memory usage. A drawback is that partition sizes that are
powers of 2 make indexing calculations much faster. Using a partition size
of 5 instead of 4 might save GPU memory, but it could double render time.
Our current implementation coalesces a block into a single value only if every
element in the block is exactly equal to one particular value. In other words,
if the default value is zero, then a block of values will be allocated in the
sparse grid if any of the values in the block are not exactly equal to zero.
We could add a range of values that would be clamped to the default value.
This would decrease memory usage but also decrease render quality.
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Forward

These course notes make use of a volumetric scripting language called Felt,
developed at Rhythm and Hues Studios over many years and continuing to be
developed. In 2003 the earliest working version of the Rhythm and Hues Studios
fluid solver, Ahab, had been built by Joe Mancewicz, Jonathan Cohen, Jeroen
Molemaker, Junyong Noh, Peter Huang, and Taeyong Kim, and successfully
used on the film The Cat in the Hat. At that point our group of simulation
and volume rendering developers were thinking about what sort of tools we
would need to be able to manipulate all of the volumetric data coming from
simulations, and for that matter tools to create new volumetric data without
simulations. We were very inspired by what TDs were telling us about Digital
Domain’s Storm, and its expression language in particular. But we could also
see that if we were not careful about how we built a language, there might be real
memory issues from creating and manipulating lots of grid-based volumes. At
the same time, we could see that procedural operations like those in the area of
implicit functions had a lot of nice strengths. We wanted the language to cleanly
separate the application of mathematical operations on volumetric data from
the discrete nature of the data. The same math – and the same code – should
apply whether a volume is grid-based, particle-based, or procedural-based, and
we should be able to freely mix volumes with different underlying data formats.
We also wanted a language that TD’s with programming knowledge could write
code with, so we patterned it after shading languages, a bit of perl, and C.

By the fall of 2003, Michael Kowalski built an early version of the parser for
the language, and Jonathan Cohen built the early version of the computational
engine. To their great credit, years later Felt is still based on that early code
with bug fixes and new features. We want to rewrite it for many reasons, not
the least of which is that code under development for 7 years can get a little
furry. But its quality is high enough that lots of other topics have always had
higher priorities.

When the first version of Felt came out in the fall of 2003, Jerry Tessendorf
inserted it into an experimental volume renderer called hog, and started pro-
ducing images of volumes generated using methods that we now refer to as
gridless advection and SELMA. The imagery lead to applications for fire on
The Chronicles of Narnia: The Lion, The Witch, And The Wardrobe. Figure 1
shows a very early test of converting hand-animated particles into a field of fire.
The method worked because of its ability to create high resolution structure
while simultaneously storing some of the data on grids. The design decisions
allowing the mixture of data formats and resolutions were a critical success early
in Felt’s development.

This workflow using Felt inserted directly into volume rendering continues
in production today.

In 2001, well before the conception of Felt, David Ebert invited Jerry
Tessendorf to give a talk at a conference on implicit function methods. At
the end of the talk he showed a photograph of a large cumulus cloud and spec-
ulated that implicit methods would allow the creation of detailed and realistic
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Figure 1: Early imagery showing the conversion of a particle system into a
volumetric fire. The Felt algorithms used for this included early versions of
gridless advection and SELMA.

cloud scenes within 10 years. Ironically, The A-Team was released in the sum-
mer of 2010, and indeed a large realistic cloud system had been constructed
for the film using Felt’s implicit function capabilities, just barely within the
speculated time frame. The cloud modeling is described in chapter 3.

Felt has been in development for many years, and many people contributed
to it as users, observers, and interested parties. Among those many people are
Sho Hasegawa, Peter Huang, Doug Bloom, Eric Horton, Nathan Ortiz, Jason
Iversen, Markus Kurtz, Eugene Vendrovsky, Tae Yong Kim, John Cohen, Scott
Townsend, Victor Grant, Chris Chapman, Ken Museth, Sanjit Patel, Jeroen
Molemaker, James Atkinson, Peter Bowmar, Bela Brozsek, Mark Bryant, Gor-
don Chapman, Nathan Cournia, Caroline Dahllof, Antoine Durr, David Horsely,
Caleb Howard, Aimee Johnson, Joshua Krall, Nikki Makar, Mike O’Neal, Hideki
Okano, Derek Spears, Bill Westinhofer, Will Telford, Chris Wachter, and espe-
cially Mark Brown, Richard Hollander, Lee Berger, and John Hughes.
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Chapter 1

Introduction

These notes are motivated from the volumetric production work that takes
place at Rhythm and Hues Studios. Over the past decade a set of tools, al-
gorithms, and workflows have emerged for a successful process for generating
elements such as clouds, fire, smoke, splashes, snow, auroras, and dust. This
workflow has evolved through the production of many feature films, for example:

The Cat in the Hat · Around the World in 80 Days · The Chronicles
of Narnia: The Lion, the Witch, and the Wardrobe · Fast and Furious:
Tokyo Drift · Fast and Furious 4 · Alvin and the Chipmunks · Alvin
and the Chipmunks, The Squeakquel · Night at the Museum · Night
at the Museum: Battle of the Smithsonian · The Golden Compass ·
The Incredible Hulk · The Mummy: Tomb of the Dragon Emperor ·
The Vampire’s Assistant · Cabin in the Woods · Garfield · Garfield: A
Tale of Two Kitties · The Chronicles of Riddick · Elektra · The Ring 2
· Happy Feet · Superman Returns · The Kingdom · Aliens in the Attic
· Land of the Lost · Percy Jackson and the Olympians: The Lightning
Thief · The Wolfman · Knight and Day · Marmaduke · The A-Team ·
The Death and Life of Charlie St. Cloud · Yogi Bear · Knight and Day

At the heart of this system is a multiprocessor-aware volumetric scripting
language called Felt, or “Field Expression Language Toolkit”. Felt has c-like
syntax, and is intended to behave somewhat like a shading language for volume
data. An important aspect of Felt is that it separates the notion of volumetric
data from the need to store it as discrete sampled values. Felt allows purely
procedural mathematical operations, and easily mixes procedural and sampled
data. In this capacity, Felt scripts construct implicit functions and manipulate
them, much like the methods described in [1].

In addition to modeling volume data, Felt also modifies geometry, particles,
and volume data generated with other tools, including animations and simula-
tions. This gives fine-tuning control over data in a post-process, similar to the
way a compositor can fine-tune images after they are generated. Conversely,

1
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simulations can use Felt during their runtime to modify data and processing
flow to suit special needs.

These tools also provide an excellent framework for prototyping new algo-
rithms for volumetric manipulation, such as texture mapping, fracturing models,
and control of simulation and modeling, which will be discussed in chapters 3,
4, 5.

1.1 A Brief on Volume Rendering

One of the primary uses of volumetric data is volume rendering of a variety
of elements, such as clouds, smoke, fire, splashes, etc. We give a very brief
summary of the volume rendering process as used in production in order to
exemplify the kinds of volumetric data and the qualities we want it to possess.
There are other uses of volumetric data, but the bulk of the applications of
volumetric data is as a rendering element. A rendering algorithm commonly
used for this type of data is accumulation of opacity and opacity-weighted color
in ray marches along the line of sight of each pixel of an image. The color is also
affected by light sources that are partially shadowed by the volumetric data.

The two fundamental volumetric quantities needed for volume rendering are
the density and the color of the material of interest. The density is a description
of the amount of material present at any location in space, and has units of mass
per unit volume, e.g. g/m3. The mathematical symbol given for density is ρ(x),
and it is assumed that 0 ≤ ρ < ∞ at any point of space. The color, Cd(x), is
the amount of light emittable at any point in space by the material.

The raymarch begins at a point in space called the near point, xnear, and
terminates at a far point xfar that is along the line connecting the camera and
the near point. The unit direction vector of that line is n, so the raymarch
traverses points along the line

x(s) = xnear + s n

with some step size ∆s, for 0 ≤ s ≤ |xfar−xnear|. In some cases, the raymarch
can terminate before reaching the far point because the opacity of the material
along the line of sight may saturate before reaching the far point. Raymarchers
normally track the value of opacity and terminate when it is sufficiently close
to 1.

The accumulation is an iterative update as the march progresses. The accu-
mulated color, Ca and the transmissivity T are updated at each step as follows1:

x + = ∆s n (1.1)

∆T = exp (−κ ∆s ρ(x)) (1.2)

Ca + = Cd(x) T
(1−∆T )

κ
TL(x) L (1.3)

T ∗ = ∆T (1.4)

1See the appendix A for a justification of this algorithm
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The field TL(x) is the transmissivity between the position of the light and the
position x (usually pre-computed before the raymarch), κ is the extinction co-
efficient, L is the intensity of the light, and the opacity of the raymarch is
O = 1− T .

Flesh out the detail on the derivation of this formula. See the wiki page.
This simple raymarch update algorithm illustrates how volumetric data

comes into play, in the form of the density ρ(x) and color Cd(x) at every point
in the volume within the raymarch sampling. There is no presumption that
the volume data is discrete samples on a grid or in a cloud of particles, and
no assumption that the density is optically thin (although there is an implicit
assumption that single scattering is a sufficient model of the light propagation).
All that is needed of the volumetric data is that it can be queried for values at
any point of interest in space, and the volumetric data will return reasonable
values. So the data is free to be gridded, on particles, related to geometry, or
purely procedural. This freedom in how the data is described is something we
exploit in our resolution independent methods. The workflow consists of build-
ing the volume data for density and color in Felt, then letting the raymarcher
query Felt for values of those fields.

There is an assumption in this raymarching model that the step size ∆s
has been chosen sufficiently small to capture the spatial detail contained in the
density and color fields. If the fields are gridded data, then an obvious choice is
to make the step size ∆s equal to or a little smaller than the grid spacing. But we
will see below several examples of fine detail produced by various manipulations
of gridded data, for which the step size must be much smaller than might be
expected from the grid resolution. This is a good outcome, because it means
that grids can be much coarser than the final rendered resolution, and that
reduces the burden on simulations and some grid-based volumetric modeling
methods.

1.2 Some Conventions

There are several concepts worth defining here. A domain is a rectangular
region, not necessarily axis-aligned, described by an origin, a length along each
of its primary axes, and a rotation vector describing its orientation with respect
to the world space axes. The domain may optionally have cell size information
for a rectangular grid. A field is an object that can be queried for a value at
every point in space. That does not mean that the value at all points has to
be meaningful. A particular field might have useful values in some domain,
but outside of that domain the value is meaningless, so it could be set to zero
or some other convenient value. A scalarfield is a field for which the queried
values are scalars. A vectorfield returns vectors from queries, and a matrixfield
returns matrices. In the Felt scripting language, scalarfields, vectorfields, and
matrixfields are “primitive” datatypes. You can define them and do calculations
with them, but it is not necessary to explicitly program what happens at every
point in space.



CHAPTER 1. INTRODUCTION 4

In these notes, scripts written in Felt will have a font and color like this:

scalarfield r = sqrt( identity()*identity() );
// Comments are in this color and use C++ comment symbols “//”
vectorfield normal = grad(r);

This simple script is equivalent to the mathematical notation:

r =
√

x · x
n = ∇r

because the function identity() returns a vectorfield whose value is equal to the
position in space, and the * product of two vectorfields is the inner product.

For the times that it is useful to have data that consists of values sampled
onto a grid, the companion objects to fields are caches, in the form of scalarcache
and vectorcache.

scalarfield r = sqrt( identity()*identity() );
vectorfield normal = grad(r);

// Create a domain: axis-aligned 2x2x2 box centered at the (0,0,0)
vector origin = (-1,-1,-1);
vector lengths = (2,2,2); // 2x2x2 box
vector orientation = (0,0,0); // Axis-aligned
float cellSize = 0.1;
domain d( origin, lengths, orientation, cellSize, cellSize, cellSize );

// Allocate two caches based on the domain
scalarcache rCache( d );
vectorcache normalCache( d );

// Sample fields r and normal into caches
cachewrite( rCache, r );
cachewrite( normalCache, normal );

// Treat caches like fields, using interpolation
scalarfield rSampled = cacheread( rCache );
vectorfield normalSampled = cacheread( normalCache );

In the last lines of this script the gridded data is wrapped in a field descrip-
tion, because interpolation schemes can be applied to calculate values in between
grid points. But once this is done, they are essentially fields, and the gridded
nature of the underlying data is completely hidden, and possibly irrelevant to
any other processing afterward.

Note that the construction of the sampled normal field, normalSampled, could
have been accomplished in a different, more compact approach:
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scalarfield r = sqrt( identity()*identity() );

// Create a domain: axis-aligned 2x2x2 box centered at the (0,0,0)
vector origin = (-1,-1,-1);
vector lengths = (2,2,2); // 2x2x2 box
vector orientation = (0,0,0); // Axis-aligned
float cellSize = 0.1;
domain d( origin, lengths, orientation, cellSize, cellSize, cellSize );

// Allocate one cache based on the domain
scalarcache rCache( d );

// Sample field r into the cache
cachewrite( rCache, r );

// Treat the cache like a field, using interpolation
scalarfield rSampled = cacheread( rCache );

// Take the gradient of the sampled field rSampled
vectorfield normalSampled = grad( rSampled );

Here, only one cache is used and the gradient is applied to the sampled ver-
sion of the distance rSampled. The two approaches are conceptually very similar,
and numerically very similar, but not identical. In the previous method, the
term grad(r) actually computes the mathematically exact formula for the gradi-
ent, and in that case normalCache contains exact values sampled at gridpoints,
and normalSampled interpolates between exact values. In the latter method,
grad(rSampled) contains a finite-difference version of the gradient, so is a rea-
sonable approximation, but not exactly the same. For any particular application
though, either method may be preferrable.



Chapter 2

The Value Proposition for
Resolution Independence

In volume modeling, animation, simulation, and computation, resolution
independence is a handy property for many reasons that we want to review here.
But first, we need to be clear about what the term “resolution independent”
means.

First the negative definition. Resolution independence does not mean the
volume data is purely procedural. Procedurally defined and manipulated data
are very useful, but not always the best way of handling volume problems. There
are many times when gridded data is preferrable.

A system that manipulates volumes in a resolution independent way has two
properties:

1. While the creation of volume data may sometimes require that a discrete
representation be involved (e.g. a rectangular grid or a collection of par-
ticles), there are many manipulations that do not explicitly invoke the
discrete nature that the data may or may not have. For example, given
two scalarfields sf1 and sf2, a third scalarfield sf3 can be constructed as
their sum:

scalarfield sf3 = sf1 + sf2;

But this manipulation does not require that we explicitly tell the code
how to handle the discrete nature of the underlying data. Each scalarfield
handles its own discrete nature and hides that completely from all other
fields. In fact, there isn’t even a reason why the scalarfields have to have
the same discrete properties. This operation makes sense even if sf1 and
sf2 have different numbers of gridpoints, different resolutions, different
particle counts, or even if one or both are purely procedural. Which leads
to the second property:

6
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2. Resolution independence means that fields with different discrete prop-
erties can be combined and manipulated together on equal terms. This
is analogous to the behavior of modern 2D image manipulation software,
such as Photoshop or Nuke. In those 2D systems, images can be combined
without having equal numbers of pixels or even common format. Vector
graphics can also be invoked for spline curves and text. All of this hap-
pens with the user only peripherally aware that these differences exist in
the various image data sets. The same applies to volumes. We should
be able to manipulate, combine, and create volume data regardless of the
procedural or discrete character of each volumetric object.

Resolution independent volume manipulation is a good thing for several
reasons:

Performance Trade-Offs
Some volumetric algorithms have many computational steps. If we have
access only to discrete volumetric data, then each of these steps requires
allocating memory for the results. In some cases the algorithm lets you op-
timize this so that memory can be reused, but in other cases the algorithm
may require that multiple sets of discrete data be available in memory.
This can be a severe constraint on the size of volumetric problem that can
be tackled. The alternative offered by resolution independence is that the
computational aspects are divorced from the data storage. Consequently,
an arbitrary collection of computational steps can be implemented pro-
cedurally and evaluated numerically without storing the results of each
individual step in discrete samples. Only the outcome of the collection
need be sampled into discrete data, and only if the task at hand required
it. This is effectively a trade-off of memory versus computational time,
and there can be situations in which caching the computation at one or
more steps has better overall performance. Resolution independence al-
lows for all options, mixing procedural steps with discretely sampled steps
to achieve the best overall performance, balancing memory and compu-
tational time freely. This performance trade-off is discussed in detail for
the particular case of gridless advection and Semi-Lagrangian Mapping
(SELMA) in chapters 7 and 8.

Targeted grid usage
Manipulation of fields that are gridded does not automatically generate
gridded results. The user has to explicitly call for sampling and caching
of the the field into a grid. While this means extra effort when gridding is
desired, it is a benefit because the user has full control over when grids are
invoked, and even what type of gridding is used. This targeting of when
data is sampled is illustrated by Semi-Lagrangian Mapping (SELMA),
which solves performance problems encountered in gridless advection by
a judicious choice of when and how to sample a mapping function onto
a grid. This same reasoning applies to other forms of discretized data
sampling as well.
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Procedural high resolution
There are many procedural algorithms that enhance the visual detail of
volumetric data. One example of this is gridless advection, discussed in
chapter 7. This increased detail is produced whether the original data
is discrete or procedural. So much detail can be generated that it can
become difficult to properly render it in a raymarch.

Cleaner coding of algorithms
When data is gridded or discretized, there are parameters involved that
describe the discrete environment (cell size, number of points, location
of grid, etc.). Manipulation of volume data just in terms of fields does
not require invoking those parameters, and so allows for simplified code
structure. Algorithms are developed and implemented without worrying
about the concepts related to what format the data is in. For example, the
Felt codes for warping fields and fracturing geometry in chapters 4 and
5 are completely ignorant of any notion that the input data is discretized,
and make no accomodations for such. The Felt scripts are extremely
compact as a result.

Calculations only where/when needed
Suppose you have a shot with the camera moving past a large volumetric
element (or the element moving past the camera), and the element itself
is animating. There may also be hard objects inside the volume that hide
regions from view. You might handle this by generating all of the data on a
grid for each frame. Or you might have a procedure for figuring out ahead
of time which grid points will not be visible to the camera and avoid
doing calculations on them. In the resolution independent procedures
discussed here neither of those approaches is needed, because calculations
are executed only at locations in space (on grid points or not) and at times
in the processing at which actual values for the field are needed. In this
case a raymarch render queries density and color, and field calculations
are executed only at the locations of those queries at the time of each
query.

In the remaining chapters, resolution independence is used as an integral
part of each of the scripting examples discussed.



Chapter 3

Cloud Modeling

Natural looking clouds are really hard to model in computer graphics. Some
of the reasons for it are physics-based: there is a broad collection of physical
phenomena that are simultaneously important in the process of cloud formation
and evolution - thermodynamics, radiative transfer, fluid dynamics, boundary
layer conditions, global weather patterns, surface tension on water droplets, the
wet chemistry of water droplets nucleating on atmospheric particulates, conden-
sation and rain, ice formation, the bulk optics of microscopic water droplets and
ice crystals, and more. There are also reasons related to the application: if you
need to model the volumetric density and optics of clouds in 3D for production
purposes, it usually means you need to model an entire cloud over distances
of hundreds of meters to kilometers, but resolve centimeter-sized detail within
it. Putting together a coherent 3D spatial structure than covers eight orders of
magnitude in scale is not a straightforward proposition. Real clouds exhibit a
variety of spatial patterns across those scales, some of them statistical in char-
acter and some more (fluid) dynamical. For production, we need tools that can
mix all of that together while being controllable from point-to-point in space.

Volume modeling methods have developed sufficiently to take on this task.
Levelsets and implicit surfaces provide a powerful and flexible description of
complex shapes. The pyroclastic displacement method of Kaplan[2] captures
some of the basic cauliflower-like structure in cumulous cloud systems. Gridless
advection (chapter 7) generates fluid and wispy filaments around cloud bound-
aries. Procedural modeling with systems like Felt let us combine these with
additional algorithms to produce enormous and complex cloud systems with
arbitrary spatial resolution.

The algorithms presented in this chapter were used for the production of
visual effects in the film The A-Team at Rhythm and Hues Studios. We begin
with a look at some photos of cumulous clouds and a description of interesting
features that we want the algorithms to incorporate.

9
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3.1 Cumulous cloud structure of interest

Figure 3.1 shows two photographs of strong cumulous cloud systems viewed from
above. The top photo shows a much larger cloud system than the bottom one.
There are several features of interest in the photos that we want to highlight:

Clustering
Cumulous clouds look something like cauliflower in that they are bumpy,
with a seemingly noisy distribution of the bumpiness across the cloud.
This sort of appearance is achievable by a pyroclastic displacement of the
cloud surface using Perlin or some other spatially smooth noise function.

Layering
The bumpiness is mutlilayered, with small bumps on top of large bumps.
Pyroclastic displacement does not quite achieve this look by itself, but
iterating displacements creates this layering, i.e., applying smaller scale
displacements on top of larger ones.

Smooth valleys The deeper creases, or valleys, in a cumulous cloud appear
to be smooth, without the layering of displacements that appears higher
up on the bumps. The iterated displacements must be controllable so
that displacements can be suppressed in the valleys, with controls on the
magnitude of this behavior.

Advected material Despite the hard-edge appearance of many cumulous clouds,
as they evolve the hardness gives way to a more feathered look because of
advection of cloud material by turbulent wind. This advection occurs at
different times and with different strengths within the cloud.

Spatial mixing All of the above features occur to variable degree throughout
the cloud system, so that some parts of the cloud may have many layers
of bumps while others are relatively smooth, and yet others are diffused
from advection. The cloud modeling system needs to be able to mix all of
these features at any position within a cloud to suit the requirements of
the production.

Each of these features is discussed below. The algorithm is based on represent-
ing the overall shape of the cloud as a levelset, pyroclastically displacing that
levelset multiple times, converting the levelset values into cloud density, then
gridlessly advecting the density. Along with those major steps, all of the con-
trol parameters are spatially adjustable in the Felt implementation because the
controls are scalarfields and vectorfields that are generated from point attributes
on the undisplaced cloud geometry.

3.2 Levelset description of a cloud

Cloud modeling begins with a base shape for the smooth shape of the cloud.
This can be in the form of simple polygonal geometry, but with sufficient quality
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Figure 3.1: Aerial photos of cumulous clouds. Structures of interest: the
pyroclastic-like buildup of clusters; the relatively smooth “valleys” between the
clusters; dark fringes along the edges of clusters; bright bands of light in the
“valleys”; softened regions due to advection of material.
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that it can be turned into a scalarfield known as a levelset. The levelset of the
base cloud, `base(x) is a signed distance function, with positive values inside the
geometry and negative values outside. The spatial contour `base(x) = 0 is a
surface corresponding to the model geometry for the cloud.

The volumetric density of the cloud can be obtained at any time by using a
mask function to generate uniform density inside the cloud:

ρbase(x) = mask (`base(x)) =

{
1 `base(x) > 0
0 `base(x) ≤ 0

(3.1)

Of course, clouds are not uniformly dense in their interiors. For our purposes
here, we will ignore that and generate clouds with uniform density in their
interior. This limitation is readily removed by adding spatially coherent noise
to the interior if desired.

3.3 Layers of pyroclastic displacement

The clustering feature has been successfully modeled in the past by Kaplan[2]
using a Perlin noise field to displace the surface of a sphere. This effect is
also refered to as a pyroclastic appearance. Figure 3.2 shows two examples of
a spherical volume with the surface displaced by sampling Perlin noise on its
surface. By adjusting the number of octaves, frequency, roughness, etc, a variety
of very effective structures can be produced[4]. But for cloud modeling, we need
to extend this approach in two ways. First, we need to be able to apply these
displacements to arbitrary closed shapes, not just spheres, so that we can model
base shapes that have complex structure initially and apply the displacements
directly to those shapes. Second, to accomodate the layering feature in clouds,
we need to be able to apply multiple layers of displacement noise in an iterative
way. Both of these requirements can be satisfied by one process, in which the
surface is represented by a levelset description. Applying displacements amounts
to generating a new levelset field, and that can be iterated as many times as
desired.

We describe the levelset approach based on the spherical example, then
launch into more complex base shapes.

3.3.1 Displacement of a sphere

The algorithm for calculating the density of a pyroclastic sphere at any point
in space is as follows:

1. Calculate the distance from the point of interest x to the center of the
sphere xsphere:

d = |x− xsphere| (3.2)

2. Compare d to the displacement bound dbound of the Perlin noise and the
radius R of the sphere. If d < R, x is definitely inside the pyroclastic
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Figure 3.2: Examples of classic pyroclastically displaced spheres of density.

sphere, and the density is 1. If d > R + dbound, then the point x is
definitely outside of the pyroclastic sphere, density is 0.

3. If 0 < d − R < dbound, then compute the displacement: The point on
the unit sphere surface is n = (x − xsphere)/d. The displacement is r =
|Perlin(n)|. If d − R < r, the point x is inside the pyroclastic sphere
and the density it 1. Otherwise, the density is 0. The absolute value of
the noise is used because it produces sharply cut ”canyons” and smoothly
rounded ”peaks”.

This algorithm is particularly clean because the base shape is a sphere, for
which the mathematics is simple. More general base shapes would require some
method of moving from a point in space x to a suitable corresponding point on
the base shape, xbase in order to sample the displacement noise on the surface
of the shape.

Layering provides an additional complication. For a sphere, you might imag-
ine applying multiple layers of displacements by simply adding multiple displace-
ments by ri = Perlini(n) for multiple choices of Perlin noise. But that would
not really be sufficient, because successive layers should be applied by sampling
the noise on the surface of the previously generated displaced surface, using the
displaced normal to the base shape. For layering, the noise sampling of each
layer should be on the surface displaced by previous layer(s), and the displace-
ment direction should be the normal to the previously displaced surface. This
leads to the same issue that the base shape for a displacement may be very
complex.
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Both of these issues are solved by expressing the algorithm in terms of lev-
elsets.

3.3.2 Displacement of a levelset

Suppose you want to displace a shape that is represented by the levelset `(x).
The displacement will be based on the noise function N(x) which is some ar-
bitrary scalar field. Note that the field `+N is also a levelset for some shape,
but that shape need not resemble the original one in any way because the sum
field can introduce new surface regions that are unrelated to the `. For the
pyroclastic style of displacement, we need to displace only by the value of the
noise function on the surface of `. The procedure is:

1. At position x, find the corresponding point x`(x) on the surface of `. This
is generally accomplished by an iterative march toward the surface:

xn+1
` = xn` − `(xn` )

∇`(xn` )

|∇`(xn` )| (3.3)

for which typically 3-5 iterations are needed.

2. Evaluate the noise at the surface: N(x`). Note that many locations x in
general map to the same location x` on the surface, and so have the same
surface noise.

3. Create a new levelset field based on displacement by the noise at the
surface:

`N (x) = `(x) + |N(x`(x))| (3.4)

This levelset-based approach produces effectively the same algorithm as the one
for the sphere when the levelset is defined as `(x) = R− |x− xsphere|, although
it is not as computationally efficient for that special case.

This is a very powerful general algorithm that works for problems with huge
ranges of spatial scales. It also provides the solution for layering. Suppose you
want to apply M layers of displacement, with Ni(x), i = 1, . . . ,M being the
displacement fields. Then we can apply the iteration

`Ni+1
(x) = `Ni

(x) +
∣∣Ni+1

(
x`Ni

(x)
)∣∣ (3.5)

to arrive at the final displaced levelset `NM
(x).

In terms of Felt code, this multilayer displacement algorithm is imple-
mented in a function called cumulo, with inputs consisting of the base levelset,
and an array of displacement scalarfields, and implements a loop

func scalarfield cumulo( scalarfield base, scalarfield[] displacementArray,
int iterations )
{

scalarfield out = base;
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for( int i=0; i<size(displacementArray);i++ )
{

vectorfield surfaceX = levelsetsurface( out, iterations );
out += compose(abs(displacementArray[i]), surfaceX );

}
return out;

}

The Felt function levelsetsurface( scalarfield levelset, int iterations ) generates
a vectorfield that performs the iterations in equation 3.3 for the input levelset
scalarfield, and compose(A,B) evaluates the field A at the locations in the vec-
torfield B.

Figure 3.3 illustrates the effect of layering pyroclastic displacements. This
figure displays the geometry generated from the levelset data after layering has
been applied. In this example, successive layers contain higher frequency noise.

3.3.3 Layering strategy

Just as important as the functionality to add layers of displacement, is the strat-
egy for generating and applying those layers to achieve maximum efficiency and
control the look of the layers. While equation 3.5 is implemented procedurally
in the cumulo Felt code, a purely procedural implementation is not always the
most efficient strategy for using cumulo. Judicious choices for when to sam-
ple and what data to sample onto a grid improve the speed without sacrificing
quality.

In this subsection we look at the process of creating the displacement noise
for each layer, and schemes for sampling intermediate levelset data onto grids
to improve efficiency.

Fractal layering

One way to set up the layers of displacement is by analogy with fractal summed
perlin noise[4]. For Noctaves, a base frequency f , frequency jump fjump, and
amplitude roughness r, the fractal sum of a noise field PN(x) is

FS(x) =

Noctaves−1∑

i=0

ri PN
(
x f f ijump

)
(3.6)

This kind of fractal scaling is a natural-looking type of operation for generating
spatial detail. It is also very flexible and easy to apply. Applying this to layering,
each layer can be a scaled version of a noise function, i.e. each layer corresponds
to one of the terms in the fractal sum:

Ni(x) = ri FS
(
x f f ijump

)
(3.7)

In terms of Felt code, we have:
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Figure 3.3: Illustration of layering of pyroclastic displacements. From top to
bottom: No displacements; one layer of displacements; two layers; three layers.
The displacements are applied to the levelset representation of the bunny, and
the displaced bunny was converted into geometry for display.
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// Function to generate and array of displacement layers
func scalarfield[] NoiseLayers( int nbGenerations, scalarfield scale, scalarfield
fjump, scalarfield freq, scalarfield rough )
{

scalarfield[] layerArray;
// Choose a noise function as a field, e.g. Perlin, Worley, etc.
scalarfield noise = favoriteNoiseField();
scalarfield freqScale = freq;
scalarfield ampScale = scalarfield(1.0);
for( int i=0;i<nbGenerations;i++ )
{

layerArray[i] = compose( noise, identity()*freqScale ) * ampScale;
// Fractal scaling of frequency and amplitude
freqScale *= fjump;
ampScale *= rough;

}
return layerArray;

}

This Felt code is more general than equation 3.7 because the fractal parameters
fjump, freq, rough in the code are scalarfields. By setting these parameters
up as scalarfields, we have spatially varying control of the character of the
displacement layers.

Selectively sampling the levelset into grids

The purely procedural layering process embodied in equation 3.5 is compact,
flexible, and powerful, but can also be relatively slow. We can exploit the fractal
layer approach to speed up the levelset evaluation. The crucial property here
is that the each fractal layer represents a range of spatial scales that is higher
frequency that the previous layers. Conversely, an early layer has relatively
large scale features. This implies that sampling the levelset into a grid that has
sufficient resolution to capture the spatial features of one layer still allows sub-
sequent layers to apply higher spatial detail displacements. Suppose we know
that layer m has smallest scale ∆xm. We could build a grid with ∆xm as the
spacing of grid points, sample the levelset `m into that grid, and replace `m
with the gridded version. This replacement would be relatively harmless, but
evaluating `m in subsequent processing would be much faster because the eval-
uation amount to interpolated sampling of the gridded data. This process can
be applied at each level, so that the layered levelset equation 3.5 is augmented
with grid sampling, and the Felt code is augmented to

func scalarfield cumulo( scalarfield base, scalarfield[] displacementArray,
int iterations, domain[] doms )
{

scalarfield out = base;
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for( int i=0; i<size(displacementArray);i++ )
{

vectorfield surfaceX = levelsetsurface( out, iterations );
out += compose(abs(displacementArray[i]), surfaceX );
// Sample the levelset to a cache.
// Each cache has a different resolution in its domain.
scalarcache outCache( doms[i] );
cachewrite(outCache, out);
out = cacheread(outCache);

}
return out;

}

This change can increase the speed of evaluating the levelset dramatically,
and if the domains are chosen reasonably there need be no significant loss of
detail. It also provides a way to save the levelset to disk so that it can be
generated once and reused.

3.4 Clearing Noise from Canyons

Within the ”canyons” in the reference clouds in figure 3.1 the amount of finescale
noisy displacement is much less than around the ”peaks” of the cloud pyroclas-
tic displacements. We need a method of suppressing displacements within those
valleys. It would be very tedious if we had to analyze the structure of the mul-
tiply displaced levelset to identify the canyons for subsequent noise suppression.
Fortunately there is a much simpler way of do it that can be applied efficiently.

If we look at the noise function in equation 3.5, the clearing can happen if we
modulate that expression by a factor that goes to zero in the regions where all
of the previous layers of noise also go to zero. At the same time, away from the
zero-points of the previous layers, we want this layer to have its own behavior
driven by its noise function. Both of these goals are accomplished modifying Ni
to a cleared version N c

i as

N c
i (x) = Ni(x)

(
clamp

(
N c
i−1(x)

Q
, 0, 1

) )billow
(3.8)

In this form, the factor Q is a scaling function that is dependent on the noise
type. The exponent billow controls the amount of clearing that happens. This
additional factor modulates the current layer of noise by a clamped value of the
previous layer, reduces the current layer to zero in regions where the previous
layer is zero. Once the previous layer of noise reaches the value Q, the clamp
saturates at 1 and the current layer is just the noise prescribed for it. Figure
3.4 shows a wedge of billow settings, visualized after converting the levelset into
geometry. These same results are shown as volume renders in figure 3.5. Note
that for large billow values the displacements are almost completely cleared
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over most of the volume, with the exception of narrow regions at the peak of
displacement.

3.5 Advection

Another tool for cloud modeling is gridless advection, which is described in de-
tail in chapter 7. Even the hardest-edged cumulous cloud evolves over time to
have ragged boundaries and softened edges due to advection of the cloud mate-
rial in the turbulent velocity field in the cloud’s environment. We can emulate
that effect by generating a noisy velocity field and applying gridless advection at
render time. The gridless advection also produces very finely detailed structure
in the cloud, as seen in the foreground clouds in figure 3.6 from the produc-
tion work on the film The A-Team. In fact, the detail is sufficient that the
hard-edged cumulo structure could be modeled using layered pyroclastic dis-
placements down to scales of 1 meter, then gridless advection carried the detail
down to the finest resolved structure ( about 1 cm ) rendered in the production.

A suitable noisy velocity field can be built from Perlin noise by evaluating
the noise at three slightly offset positions, i.e.

unoise(x) = (Perlin(x), Perlin(x + ∆x1), Perlin(x + ∆x2)) (3.9)

where ∆xi are two offsets chosen for effect. This velocity field is not incom-
pressible and so might not be adequate for some applications. But for gridlessly
advecting cumulous cloud models, it seems to be sufficient. Figure 3.7 shows
gridlessly advected cloud for several magnitudes of the noisy velocity field. In
the strongest one you can clearly see portions of cloud separated from the main
body. A wide variety of looks can be created by adjusting the setting of each
octave of the noisy velocity field.

3.6 Spatial control of parameters

Clouds have extreme variations in their structure, even within a single cloud
system or cumulous cluster. Even if the basic structural elements were limited
to just the ones we have built in this chapter, the parametric dependence varies
dramatically from region to region in the cloud. To accomodate this variability,
we implemented the Felt script for the noise layers using scalarfields for the
parameters. This field-based parameterization can also be extended to gener-
ating the advection velocity and canyon clearing billow parameter. Figure 3.8
shows a bunny-shaped cloud with uniform density inside, and spatially varying
amounts of pyroclastic displacement of the volume. The control for this was
several procedural fields for ramps and local on-switches to precisely isolate the
regions and apply different parameter settings.

But given this extension, we also need a mechanism for creating these fields
for the basic parameters. An approach that has been successful uses point
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Figure 3.4: Illustration of clearing of displacements in the valleys using the
billow parameter. The bottom of figure 3.3 illustrates the three layers of dis-
placement with no billow applied. The noise is FFT-based, and Q = 1. From
top to bottom: billow=0.33, 0.5, 0.67, 1, 2.
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Figure 3.5: Volume renders with various values of billow. Left to right, top to
bottom: billow=0.33, 0.5, 0.67, 1, 2.
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Figure 3.6: Clouds rendered for the film The A-Team using gridless advection
to make their edges more realistic. Top: foreground clouds without advection;
bottom: foreground clouds after gridless advection.



CHAPTER 3. CLOUD MODELING 23

Figure 3.7: Volume renders with various setting of advection, for billow=1.
Top to bottom: No advection, medium advection, strong advection.
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Figure 3.8: Volumetric bunny with spatial control over the pyroclastic dis-
placement.
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attributes attached to the base geometry of the cloud shape. The values of each
of the parameters are encoded in the point attributes. Simple fields of these
attribute values are created by adding a spherical volume of the attribute value
to a gridded cache enclosing the cloud. This allows simple control based on
surface properties.



Chapter 4

Warping Fields

Here we explore a procedure for transfering attributes from one shape to
another. This problem is not volumetric per se, but a very nice solution involving
levelsets is presented here.

Suppose you have a complex geometric object with vertices xOi , i = 1, . . . NO

on its surface. For rendering or other purposes you would like to have a vari-
ety of attribute values attached to each vertex, but because of its complexity,
building a smooth distribution of values by hand is a tedious process. A con-
trollable method to generate values would be handy. As an input, suppose that
there is a reference shape with vertices xri , i = 1, . . . Nr and attribute values
already mapped across its surface. The goal then is to find a way to transfer
the attributes from the reference surface to the object surface, even if the two
surfaces have wildly different topology. The approach we illustrate here gener-
ates a smooth function X(x) which warps the reference shape into the object
shape. However, this is not a map from the vertices of the reference to the
vertices of the object, but a mapping between the levelset representations of
the two surfaces. This Nacelle algorithm (it generates warp fields) works well
even when the topology of the two shapes is very different. In the next section
the mathematical formulation of the algorithm is shown, and after that a short
Felt script for it.

4.1 Nacelle Algorithm

The algorithm assumes that the two shapes involved can be converted into
levelset representations. This means that there are two levelsets, one for the
reference shape Lr(x) and one for the object shape LO(x). These two levelsets
are signed distance functions that are smooth (i.e. C2). The nacelle algorithm
postulates that there is a warping function X(x) which maps between the two
levelsets:

LO(x) = Lr(X(x)) (4.1)

26
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The goal of the algorithm is an iterative procedure for approximating the field
X. Each iteration generates the approximate warping field Xn(x). The natural
choice for the initial field is X0(x) = x.

Given the warp field Xn from the n-th iteration, we compute the (n+1)-th
approximation by looking at an error term u(x) with X = Xn+u. Putting this
into the equation 4.1 gives

LO(x) = Lr(Xn(x) + u(x)) (4.2)

Expanding this to quadratic order in Taylor series gives

LO(x)−Lr (Xn(x)) = u(x) ·∇Lr(Xn(x)) +
1

2

∑

ij

ui(x)uj(x)
∂2

∂xi∂xj
Lr(Xn(x))

(4.3)
Define matrix M as

Mij(x) =
∂2

∂xi∂xj
Lr(x) (4.4)

so the Taylor expansion up to quadratic is

LO(x)− Lr(Xn(x)) = u(x) · ∇Lr(Xn(x)) +
1

2
u(x) ·M(Xn(x)) · u(x) (4.5)

Setting u(x) = A(x) ∇Lr(Xn), we get the quadratic equation for the scalar
field A(x)

LO(x)− Lr(Xn(x))

|∇Lr(Xn(x))|2
= A(x) +

1

2
A2(x)

∇Lr(Xn(x)) ·M(Xn(x)) · ∇Lr(Xn(x))

|∇Lr(Xn(x))|2
(4.6)

which has the solution

A(x) =
1

Γ

{
−1 + [1 + 2∆Γ]

1/2
}

(4.7)

with the abbreviations

∆ =
LO(x)− Lr(Xn(x))

|∇Lr(Xn(x))|2
(4.8)

Γ =
∇Lr(Xn(x)) ·M(Xn(x)) · ∇Lr(Xn(x))

|∇Lr(Xn(x))|2
(4.9)

Then the next approximation is

Xn+1(x) = Xn(x) + A(x) ∇Lr(Xn) (4.10)

In practice, this scheme converges in 1-3 iterations even for complex warps
and topology differences.
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4.2 Numerical implementation

Numerical implementation of the nacelle algorithm requires code for equations
4.7 – 4.10. These four equations are implemented in the following six lines (plus
comments) of Felt script:

// Definitions
vectorfield B = compose(grad(Lr), Xn);
matrixfield M = compose(grad(grad(L1)), Xn);
// Equation 4.8
scalarfield del = (Lo - compose(Lr, Xn))/(B*B);
// Equation 4.9
scalarfield Gamma = (B*M*B)/(B*B);
// Equation 4.7
scalarfield A = (scalarfield(-1) + (scalarfield(1) + 2.0*del*Gamma)ˆ0.5)/Gamma;
// Equation 4.10
vectorfield Xnplus1 = Xn + A*B;

The compose function evaluates the field in the first argument at the location
of the vectorfield in the second argument.

There are ways to speed up this implementation, at the cost of some ac-
curacy. For example, the quantities B*B and B*M*B are scalarfields that are
computationally expensive. Significant speed improvements come from sam-
pling them into grids and using the gridded scalarfields in their place. The
modified Felt script to accomplish that is

// Definitions
vectorfield B = compose(grad(Lr), Xn);
matrixfield M = compose(grad(grad(L1)), Xn);
// ============ NEW CODE =====================
// Create scalar caches over some domain “dom”
scalarcache BBc( dom );
scalarcache BMBc( dom );
// Sample B*B and B*M*B onto grids
cachewrite(BBc, B*B);
cachewrite(BMBc, B*M*B);
// Replace fields with gridded versions
scalarfield BB = cacheread(BBc);
scalarfield BMB = cacheread(BMBc);
// ============ END NEW CODE =================
// Equation 4.8
scalarfield del = (Lo - compose(Lr, Xn))/BB;
// Equation 4.9
scalarfield Gamma = BMB/BB;
// Equation 4.7
scalarfield A = (scalarfield(-1) + (scalarfield(1) + 2.0*del*Gamma)ˆ0.5)/Gamma;
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// Equation 4.10
vectorfield Xnplus1 = Xn + A*B;

4.3 Attribute transfer

The mapping function X(x) allows us to do a number of things:

Warp Levelsets
The object levelset is now approximated by Lr(X(x)). For example, figure
4.1(a) shows a complex object shape consisting of two linked torii and a
cone, with the cone intersecting one of the torii. The reference shape in
figure 4.1(b) is a sphere. Both of these shapes have levelset representa-
tions, so that the mapping function can be generated. After one iteration,
the levelset field Lr(X1(x)) was used to generate the geometry shown in
figure 4.1(c), which is essentially identical to the input object shape. In
testing with other complex shapes, no more than five iterations has ever
been needed to get highly accurate convergence of algorithm.

Attribute transfer
The mapping function provides a method to perform attribute transfer
from the reference shape to the object shape. Using the vertices xOi , i =
1, . . . NO on the surface of the object shape, the corresponding mapped
points

xMi ≡ X(xOi ) (4.11)

are points that lie on the surface of the reference shape. Assuming the
reference shape has attributes attached to its vertices, and a method of
interpolating the attributes to points on the surface between the vertices,
the reference shape attributes can be sampled at the locations xMi , i =
1, . . . NO and assigned to the corresponding vertices on the object shape.
Figure 4.2 shows the object shape with a texture pattern mapped onto it.
The texture coordinates were transfered from the reference shape.
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(a)

(b)

(c)

Figure 4.1: Warping of a reference sphere into a complex shape (cone and two
torii). (a) Object shape; (b) Reference sphere; (c) Warp shape output from 1
iteration.
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Figure 4.2: Texture mapping of the object shape by transfering texture coordi-
nates from the reference shape.



Chapter 5

Cutting Up Models

Levelsets and implicit functions in general are particularly excellent, pow-
erful tools for cutting up geometry into many pieces. This is very useful for
models of fracture, surgery, and explosions. The technique was shown in film
application by Museth[3]. Here we introduce the theory in steps by modeling
knives in terms of implicit functions, then cut geometry with a single knife, two
knives, and arbitrarily many knives.

The essential reason that implicit function based cutting works is that im-
plicit functions separate the world into two (non-contiguous) regions: those for
which the implicit function knife is positive, and those for which the implict
function knife is negative. Cutting takes place by separating the geometry into
the parts that correspond to those two regions. To do this, the geometry must
be represented by a levelset, so we assume that has already been done and it is
called `0(x).

5.1 Levelset knives

A knife for our purposes is simply a levelset or implicit function. It can be
procedural or grid-based. The essential feature is that, within the volume of
the geometry you wish to cut, the knife has both positive and negative regions.
The zero-value surface(s) of the knife are the knife-edge, or boundary between
the cuts in the geometry.

For example, a simple straight edge is the signed distance function of a flat
plane:

Kstraight edge(x) = (x− xP ) · n (5.1)

for a plane with normal n and xP on the surface of the plane.

32
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5.2 Single cut

A knife K(x) separates the geometry `0(x) into two regions. Because we are
using levelsets, the feature that distinquishes the two regions is their signs:
positive in one region, negative in the other. Note that the product function

F (x) = `0(x) K(x) (5.2)

has positive and negative regions, but does not quite sort the regions the way
we would like. This product actually defines four regions:

1. `0 > 0 and K > 0

2. `0 < 0 and K < 0

3. `0 < 0 and K > 0

4. `0 > 0 and K < 0

and lumps together regions 1 and 2, and regions 3 and 4. What we actually
want for a successful cut is to get only regions inside the geometry, separated
into the two sides of the knife.

A useful tool in building this is the mask function, which is essentially a
Heaviside step function for scalarfields. For a scalar field f, the mask is a field
with the value of 0 or 1:

mask(f)(x) =

{
1 f(x) ≥ 0
0 f(x) < 0

(5.3)

With the mask function, we can build two fields that identify the inside and
outside of the levelset geometry l0:

scalarfield inside = mask( l0 );
scalarfield outside = scalarfield(1.0) - mask( l0 );

The next thing to realize is that we only want the knife to cut the levelset inside
the geometry: there is no need to cut when outside the geometry. A good way
to accomplish this is by the product of the scalarfield for the knife and the inside
function:

scalarfield insideKnife = inside * knife;

Now we need to generate a levelset function that is unaffected by the knife
outside of the geometry, but is cut by the knife inside. This scalarfield does
that:

scalarfield cutInside = ( outside + inside*knife ) * l0;

Outside of the geometry, this field has the value of the levelset l0. Inside the
geometry, it has the value of knife*l0. So when interpreted as a levelset, this
field identifies the part of the geometry that is also inside the knife, i.e. the
positive regions of the knife. The complementary field
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scalarfield cutOutside = ( outside - inside*knife ) * l0;

similary generates geometry that is inside the original and outside of the knife.
So cutInside and cutOutside are the two regions of the original geometry that
you get when you cut it with the knife. You can then recover the geometry of
the cut shapes by converting the levelset functions back into geometry:

shape cutInsideShape = ls2shape( cutInside );
shape cutOutsideShape = ls2shape( cutOutside );

You should recognize that the two geometric structures, cutInsideShape and
cutOutsideShape are not necessarily simple, connected shapes. Depending on
the structure of the original geometry, and the shape and positioning of the
knife function, each output shape may have many disconnected portions, or
even be empty.

5.3 Multiple cuts

Suppose we want to cut geometry with more than one knife. The process is an
iteration: the cut with the first knife produces the two levelsets cutInsideShape
and cutOutsideShape. Then cut each of those with the second knife, producing
two for each of those, for a total of four levelsets . Each cut doubles the number
of levelsets, so for N knives, you generate 2N levelsets, each for a collection of
pieces. Figure 5.1 shows the result of cutting a sphere with 5 flat blades, with
the orientation and location of each knife randomly chosen. While 5 blades
produce 25 = 32 levelsets, the output actually contains only 22 actual pieces.
Some of levelsets are empty of geometry.

The question might arise as to whether the results depend on the order in
which knives are applied. Mathematically, the results are identical no matter
what order is used.

For computational efficiency however, it could be useful to examine the out-
put of each cut to see if there are levelsets that are actually empty of pieces
of the geometry. If empty levelsets are found, they can be discarded from fur-
ther cutting, possibly improving speed and memory usage. In this context of
efficiency, the order in which knives are applied may impact the performance.
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Figure 5.1: A sphere carved into 22 pieces using 5 randomly placed and oriented
flat blades. The top shows the sphere with the cuts visible. The bottom is an
expanded view of the pieces.



Chapter 6

Fluid Dynamics

Fluid dynamics is generally associated with high performance computing,
even in graphics applications. Solving the Navier-Stokes equations for incom-
pressible flow is no small task, and computationally expensive. There are a
variety of solution methodologies, which produce visually different flows. The
stability of the various methodologies also varies widely. The two solution meth-
ods known as Semi-Lagrangian advection and FLIP advection are uncondition-
ally stable, and so are very desireable approaches for some graphics-oriented
simulation problems. QUICK is conditionally stable, but has minimal numeri-
cal viscosity and even for small grids generates remarkably detailed flow patterns
that persist and are desireable for some graphics simulation problems as well.

In terms of volumetric scripting, it is possible to create simple scripts that
efficiently solve the incompressible Navier-Stokes equations. Additionally, the
ability to choose when and where to represent a field as gridded data or not can
have a significant impact on the character of the simulation. In this chapter we
look at simple solution methods, based on Semi-Lagrangian advection and gen-
eralizations, and introduce the concept of gridless advection. The next chapter
examines gridless advection in more detail.

6.1 Navier-Stokes solvers

The basic simulation situation we look at in this chapter is the flow of a bouyant
gas. The gas has a velocity field u(x, t) which initially we set to 0. The density
of the gas ρ(x, t) is lighter than the surrounding static medium, and so there
is a gravitational force upward proportional to the density. The equations of
motion are

∂ρ

∂t
+ u · ρ = S(x, t) (6.1)

∂u

∂t
+ u · ∇u +∇p = −g ρ (6.2)

∇ · u = 0 (6.3)
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A Semi-Lagrangian style of solver for this problem splits the problem into
multiple steps:

1. Advect the density with the current velocity

ρ(x, t+ ∆t) = ρ(x− u(x, t) ∆t, t) + S(x, t) ∆t (6.4)

2. Advect the velocity and add external forces

u(x, t+ ∆t) = u(x− u(x, t) ∆t, t)− g ρ(x, t+ ∆t) ∆t (6.5)

3. Project out the divergent part of the velocity, using FFTs, conjugate gra-
dient, or multigrid algorithms

These steps can be reproduced in a Felt script as the following:

// Step 1, equation 6.4
density = advect( density, velocity, dt );
// Write density to cache
cachewrite( density Cache, density );
// Set density to the value in the cache
density = cacheread( density Cache );
// Step 2, equation 6.5
velocity = advect( velocity, velocity, dt ) - dt*gravity*density ;
// Step 3, fftdivfree uses FFTs to remove the divergent part of the field
velocity = fftdivfree( velocity, region );

The function advect evaluates the first argument at a position displaced by the
velocity field (the second argument) and time step dt (the third argument).
There is no need to explicitly write the velocity field to a cache after its self-
advection because the function fftdivfree returns a velocity field that has been
sampled onto a grid.

6.1.1 Hot and Cold simulation scenario

A variation on the bouyant flow scenario is shown in figure 6.1. There are two
density fields, one for hot gas with a red color, and one for cold gas with a blue
color. The cold gas falls from the top, and the hot gas rises from the bottom.
Both are continually fed new density at their point of origin. The two gases
collide in the center and displace each other as shown. The Felt script is

hot = advect( hot, velocity, dt ) + inject(hotpoint, dt );
// Write hot density to cache
scalarcache hotCache(region);
cachewrite( hotCache, hot );
// Set hot density to the value in the cache
hot = cacheread( hotCache );
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cold = advect( cold, velocity, dt ) + inject(coldpoint, dt);
// Write cold density to cache
scalarcache coldCache(region);
cachewrite( coldCache, cold );
// Set cold density to the value in the cache
cold = cacheread( coldCache );

velocity = advect( velocity, velocity, dt ) + dt*gravity*(cold-hot);
// fftdivfree uses FFTs to remove the divergent part of the field
velocity = fftdivfree( velocity, region );

The two densities force the velocity in opposite directions (hot rises, cold sinks).
We have also added a continuous injection of new density via the user-defined
function inject, defined to insert a solid sphere of density at a location specified
by the first argument:

func scalarfield inject( vector center, float dt )
{

vectorfield spherecenter = identity() - vectorfield(center);
// Implicit function of a unit sphere centered at the input location
scalarfield sphere = scalarfield(1.0) - spherecenter*spherecenter;
// mask() function returns 0 outside implicit function, 1 inside
scalarfield inject = mask(sphere);
return inject*dt;

}

The advection process used for this simulation example is Semi-Lagrangian
advection, which is highly dissipative because of the linear interpolation process.
As figure 6.2 shows, the simulation produces a diffusive looking mix of the two
gases. A simulation with higher spatial resolution would produce a different
spatial structure with more of a sense of vortical motion and finer detail, but
still not avoid the diffusive mixing.

6.2 Removing the grids

The power of resolution independent scripting provides a new option, gridless
advection, which we introduce here and expand on in the next chapter. Because
of the procedural aspects of resolution independence, we can rebuild the script
for the hot/cold simulation, and remove the sampling of the densities onto grids.
Removing those steps, you are left with the code:

hot = advect( hot, velocity, dt ) + inject(hotpoint, dt );
cold = advect( cold, velocity, dt ) + inject(coldpoint, dt);
velocity = advect( velocity, velocity, dt ) + dt*gravity*(cold-hot);
// fftdivfree uses FFTs to remove the divergent part of the field
velocity = fftdivfree( velocity, region );
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Figure 6.1: Simulation sequence for hot and cold gases. The blue gas is injected
at the top and is cold, and so sinks. The red gas is injected at the bottom and
is hot, and so rises. The two gases collide and flow around each other. The grid
resolution for all quantities is 50× 50× 50.
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Figure 6.2: Frame of simulation of two gases. The blue gas is injected at the top
and is cold, and so sinks. The red gas is injected at the bottom and is hot, and
so rises. The two gases collide and flow around each other. The grid resolution
for all quantities is 50× 50× 50.
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What happens here is that the evolution of the densities over multiple time steps
is evaluated in a purely procedural processing chain. The history of velocity
fields is implicitly retained and applied to advect the density through a series
of points along a path through the volume. This path-track happens every
time the value of the densities at the current frame are requested (e.g. by the
volume renderer or some other processing). The velocity continues to be sampled
onto a grid because the computation to remove the divergent portion of the
field requires sampling the velocity onto a grid. All of the existing algorithms
for removing divergence require a gridded sampling of the velocity, so there
is presently no method to avoid grids for the velocity field in this situation.
However, the densities in this simulation are never sampled onto a grid.

The hot/cold simulation produced by removing the gridding of the density
is shown in figure 6.3, with a frame shown larger in figure 6.4. The spatial
details and motion timing are dramatically different, as seen in a side-by-side
comparison in figure 6.5. Symmetries in the simulation scenario are better
preserved in the gridless implementation, and the fingers of the flow contain
more vorticity (though not as much as possible, because gridding of the velocity
field continues to dissipate vorticity) and fine filaments and sheets.

The downside of this simulation approach is that the memory grows linearly
with the number of frames, and the time spent evaluating the density grows
linearly with the number of frames. So there is a tradeoff to consider between
achieving fine detail vs computational resources. This is also a tradeoff that
must be addressed in traditional high performance simulation, but the trends in
the tradeoff are different: computational cost is essentially constant per frame in
traditional simulation, whereas gridless advection cost grows linearly per frame.
But traditional simulation has visual detail limited by the resolution of the
grid(s), and gridless advection generates much finer detail.

6.3 Boundary Conditions

In addition to free-flowing fluids, Felt scripting can also handle objects in a
simulation that obstruct the flow of the fluid. This is handled very simply
by reflecting the velocity about the normal of the object. Any objects can be
represented as a levelset, O(x), which we will take to be negative outside of
the object and positive inside. At the boundary and the interior of the object,
if the velocity of the fluid points inward it should be reflected back outward.
The outward pointing normal of the object is −∇O, so the velocity should be
unchanged (1) at points outside the object (O(x) is negative), and (2) if the
component of velocity at the object is outward flowing (i.e. u · ∇O < 0 ).
The mask() function in Felt provides the switching mechanism for testing and
acting on these conditions. When the flow has to be reflected, the new velocity
is

ureflected = u − 2
(u · ∇O)

|∇O|2
∇O (6.6)

The Felt code for this is
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Figure 6.3: Sequence of frames of a simulation of two gases, in which the den-
sities evolve gridlessly. The blue gas is injected at the top and is cold, and
so sinks. The red gas is injected at the bottom and is hot, and so rises. The
two gases collide and flow around each other. The density is advected but not
sampled onto a grid, i.e. gridlessly advected in a procedural simulation process.
The grid resolution for velocity is 50× 50× 50.
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Figure 6.4: Frame of simulation of two gases, in which the densities evolve
gridlessly. The blue gas is injected at the top and is cold, and so sinks. The red
gas is injected at the bottom and is hot, and so rises. The two gases collide and
flow around each other. The density is advected but not sampled onto a grid,
i.e. gridlessly advected in a procedural simulation process. The grid resolution
for velocity is 50× 50× 50.
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Gridded Gridless

Figure 6.5: Simulation sequences with density gridded (left) and gridless
(right). The blue gas is injected at the top and is cold, and so sinks. The
red gas is injected at the bottom and is hot, and so rises. The two gases collide
and flow around each other. The grid resolution is 50× 50× 50.
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vectorfield normal = -grad(object)/sqrt( grad(object)*grad(object) );
scalarfield normalU = velocity*normal;
velocity -= mask(normalU)*mask(object)*2.0*normalU*normal;

To illustrate the effect, figure 6.6 shows a sequence of frames from a simulation
in which a bouyant gas is confined inside a box, and encounters a rectangular
slab that it must flow around. To capture detail, the density was handled with
gridless advection. The slab diverts the flow downward, where the density thins
as it spreads, and the bouyancy force weakens because of the thinner density.
The slab also generated vortices in the flow that persist for the entire simulation
time.

This volume logic is suitable to impose other boundary conditions as well.
For example, sticky boundaries reflect only a fraction of the velocity

usticky = u − (1 + α)
(u · ∇O)

|∇O|2
∇O (6.7)

with 0 ≤ α ≤ 1 being the fraction of velocity retained.
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Figure 6.6: Time series of a simulation of bouyant flow (green) confined within
a box (blue boundary) and flowing around a slab obstacle (red). Frames 11, 29,
74, 124, 200 from a 200 frame simulation.



Chapter 7

Gridless Advection

In this chapter we examine the benefits and costs of gridless advection in
more detail. For some situations there is only a minor cost with very worth-
while improvements in image quality. In the extreme, gridless advection may
be too expensive. This discussion also points the way to the chapter on Semi-
Lagrangian Mapping (SELMA), which provides an efficient compromise en-
abling detail beyond grid dimensions while returning to a cost that is constant
per frame. SELMA produces nearly the full benefits of gridless advection while
suffering only the cost of gridded calculations.

Note that gridless advection is not a method of simulating fluid dynamics.
It is a method of applying, at render time, the results of simulations in order to
have more control of the look of the rendered volume. For the discussion in this
chapter, we limit ourselves to just the application of velocity fields (simulated
or not) to density fields. Gridless advection is more widely applicable though.

7.1 Spatial Gradients

Before getting into the algorithm for gridless advection, it is worthwhile to
discuss a few concepts that motivate using it in the first place.

The value of fluid simulations in production is the combination of spa-
tial structure and motion that they produce. The underlying physical model,
the Navier-Stokes equations, tightly couple the structure and motion on many
scales, transfering energy and momentum from large scales to small scales in
a process called a cascade. This cascade is an important phenomenon that
identifies the combined structure and motion as being fluid-like.

But fluid simulators have limits to how much spatial detail and motion they
can simulate and cascade, and that limit is readable to observers as artifical
motion or excessing numerical dissipation.

There are models of the energy cascade that are based on statistical argu-
ments. Conceptually the turbulent motion of the fluid can be treated as a ran-
dom process from which correlation functions can be built. While these models

47
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Figure 7.1: Examples of filaments and sheets forming in fluid flow.

provide very specific predictions of the ensemble fluid behavior, actual motion
in any member of the ensemble is very different from the correlation. Another,
more useful, way of characterizing the cascade is through the size of spatial
gradients of quantities that undergo fluid motion, e.g. the spatial gradients of
smoke density or the velocity field. As a fluid evolves, the density field acquires
spatial structures in the form of one-dimensional filaments and two-dimensional
sheets. As the evolution continues, these filaments and sheets become thinner,
interact, generate new structures with greater spatial gradients, and ultimately
reach the dissipation scale where they are converted into heat. Examples of
these filaments and sheets are show in figure 7.1.

The elongation of filaments and thinning of the sheets have large spatial
gradients in the vicinity of these features. The purpose of gridless advection is
to try to preserved these gradients and prevent their numerical dissipation.

7.2 Algorithm

We begin with a look at the impact of one step of gridless advection. Imagine
you have produced a velocity field u(x, t), which may be from a simulation, from
some sort of procedural algorithm, or from data. Imagine also that you have a
field of density ρ(x) that you want to “sweeten” by applying some advection.
A single step of advection generates the new field

ρ1(x) = ρ(x− u(x, t1) ∆t) (7.1)

where the time step ∆t serves to control the magnitude of the advection to suit
your taste. The advected density ρ1 is not sampled onto a grid. Equation 7.1 is
a procedural algorithm to be evaluated when the density is used during a volume
render or some other application. Figure 7.2 shows a simple spherical volume of
uniform density after advection by a noisy velocity field. For the velocity field
in the example, we generated a noise vector field that is gaussian distributed,
with spatial correlation and divergence-free. Extreme advection like this can
transform simply shaped densities into complex organic distributions.
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This can be extended to two steps of advection:

ρ2(x) = ρ(x− u(x, t2) ∆t− u(x− u(x, t2) ∆t, t1) ∆t) (7.2)

and to three steps of advection:

ρ3(x) = ρ(x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t−u(x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t, t1) ∆t)
(7.3)

The iterative algorithm for n+1 gridless advection steps comes from the results
for n steps as

ρn+1(x) = ρn(x− u(x, tn+1)∆t) (7.4)

but, despite the simplicity of this expression, you can see from equation 7.3 that
the algorithm grows linearly in complexity with the number of steps taken. This
causes the evaluation time to grow linearly as well, so that a large number of
advection steps become impractically slow for productions. In that case, the
alternative SELMA algorithm can be employed (chapter 8).

7.3 Spatial Gradients in Gridless Advection

So how does this algorithm handle the spatial gradients in the fluid motion?
How does it compare to not using gridless advection?

First lets look at not using gridless advection. Supose we have simulated
the motion of a density field ρ on a rectangular grid. Spatial gradients of the
density are determined by the specifics of the advection algorithm employed
in the simulation. For example, for semi-lagrangian advection, the gradient is
bounded by

O (| ∇ρn |) ∼
ρmax
∆x

(semi-lagrangian) (7.5)

where ρmax is the maximum initial value of the density field at any grid point,
and ∆x is the cell size of the grid. This is purely an upper bound that does not
take into account the numerical dissipation that interpolation induces in semi-
lagrangian advection. For a minimally viscous advection scheme like Quick, the
density gradient also depends on the velocity gradient, which in turn is limited
by the CFL stability condition, so that the bound is

O (| ∇ρn |) ∼ ∆t |∇un| |∇ρn−1|
∼ ∆t

uCFL
∆x

|∇ρn−1|
∼ |∇ρn−1|
∼ ρmax

∆x
(quick) (7.6)

Quick spatial gradients stay essentially constant over time and dissipate very
little. Ultimately the gradient limit is the finite difference limit for densities on
a grid. For both examples these estimates are upper bounds, and in practice
numerical dissipation prevents these bounds from being reached.
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How does the gradient for gridless advection look? From the iterative equa-
tion 7.4, the density gradient is exactly

∇ρn+1 = (1−∆t ∇un+1) · ∇ρn (7.7)

where 1 is the 3 × 3 identity matrix. We want to see if gridless advection can
increase the spatial gradient anywhere in the volume. This would be indicated
if the magnitude of any component of ∇ρn+1 is greater than that for the corre-
sponding component of ∇ρn. It is useful to look at the eigenvalues of the matrix
(1−∆t ∇un+1), which are based on the real eigenvalues of the matrix ∇un+1,
which we call λi. The eigenvalues are then

1 − ∆t λi (7.8)

Note that if the fluid velocity is incompressible, then by definition
∑3
i=1 λi = 0.

This means that if any of the eigenvalues λi are not zero (i.e. there is a velocity
gradient), then some of the λi are positive and some are negative. In that
case, in the eigendirection(s) with negative gradient eigenvalue, the component
1 − ∆t λi > 1, which means in those direction(s), the spatial gradient of
the density grows. Physically, the condition that λi < 0 is that the flow is
stretching in that particular direction, and stretching induces higher spatial
gradients. Note that one or two of the λi can be negative, but not all three in
order to keep the flow incompressible. When only one component is negative, a
filament is created; when two components are negative a thin sheet is created.

So where ever a flow creates filaments and sheets, gridless advection amplifies
increased spatial gradients and enhances the visual appearance of the structure.
The amount of increase of the spatial gradients is not limited by any spatial grid
either, and so can grow enormously high. Further, that growth is related to the
spatial structure of the flow field, and so is naturally related to the physical
simulation. The growth can exceed physical limits however, because it dones
not feed back any forcing of the velocity field dynamics, and does not respond
to physical dissipation at very small scales.

7.4 Examples

We can illustrate the impact of advection with some examples. A common use
for gridless advection is to apply it to an existing simulation to sharpen edges.
Figure 7.3 shows a density distribution consisting of a wall of small spheres of
density. Each row has a different color. A fluid simulation unrelated to this
density field has been created, and when we advect the density and sample it to
a grid every time step, then the advected density field after 60 frames looks like
figure 7.4. There has been a substantial loss of density due to numerical dissi-
pation, but also the density distribution looks soft or diffused. Even the density
in the top left and bottom right, which has gone through very little advection,
has blurred substantially. If we used gridded sampling of the advected density
on the first 59 frames, then gridless advection on the last frame via equation
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Figure 7.2: Illustration of the effect of a single step of gridless advection. The
unadvected density field is a sphere of uniform density.
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Figure 7.3: Unadvected density distribution arranged from a collection of spher-
ical densities.

Figure 7.4: Density distribution after 60 frames of advection and sampling to a
grid each frame.
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Figure 7.5: Density distribution after 59 frames of advection and sampling to
a grid each frame, and one frame of gridless advection. The edges of filaments
have been subtley sharpened.

7.1, the result is in figure 7.5. There is a slight sharpening of edges in the gas
structure. This is more noticeable if we advect and sample for 50 frames, then
gridlessly advect for 10 frames, as in figure 7.6. In fact, the image shows a lot of
aliasing because the raymarch step size is not able to pick up the fine details in
the density. This is corrected in figure 7.7 by raymarching with a step size 1/10-
th the grid resolution. Finally, just to carry it to the extreme, figure 7.8 shows
the density field after all 60 frames have been gridlessly advected. The raymarch
is finely sampled to reduce aliasing of fine structures in the field, although some
are still visible. Also very important is the fact that gridless advection gen-
erates structures in the volume that have more spatial detail than the original
density distribution or velocity field. This is a very valuable effect, as it provides
a method to simulate at relatively coarse resolution, then refine at render time
via gridless advection. Further, this refinement does not dramatically alter the
gross motion or features of the density distribution, whereas rerunning a simu-
lation at higher resolution generally produces a completely different flow from
the lower resolution simulation. A variation on this is to gridlessly advect a
volume density with a random velocity field in order to make it more “natural”
looking, as was done in figure 7.9.

We can evaluate the relative performance of various options, e.g. how many
gridless steps to take, using the graph in figure 7.10, showing the amount of
RAM and the CPU time cost for the raymarch render for each option. The
execution time for setting up the gridless advection processing is essentially
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Figure 7.6: Density distribution after 50 frames of advection and sampling to a
grid each frame, and ten frames of gridless advection. The sharpening of details
has increased to the point that the detail is finer than the raymarch stepping,
causing significant aliasing in the render.
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Figure 7.7: Density distribution after 50 frames of advection and sampling to
a grid each frame, and ten frames of gridless advection. The fine detail in the
density field is now resolved by using a finer raymarching step (1/10-th the grid
resolution).

Figure 7.8: Density distribution after 60 frames of gridless advection. The fine
detail in the density field is resolved by using a fine raymarching step.
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Figure 7.9: Clouds rendered for the film The A-Team using gridless advection
to make their edges more realistic. The velocity field was based on Perlin noise.
Top: foreground clouds without advection; bottom: foreground clouds after
gridless advection.
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Figure 7.10: Performace of gridless advection as the number of advection frames
grows. The steep blue line is gridless advection rendered with the raymarch step
equal to the grid resolution. The red line is a raymarch step equal to one-tenth of
the grid resolution. These results are not from a production-optimized renderer,
so time and memory values should be taken as relative measures only.

negligible compared to the time spent evaluating the fields during the render.
The raymarcher used for this data is a simple one not optimized for production
use, so the results should be indicative of relative behavior only, not actual pro-
duction resource costs. The blue line is the performance for gridless advection
as the number of gridless steps increase, while leaving the raymarch step size
equal to the cell size of the velocity field. Note that RAM increases linearly with
the number of gridlessly advected frames, because the velocity fields of those
frames must be kept available for the evaluation of the advections. With a large
number of advections, the spatial detail generated includes fine filaments and
curved sheets that are so thin that raymarch steps equal to the grid resolution
are insuffient to resolve that fine detail in the render. Using 10 times finer steps
in order to capture detail, the images look much better and the red line per-
formance is produced. The longest time shown is over 80000 seconds, nearly 1
cpu day. This scale of render time is not practicable. In practice using gridless
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advection for more than about 5-10 steps extends the render time, due to the
additional advection evaluations and the finer raymarch stepping, to the limit
that most productions choose to take.

Fortunately there is a practical compromise, called Semi-Lagrangian Map-
ping (SELMA).



Chapter 8

SEmi-LAgrangian MApping
(SELMA)

The key to finding a practical compromise between gridless advection and
sampling the density to a grid at every frame is to recognize that gridless ad-
vection is a remapping of the density field to a warped space. You can see that
by rewriting equation 7.1 as

ρ1(x) = ρ (X1(x)) (8.1)

where the warping vector field X1 is

X1(x) = x− u(x, t1) ∆t (8.2)

Similarly, the equations for ρ2 and ρ3 also have forms involving warp fields:

ρ2(x) = ρ (X2(x)) (8.3)

where
X2(x) = x− u(x, t2) ∆t− u(x− u(x, t2) ∆t, t1) ∆t (8.4)

and
ρ3(x) = ρ (X3(x)) (8.5)

where

X3(x) = x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t−u(x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t, t1) ∆t
(8.6)

Finally, for frame n, the density ρn has a warp field also:

ρn(x) = ρ (Xn(x)) (8.7)

with an iterative form for the mapping:

Xn(x) = Xn−1 (x− u(x, tn)∆t) (8.8)

59
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So the secret to capturing lots of detail in gridless advection is that the mapping
function X(x) carries information about how the space is warped by the fluid
motion. The gridless advection iterative algorithm is equivalent to executing
the iterative equation 8.8, so the Felt code

density = advect( density, velocity, dt );

is mathematically and numerically equivalent to code that explicitly invokes a
mapping function like:

Xmap = advect(Xmap, velocity, dt);
density = compose(initialdensity, Xmap);

as long as the map Xmap is a vectorfield initialized in an earlier code segment
as

vectorfield Xmap = identity();

The practical advantage of recasting the problem as a map generation is
that it allows us to take one more step. Sampling the density onto a grid at
every frame leads to substantial loss of density and softening of the spatial
structure of the density. But now we have the opportunity to instead sample
the map X(x) onto a grid at each frame. This limits the fine detail within the
map, because it limits structures within the map to a scale no finer than grid
resolution. However, what is left still generates highly detailed spatial structures
in the density. For example, returning to the example of figures 7.3 through 7.8,
applying gridding of the mapping function produces the highly detailed result
in figure 8.1. The change to the Felt code is relatively small:

Xmap = advect(Xmap, velocity, dt);
// Sample map onto into a grid
vectorcache XmapCache(region);
cachewrite( XmapCache, Xmap );
// Replace Xmap with the gridded version
Xmap = cacheread(XmapCache);
density = compose(initialdensity, Xmap);
velocity = advect( velocity, velocity, dt ) + dt*gravity*density ;
velocity = fftdivfree( velocity, region );

where XmapCache is a vectorcache into which we sample the Semi-Lagrangion
mapping function X. This restructuring of the density advection based on a
mapping function that is grid-sampled is given the name SELMA for SEmi-
LAgrangian MApping.

How does SELMA constitute a good compromise between sampling the
density onto a grid at each time step, with relatively low time and memory
resources but limited spatial detail, and gridlessly advection, with higher time
and memory requirements but very high spatial detail? There are benefits
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Figure 8.1: Density distribution after 60 frames of SELMA advection. The
fine detail in the density field is resolved by using a fine raymarching step.

in both memory and speed. Because the mapping function is sampled to a
grid each time step, the collection of velocity fields need no longer be kept in
memory, so the memory requirement for SELMA is both lower than gridless
advection and constant over time (whereas it grew linearly with the number of
time steps in gridless advection). For speed, SELMA has to perform a single
interpolated sampling of the gridded mapping function each time the density
value is queried, and the cost for this is fixed and constant for each simulation
step. Comparatively, gridless advection requires evaluating a chain of values of
each velocity field along a path through the volume, the cost of which grows
linearly with the number of time steps. These improvements in performance are
clear in figure 8.2, which compares the performance of gridless advection and
SELMA. The increase in RAM for the case “SelmaFine” is because the grid for
the SELMA map was chosen to be finer than for the velocity field.

Figure 8.3 shows SELMA as used for the production of The A-Team. An
aircraft passing through cloud material leaves behind a wake disturbance in the
cloud. The velocity field is from a fluid simulation that does not include the
presence of the cloud. The cloud was modeled using the methods in chapter 3,
then displaced using SELMA.
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Figure 8.3: Example of SELMA used in the production of The A-Team to
apply a simulated turbulence field to a modeled cloud volume as an aircraft
passes through.



Appendix A

Appendix: The Ray March
Algorithm

A.0.1 Rendering Equation

The algorithm for ray marching in volume rendering is essentially just the
numerical approximation of the rendering equation for the amount of light
L(xC ,nP ) received by a camera located at position xC , at the pixel that is
looking outward in the direction nP . The rendering equation accumulates light
emitted by the volume along the line of sight of the pixel. The accumulation is
weighted by the volumetric attenuation of the light between the volume point
and the camera, and by the scattering phase function which scatters light from
the light source into all directions. The rendering equation in this context is a
single-scatter approximation of the fuller theory of radiative transfer:

L(xC ,nP ) =

∫ ∞

0

ds CT (x(s)) ρ(x(s)) exp

{
−
∫ s

0

ds′ κ ρ(x(s′))

}
(A.1)

The density ρ(x) is a material property of the volume, representing the amount
of per unit volume present at any point in space. Note that anywhere that the
density is zero has no contribution to the light seen by the camera. The ray
path x(s) is a straight line path originating at the camera and moving outward
along the pixel direction to points in space a distance s from the camera.

x(s) = xC + s nP (A.2)

The total color is a combination of the color emission directly from the
volumetric material, and the color from scattering of external light sources by
the material.

CT (x(s)) = CE(x(s)) + CS(x(s))⊗ CI(x(s)) (A.3)

64
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Both CE and CS are material color properties of the volume, and are inputs
to the rendering task. The illumination factor CI is the amount of light from
any light sources that arrives at the point x(s) and multiplies against the color
of the material. For a single point-light at position xL, the illumination is the
color of the light times the attenuation of the light through the volume, and
times the phase function for the relative distribution of light into the camera
direction

CI(x) = CL TL(x) P (n · nL) (A.4)

with the light transmissivity being

TL(x) = exp

{
−
∫ D

0

ds′κ ρ(x + snL)

}
(A.5)

where is the distance from the volume position x and the position of the light:
D = |x − xL|, and nL is the unit vector from the volume position to the light
position:

nL =
xL − x

|xL − x| (A.6)

For N light sources, this expression generalizes to a sum over all of the lights:

CI(x) =
N∑

i=1

CLi TLi (x) P (n · nLi ) (A.7)

The phase function can be any of a variety of shapes, depending on the
material properties of the volume. One common choise is to ignore it as an
additional degree of freedom, and simply use P (n · nL) = 1. Another choice
that introduces only a single control parameter g is the Henyey-Greenstein phase
function

PHG(n · nL) =
1

4π

1− g2

(1 + g2 − 2gn · nL)3/2
(A.8)

This function is plotted in figure A.1 for several values of g. As g → 1, the
phase function becomes sharply peaked in the forward direction,i.e. n · nL ∼ 1.
As g → −1, the strong peak is in the backward direction, n · nL ∼ −1. Phase
functions have been measured and calculated for many natural materials, such
as clouds, water, and tissues [6]. A model phase function called the Fournier-
Forand phase function fits many natural materials well:

PFF (Θ) =
1

4π(1− δ)2δν

[
ν(1− δ)− (1− δν) + (δ(1− δν)− ν(1− δ)) / sin2

(
Θ

2

)]

+
1− δν180

16π(δ180 − 1)δν180

{
3 cos2 Θ − 1

}
(A.9)

δ =
4

3(n− 1)2
sin2

(
Θ

2

)
(A.10)

δ180 =
4

3(n− 1)2
(A.11)



APPENDIX A. APPENDIX: THE RAY MARCH ALGORITHM 66

 0.01

 0.1

 1

 10

 100

 1000

 0  0.5  1  1.5  2  2.5  3

Ph
as

e 
Fu

nc
tio

n

Theta

g = 0.99
g = 0.5

g = -0.5
g = -0.99

Figure A.1: The Henyey Greenstein phase function for g =
0.99, 05,−0.5,−0.99.



APPENDIX A. APPENDIX: THE RAY MARCH ALGORITHM 67

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140  160  180

Ph
as

e 
Fu

nc
tio

n

Theta (deg)

Petzold clear
Petzold coastal

Petzold turbid
mu=3.5
mu=4  

mu=4.5
mu=5  

Figure A.2: The Fournier-Forand phase function for µ = 0.35, 0.4, 0.45, 0.5.
The parameter n has the value 1.05. Petzold’s measured phase functions for
clear, coastal, and turbid ocean waters are shown also.

ν =
3− µ

2
(A.12)

and ν, µ, and n are physical parameters. Figure A.2 illustrates this phase
function for several values of µ, along with plots of Petzold’s phase function
data for 3 ocean water conditions [7].

Finally, recognizing that the volumetric material occupies a finite volume of
space, it is not necessary to integrate along a path from the camera to infinity.
There is a point s0 ≥ 0 where the density starts, and a maximum distrance
smax past which the density is zero. So the render equation can be reduced to
evaluating the integral just within those bounds:

L(xC ,nP ) =

∫ smax

s0

ds CT (x(s)) ρ(x(s)) exp

{
−
∫ s

0

ds′ κ ρ(x(s′))

}
(A.13)
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A.0.2 Ray Marching

Discretizing the rendering equation A.13 leads to the ray march algorithm used
in production volume rendering. The rendering equation A.13 is decomposed
into a set M of small steps of length ∆s, with M∆s = smax − s0. Without
approximation, the rendering equation becomes

L(xC ,nP ) =
M−1∑

j=0

Tj

∫ ∆s

0

ds CT (xj+snP ) ρ(xj+snP ) exp

{
−
∫ s

0

ds′ κ ρ(xj + s′nP )

}

(A.14)
where

xj = xC + j∆snP (A.15)

and the transmissivity factor Tj is

Tj =

j−1∏

k=0

∆Tk (A.16)

and

∆Tk = exp

{
−
∫ ∆s

0

ds κ ρ(xk + snP )

}
(A.17)

Note that we can construct these quantities iteratively through the relationships

xj = xj−1 + ∆snP (A.18)

Tj = Tj−1 ∆Tj−1 (A.19)

with the initial conditions

x0 = xC (A.20)

T0 = 1 (A.21)

which define the ray march process.
One of the first graphics papers on this problem is by Kajiya [5]. In that

paper an approximation for optically thin density is applied, i.e. it is assumed
that the density across a short path segment is relatively small. In these notes
we do not make that assumption. In fact, only one significant assumption is
made here, namely that the color field is constant across the length of a short
path segment. We do not assume the optically thin approximation that Kajiya
chose. This leads to a simple but significant improvement to the algorithm that
solves difficulties in how the edges of clouds/smoke/whatever are handled in
compositing.

The discretization step takes the form of choosing a march step size ∆s that
is sufficiently small that we can assume that the color CT is constant within the
length of the step ∆s. With that single choice, the rendering equation reduces
to

L(xC ,nP ) =

M−1∑

j=0

CT (xj) Tj
1−∆Tj

κ
(A.22)
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This sum also can be handled via an iterative update of L. Combined with the
iterations for xj and Tj the complete iteration is

xj = xj−1 + ∆snP (A.23)

L + = CT (xj) Tj
1−∆Tj

κ
(A.24)

Tj+1 = Tj ∆Tj (A.25)

which is the same as equations 1.1-1.4 when the positions xj and transmissivities
Tj are sored in a single vector and float with running updates.

Comparing to the optically-thin approach chosen by Kajiya, this algorithm
is identical to that one except for the factor (1−∆Tj)/κ, which does not appear
in Kajiya’s treatment. However, if we apply an optically thin approximation,
namely that ∆sκρ � 1, then our factor reduces in the limit to just ∆sρ(xj)
which is the factor that appears in Kajiya’s approach. So this ray march algo-
rithm is an extension of Kajiya’s which removes the optically-thin assumption.
In practical use in production, it also has the benefit that it is easier to com-
posite clouds rendered with this approach, because the edges of the clouds fade
in opacity more correctly than the optically-thin approximation does.

The one item left to work out is the values of ∆Tj . This depends on how
the density varies along the short path segment. The simplest approximation is
to assume that the density is constant along the path. In that case

∆Tj = exp(−κ ρ(xj) ∆s) (A.26)

Another possibility is that the density varies linearly along the short path seg-
ment. Supose the density varies linearly from ρ0(xj) at the beginning of the
path and ρ1(xj) at the end of the segment, then the result is similar to the
constant case, but with the constant density replaced by the average density
along the path.

∆Tj = exp(−κ (ρ0(xj) + ρ1(xj)) ∆s/2) (A.27)

In more general situations with the density having a complex behavior along
the short path segment, we can take inspiration from the linear variation case.
We can evaluate an average density 〈ρ〉(xj) along the path segment, and arrive
at

∆Tj = exp(−κ 〈ρ〉(xj) ∆s) (A.28)

The average density can be evaluated, for example, by sampling the density at
random positions along the path, i.e.

〈ρ〉(xj) =
1

Ns

Ns∑

i=1

ρ(xj + rj∆snP ) (A.29)

where the Ns numbers rj are random numbers between 0 and 1.
If the color cannot be assumed to be constant in the interval ∆s, then one

approach to this is to subdivide the interval further. Here again the random
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sampling idea can be brought to bear. Suppose we decide to subdivide into Ns
subsegments, within each we can assume that the color and density are constant.
The procedure can be as follows

• generate Ns − 1 random numbers rj and order them so that r1 < r2 <
r3 < . . . < rNs−1. For this notation, we can define r0 = 0.

• Accumulate through the subintervals j = 1, . . . , Ns − 1 exacly as for the
primary intervals:

x + = rj ∆s nP

∆T = exp {−(rj − rj−1) ∆s ρ(x) κ}

L + = C(x) T
(1−∆T )

κ
T ∗ = ∆T
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Appendix E Advection Methodologies

This technical report describes a variety of advection algorithms using a Characteristic Map, including some
relatively recent innovations.
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1 Introduction

This note addresses the subject of advection around the theme of applying
Characteristic Maps as a method of constructing solvers. Typically the accuracy
of solvers is characterized as an asymptotic function of a short time step, short
usually defined by restricting the value of the CFL parameter. Within the range
of the CFL limit the asymptotic function is expressed as a formula in terms of
a power of the time step, i.e. O(∆tp), for some power p.

A key issue is the implementation of solvers that are accurate for “long”
time steps. Long time steps might be described as situations that violate CFL
restrictions, or at least situations in which it is ambiguous whether the solver
can be expected to work based on the CFL restriction. Of course, an advection
solver can be used well beyond its CFL limit, with consequent error in the
advection. Characterizing the magnitude of that error is of interest. A common
approach for computing error is to advect a field over a period of time with some
number of steps, then reverse the advection so that, in principle, the field should
return to its original form. The error measure is related to the disparity between
the original field and the advected one. Defining advection solvers in terms of
characteristic maps offers another measure of accuracy. Characteristic maps
depend only on the velocity field, and exist independent of the material subject
to advection. Given a “reliable” characteristic map, the error of a particular
solver could be assessed without invoking any particular material model. This
approach is employed in section 7, along with “traditional” evaluation methods.

These issues are addressed here in three stages:

∗email: jtessen@clemson.edu
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1. Build accurate and fast advection solvers for long time steps using the
composition property of characteristic maps. This process is somewhat
similar to the Geometric Integration approach for dynamical systems, in
that the algorithm starts with a solver that is accurate for short times and
builds up one for long times. The product solver has less error than the
original. In the case of Geometric Integration, the product solver would
have less asymptotic error, i.e. if the original solver has asymptotic error
O(∆tp) the product solver would be O(∆tp+2) or higher. But in this case,
the asymptotic error for the product solver is the same as the original, but
with a significantly smaller proportionality. However, the construction of
the long time advection solver is fast. Typically when a long advection
time T � ∆t is desired, the object must be advected over the short time
step ∆t for N = T/∆t times. However, the composition property of the
CM generates a solver in log(T/∆t) steps. For example, if T = 1024∆t,
the typical method would require 1024 advections, while the composition
approach requires only 10, and has an error 10/1024 times smaller. This
is presented in section 3.

2. Build the exact solution of the characteristic map equation. In section
4 the exact solution of the characteristic map equation is derived, ap-
parently for the first time. The solution is explicit, but not analytic.
However, a general numerical algorithm, named here “Gradient Stretch,”
follows in section 6, that is relatively simple but potentially time consum-
ing because accurate exponentiation of 3 × 3 matrices is required. The
appendix includes a discussion of accurate matrix exponentiation. One of
the “traditional” test cases for advection solvers employs a velocity field
corresponding to a rigid rotation. This test has the fortunate property
that the exact characteristic map can be completely evaluated analyti-
cally, and as should be anticipated, the map is a rotation transformation
in standard form. The general numerical implementation accurately gen-
erates this result also.

3. Characterize solver error relative to the exact characteristic map. Typical
tests of solver accuracy include two ingredients: a specific velocity field,
and an initial object to be advected. The test conducts advection in a
way that the exact outcome is known. The measure of solver error follows
from the disparity between the advected and expected object. Three of
these tests are reproduced in section 7, comparing four different solvers:
Semi-Lagrangian, BFECC, Modified MacCormack, and Gradient Stretch.
All of these tests involve multiple steps of advection and storing inter-
mediate data on grids. The errors of the solvers cannot be determined
directly because the grid storage and interpolation requirement adds er-
rors to the tests. The coupled impact of gridding with multiple advections
is demonstrated qualitatively and visually. We also see a set of quanti-
tative error measures by comparing the Gradient Stretch solver directly
to other solvers. At short time steps, the classic asymptotic error forms

2



are reproduced, and at long time steps the solvers transition to a differ-
ent behavior that has less, but still substantial, error than projected from
the asymptotic formulae. This long time error behavior may hint at a
“universal” error behavior because the solvers seem to converge on nearly
identical behavior.

Before carrying out the outlined stages, the next section reviews the charac-
teristic map formulation of the advection problem. Solvers for Semi-Lagrangian,
BFECC, and Modified MacCormack are written in terms of characteristic maps.
The approach is phrased for a wide range of velocity fields, including those that
are not divergence-free.

2 Characteristic Map Solvers

Advection problems can formally be solved in terms of a vector field called
the Characteristic Map (CM) [1], which maps a point in space back to the
originating point from which material advected. Generally the CM tracks the
time of origination, t′, and the current time, t. If the CM is labelled X(x, t, t′),
a field φ advected over a time interval ∆t updates to the value

φ(x, t+ ∆t) = det (∇X(x, t+ ∆t, t)) φ(X(x, t+ ∆t, t), t) (1)

Scaling by the determinant accounts for changes in field magnitude due to con-
centration or rarifaction by the underlying velocity field, which may be either
compressible or incompressible. This is an exact expression for advection. The
time interval ∆t is not assumed to be small or large, although it is assumed here
to be positive.

The prototypical advection problem in PDE form is

∂φ(x, t)

∂t
+ ∇ · (u(x) φ(x, t)) = S(x, t) (2)

where φ is the material, and S is an external source/sink of material. The
material is assumed to have an initial distribution

φ(x, t = 0) = φ0(x) (3)

The advection equation has an conservation law for the total amount of the
material. Integrating this equation over all 3D space, and assuming there is no
material located at spatial infinity, the conservation law is

d

dt

∫
d3x φ(x, t) =

∫
d3x S(x, t) (4)

which shows that the total amount of the material varies over time due solely
to sources and sinks. Advection does not cause net gain or loss of material.
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The characteristic map solution of equation 2 is

φ(x, t) = det (∇X(x, t, 0)) φ0(X(x, t, 0))

+

∫ t

0

dt′ det (∇X(x, t, t′)) S(X(x, t, t′), t′) (5)

with the Characteric Map satisfying

∂X(x, t, t′)
∂t

+ u(x) · ∇X(x, t, t′) = 0 (6)

and initial condition X(x, t′, t′) = x. This solution also explicitly satisfies the
conservation property in equation 4. Integrating this solution over all of 3D
space, we have

∫
d3x φ(x, t) =

∫
d3x det (∇X(x, t, 0)) φ0(X(x, t, 0))

+

∫ t

0

dt′
∫
d3x det (∇X(x, t, t′)) S(X(x, t, t′), t′) (7)

The combination ∫
d3x det (∇X(x, t, t′)) (8)

signals a change of integration variable from x to X. Applying this change,
∫
d3x φ(x, t) =

∫
d3x φ0(x)

+

∫ t

0

dt′
∫
d3x S(x, t′) (9)

which is equivalent to equation 4.
In a numerical setting in which the material and velocity data may exist on

a grid, evaluating advection using the CM means that it is necessary to inter-
polate the gridded data using whatever interpolation algorithm is of interest.
Assuming the interpolation algorithm is bounded, advection via equation 5 is
unconditionally stable for the same reason that Semi-Lagrangian advection is
unconditionally stable, i.e., the update is bounded by gridded values of the field.
But unlike Semi-Lagrangtian advection, we might want our CM advection solver
to be valid for higher orders of ∆t than linear.

For the remainder of this note we only look at advection over a ”single
timestep”, meaning effectively that the velocity field is constant-in-time during
the advection. In this situation, the CM has a time shift symmetry, i.e.

X(x, t, t′) = X(x, t− t′, 0) (10)

This lets us simplify the notation from X(x, t, 0) to X(x, t).
The CM solver corresponding to Semi-Lagrangian advection is

XSL(x,∆t) = x − u(x, t)∆t (11)
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Although Semi-Lagrangian error is O(∆t2), other advection schemes have for-
mally smaller error. The BFECC1 algorithm is constructed from the semi-
lagrangian advection as

XBFECC(x,∆t) = XSL

(
x +

1

2
(x−XSL (XSL(x,∆t),−∆t)) ,∆t

)
(12)

and Modified MacCormack is

XMM (x,∆t) = XSL(x,∆t) +
1

2
(x−XSL (XSL(x,∆t),−∆t)) (13)

Both of these advection schemes have asymptotic error of O(∆t3).
The ideal advection scheme would provide a method to insure as much accu-

racy as needed for a particular problem. One solution is to employ even higher
order advection schemes. But an issue of interest is maintaining accuracy when
the time step is large, and it is not known whether high order advection schemes
hurt or help.

These issues occur in related dynamical problems in classical mechanics,
where the approach of Geometric Integration (GI) fruitfully guides better qual-
ity and flexibility in solver construction. GI provides explicit strategies for con-
structing solvers with high order accuracy from simpler, less-accurate solvers.
For example, given a solver S(∆t) that updates a dynamical system over time
interval ∆t with asymptotic error O(∆t2p), the solver

S(γ∆t) S((1− 2γ)∆t) S(γ∆t) (14)

where

γ =
1

2− 2
1

2p+1

(15)

has asymptotic error2 O(∆t2p+2). This property is valid universally for Hamilto-
nian systems of all type, and there are many more similar relationships between
solvers. Collectively these universial relationships are valuable tools for select-
ing a range of accuracy and efficiency criteria for any particular application. No
such tools are known for advection.

3 Logarithmic Evaluation of the Characteristic
Map

The CM enjoys a composition-in-time property following from the fact that
advection conceptually can be deconstructed into a sequence of small advections.

1BFECC [3] and Modified MacCormack [5] were not originally constructed as characteristic
map solvers. Here they are rebuilt in the language of characteristic maps. Although the error
properties and overal structure of these versions follow the original logic, the exact solver is
not identical to the originals.

2Robert McLachlan and Reinout Quispel, “Six Lectures on the Geometric Integration of
ODEs.”
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Advection solvers that are valid only for small time steps are still useful when
long time steps are desired, because a long time advection can be built from
iteratively advecting with time steps small enough for the solver to be valid. If
the long time step is T , and the solver is valid for time steps ∆t < T , then the
material must be advected N = int(T/∆t) steps. For a solver with error O(∆tp),
the error for taking a single long step T is O(T p), whereas taking multiple small
steps, the error is N O((T/N)p), or N1−p O(T p). As long as the error exponent
p is larger than 1, multiple small advections are more accurate than a single
long one. This kind of error analysis does not account for information loss if
the data is regridded at each advection step.

The CM has the same composition property for building long-time advec-
tions from a sequence of small ones. But for the CM there is an additional
fact that the advected CM is also a CM suitable for longer time steps. This
is exploitable to reduce the number of advections required from int(T/∆t) to
int(log2(T/∆t)). This is a substantial reduction in the number of operations
that much be performed, meaning that the advection is faster to execute and
there is less regridding loss.

The composition property is the following: given a CM for a time step t1
and a CM for a time step t2, the CM for the time step t1 + t2 follows from the
composition of the two:

X(x, t1 + t2) = X (X(x, t1), t2) (16)

In particular, if t1 = t2 = t,

X(x, 2t) = X (X(x, t), t) (17)

This propery sets up the following procedure to construct the CM X(x, T ) for
long time T :

1. Define a short time step ∆t = T/2M , for M sufficiently large that ∆t is
small enough to build an accurate solver.

2. Construct a CM for a chosen short time step ∆t, i.e. X0(x) ≡ X(x,∆t),
using an advection scheme that is accurate for that time step.

3. Construct the following iteration of maps:

Xn(x) = Xn−1 (Xn−1(x)) , n = 1, . . . ,M (18)

The map XM (x) is the CM X(x, T ), and is generated from only M advections
of the maps. Normally, a field advected to time 2M∆t using an advection
scheme accurate for time step ∆t requires 2M advections. This composition
rule accelerates long-time advection logarithmically.

How much error is induced by the M advections, called “folds” here, carried
out this way? The error for a single short time step is 2−pM O(T p), so for the M
advections the error accumulates to M2−pM O(T p). Compared to evaluating all
2M advections, this error is a factor of M2−M smaller. In addition, the number
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of regridding events is M for this method, as opposed to 2M previously, so losses
due to regridding are reduced as well.

This logarithmic speedup is universally applicable to all advection schemes
that are built in terms of characteristic maps.

4 Exact Solution for the Characteristic Map

The exact solution of equation 6 for the CM is an explicit form that depends
on the velocity field, the gradient of the velocity field, and the CM at previous
times. Derivation starts with constructing the gradient of the CM, ∇X. From
equation 6, it satisfies the evolution equation

∂∇X(x, t)

∂t
+ (u(x) · ∇) ∇X(x, t) + (∇u(x)) · ∇X(x, t) = 0 (19)

The middle term in this equation induces advection by the velocity field. If this
advection term were negligible compared to the other two terms, the gradient
has a clear behavior:

∇X(x, t) ≈ exp (−t ∇u(x)) (20)

Similarly, if the term proportional to the gradient of the velocity were negligible
compared to the others, the result is advection of the initial gradient field, which
is the identity matrix:

∇X(x, t) ≈ ∇X(X(x, t), 0) ≈ 1 (21)

In all other situations, where all three terms balance each other, the solution is:

∇X(x, t) = exp

(
−
∫ t

0

dt′ ∇u (X(x, t− t′))
)

+

(22)

where the notation ( )+ means that the integral exponential is arranged as an
ordered exponential. The definition of an order exponential involves dividing
the time interval (0, t) into N segments with time step ∆t = t/N , and arranging
them with smallest value of t′ on the right most side:

exp

(
−
∫ t

0

dt′ ∇u (X(x, t− t′))
)

+

≈ exp (−∆t ∇u (x))

× exp (−∆t ∇u (X(x,∆t)))

× . . .

× exp (−∆t ∇u (X(x, t−∆t)))

The limit N → ∞ with N∆t = t is the exact solution for ∇X in terms of the
gradient of the velocity field and the advection field X.

7



 1

 10

 100

 1000

 10000

 0.1  1  10

D
et

er
m

in
an

t

Time Step

Rigid Rotation

Semi-Lagrangian
Modifed MacCormack

Figure 1: Value of det(∇X) under a rigid rotation, for Semi-Lagrangian and
Modified MacCormack solvers. The angular speed is |~ω| = 1.

This exact expression for the gradient shows several properties. The map
gradient is an important quantity for advecting material because its determinant
is a factor in equation 5. The determinant for the above expression is

det (∇X) = exp

(
−
∫ t

0

dt′ ∇ · u(X(x, t− t′))
)

(23)

Two properties come from this expression: (1) For all types of flows, the deter-
minant is positive definite, and the CM is an invertible map; (2) Incompressible
flows have a determinant of one.

However, many advection solvers do not enforce this result. An example is
shown in figure 1, showing the value of the determinant as a function of the time
for the rigid rotation flow. Rigid rotations have an incompressible velocity field
u(x) = x × ~ω, where ~ω is the angular velocity of the rotation. The deviation
from 1 is an error that scales in the same way as the asymptotic error analysis
for small time steps, but grows much larger at long times. Although Modified
MacCormack has better asymptotic error, at long times it has much larger error
than Semi-Lagrangian. In figure 2 the logarithmic evaluation from section 3 has
been applied to the solvers with 8 folds, i.e. M = 8. The deviation of the
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Figure 2: Value of det(∇X) under a rigid rotation, for Semi-Lagrangian and
Modified MacCormack solvers and 8 logarithmic folds. Modified MacCormack
is not visible in the plot because it deviates from 1 by less than 10−5 over this
interval. The angular speed is |~ω| = 1.

determinant from 1 has been reduced by two orders of magnitude for Semi-
Lagrangian, and by seven orders of magnitude for Modified MacCormack, even
for very long times.

Returning to solving the CM advection equation 6, the exact expression for
∇X in equation 22 converts the equation to:

∂X(x, t)

∂t
= −u(x) · exp

(
−
∫ t

0

dt′ ∇u (X(x, t− t′))
)

+

(24)

This integrates over time to

X(x, t) = x − u(x) ·
∫ t

0

dt′ exp

(
−
∫ t′

0

dt′′ ∇u (X(x, t′ − t′′))
)

+

(25)

Equation 25 is the exact solution for the CM. It is an explicit solution in that
the CM appearing on the right hand side is for earlier times. This is also a
starting point for constructing a new numerical advection scheme in section 6
below.
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5 Analytic Solution: Constant Gradient, Rigid
Rotation

There is one special case in which the CM can be calculated explicity and
exactly: a constant gradient of the velocity field. When ∇u is a constant
matrix, the ordering of the exponential reduced to ordinary exponentiation,
and the time integrals in 25 can be evaluated completely:

∫ t

0

dt′ exp

(
−
∫ t′

0

dt′′ ∇u
)

=

∫ t

0

dt′ exp (−t′ ∇u) ≡ t sinch (t∇u) (26)

If the velocity gradient is an invertible matrix, then

sinch(A) = (A)
−1
(

1− e−A
)

(27)

When it is not invertible, the definition of sinch follows from the Taylor expan-
sion

sinch(A) =

∞∑

n=0

(−A)n

(n+ 1)!
(28)

One important example of a constant gradient is rigid body rotation. The
velocity field is

u(x) = x× ~ω (29)

where ~ω is the vorticity of the flow. In this case, the gradient matrix is

(∇u)ij =
∑

k

εijk ωk (30)

and εijk is the Levi-Civita symbol. With this choice of velocity field, the evalu-
ation of the sinch has an simple analytic form, and the full result is a rotation
transformation:

X(x, t) = x cos(tω) + ω̂(ω̂ · x)(1− cos(tω)) − (ω̂ × x) sin(tω) (31)

with ω = |~ω| and ω̂ = ~ω/ω. This special exact case provides a concrete illustra-
tion of the advection solution 25. It is a useful test of solver accuracy, and can
also be used as a check of numerical implementations of equation 25 in section
6.

6 Numerical Implementation of the Exact Solu-
tion

There are two alternate approaches for implmenting an advection algorithm
based on the exact solution 25. One of them is to create a short-time version that

10



is iterated to arbitrary time using logarithmic acceleration. A good candidate
for a short-time version follows from the solution for constant gradient:

XGS(x,∆t) = x − u(x) ·∆t sinch(∆t∇u(x)) (32)

Note that (a) this short-time advection is exact for any length of time if the
gradient is constant, and (2) if the gradient is constant, and XGS is used in
an iteration, the result is still the exact solution. For any time step T , a short
time step can be built by selecting a desired number of folds M and setting
∆t = T/2M . The logarithmic iteration approach of section 3 would build up
the full solver.

A second approach is to divide the time interval into N segments to evaluate
the integral in 25. The result is algorithm 1. This second approach also enjoys

Algorithm 1 Gradient Stretch Characteristic Map

procedure GradientStretchCharacteristicMap(u(x), T , N)
∆t← T/N
XGS ← x
M← 0
Q← ∆t sinch (∆t ∇u(x))
for i← 0, i < N do

M←M + Q
XGS ← x− u(x) ·M
Q← Q · exp (−∆t ∇u(XGS))
i←i + 1

end for
return XGS

end procedure

the property that if the gradient is constant, the result is exact, regardless of
the choice of N . Note that the choice N = 1 reduces algorithm 1 to equation
32.

A third algorithm follows from combining these two. A fold value M and
time divisionN can be used to evaluate algorithm 1 with arguments (u, T/2M , N),
then iterate that map through M folds.

Despite the assembly of this algorithm from the exact CM, and the robust-
ness of the algorithm for rigid rotations, it has very limited utility for many
practical advection scenarios. Accurate computation of the sinch(A) function
and matrix exponentiation is time consuming. The appendix gives some sug-
gestions based on the effort to produce accurate error analyses in section 7. In
comparison, it is much faster to use the CM form of other algorithms, for ex-
ample Semi-Lagrangian, BFECC, Modified MacCormack, or others, along with
the logarithmic iteration process to improve accuracy.
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Test Velocity Field Domain Ni ×Nj ×Nk GS M , N

Rigid Rotation
π

314
x× ~ω

~ω = (0, 1, 0)
(−100,−100,−100) × (100, 100, 100) 20 × 20 × 20 0, 256

Shear

(sin2(πx) sin(2πy),
− sin2(πy) sin(2πx),

(1 − r/R)2)

r = ((x− 0.5)2 + (y − 0.5)2)1/2

R = 0.5

(0, 0, 0) × (1, 1, 1) 20 × 20 × 20 11, 20

LeVeque Twist
(2 sin2(πx) sin(πy) sin(2πz),
− sin2(πy) sin(πz) sin(2πx),
− sin2(πz) sin(πx) sin(2πy))

(0, 0, 0) × (1, 1, 1) 100 × 100 × 100 11, 20

Table 1: Velocity fields and calculation domains for the error statistics.

7 Solver Error

One of the standard tests of advection schemes is advection of shapes in a
chosen flow, usually reversing the flow after a time and advecting backward for
an equal amount of time. The shape is compared before and after advection to
assess the accuracy of the advection scheme. These tests, applied to the Semi-
Lagrangian, BFECC, Modified MacCormack, and Gradient Stretch algorithms
for three different flows listed in table 1, illustrate their relative qualitative
performance.

The gradient stretch advection algorithm also provides a reference for es-
timating the error of other algorithms. Choosing a large value for the fold
parameter M for logarithmic iteration, and a large value for the time division
parameter N , the value of XGS can be taken as “ground truth” for comparison
with other solvers. An error field defined as

E(x) ≡ Xsolver(x) − XGS(x) (33)

is the source of spatially-sampled error statistics for the mean error

〈E〉 ≡ 1

Ni Nj Nk

∑

ijk

E(xijk) (34)

and the rms error

σE ≡





1

Ni Nj Nk

∑

ijk

(E(xijk)− 〈E〉)2




1/2

(35)

using a grid of points xijk from a relevant rectangular domain, as listed in table
1 for each test case. The GS solver parameters M and N were chosen for each
case to make sure that the statistics are accurate.

7.1 Rigid Rotation

For rigid rotations, the gradient stretch solver is exact and completely preserves
the shape without loss, even for M = 0 and N = 1. The visual test case [2]
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consists of a sphere with a notch removed from it rotating around a point outside
the sphere, as shown in figure 3.

For the error statistics, the value of N was 256 in order to insure the accuracy
of the matrix sinch and exponentiation operations even for large timesteps.
Figure 4 shows the rms error σE for the three solvers as functions of timestep.
Through the entire four decades of time step, the error is the power-law predicted
by asymptotic analysis: O(∆t2) for Semi-Lagrangian and O(∆t3) for BFECC
and Modified MacCormack.

7.2 Shear

Visually, BFECC, Modified MacCormack, and Gradient Stretch produce essen-
tially identical results for the shear test [4], with a small amount of distortion of
the sphere after the advections, and Semi-Lagrangian distortion is substantially
greater, as seen in figure 5. For the visual test, the simplest form of gradient
stretch was used, i.e. N = 1, M = 0 corresponding to equation 32.

Figure 6 displays the rms error for the solvers. Quantitatively the asymptotic
error holds for BFECC and Modified MacCormack over the range of time scales
tested. But near ∆t ∼ 1 the Semi-Lagangian error transitions from O(∆t2) to
O(∆t) at large time steps, with overall lower error.

7.3 LeVeque Twist

As with the rigid rotation and shear tests, Semi-Lagrangian advection produces
noticeably larger errors than the other solvers for the LeVeque Twist [4] test,
visually demonstrated in figure 7. At small time steps the rms errors exhibit the
asymptotic behavior. Near ∆t ∼ 1 all three solvers deviate to an error O(∆t),
in figure 8.

8 Conclusion

The Characteristic Map has been employed systematically in this note as a tool
for creating practical, stable, efficient, and accurate advection schemes. The
use of a logarithmic folding of advections accelerates the creation of long time
step schemes from short time step ones, with much less error. A new “gradient
stretch” advection scheme has been derived from the exact expression for the
Characteristic Map, although this scheme is computationally heavy due to the
need to evaluate matrix-valued exponentials and sinch functions. However, the
gradient stretch algorithm enjoys accuracy benefits not shared by other advec-
tion schemes, such as being the exact solution in the case of rigid rotation, and
highly accurate computation of the determinant of the gradient of the map,
with consequent elimination of numerically-induced volume loss or gain.

In the shear and LeVeque Twist test cases, the behavior of the rms error un-
derwent a transition at large time steps. In the shear test, the Semi-Lagrangian
scheme transitioned from the short time behavior of O(∆t2) to O(∆t), and in
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(a) (b)

(c) (d)

Figure 3: Notched sphere prior to rotation (a); after 360◦ rotation by Semi-
Lagrangian advection (b); BFECC (c); and Modifed MacCormack (d). The
time step is 6.28 and there were 100 advections.
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Figure 4: The rms error σE for the three solvers Semi-Lagrangian, BFECC, and
Modified MacCormack, as a function of time step, for the Rigid Rotation case.
The CM XGS was calculated using M = 0 and N = 256.
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(a)

(b)

(c)

(d)

Figure 5: Sphere prior to shear (left) and with maximum shear (center), and
returned to original position (right). (a) Semi-Lagrangian; (b) BFECC; (c)
Modifed MacCormack; and (d) Gradient Stretch with N = 1. The time step
was 3/150 and there were 150 advections. The Gradient Stretch case (d) used
N = 1 and M = 0.
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Figure 6: The rms error σE for the three solvers Semi-Lagrangian, BFECC, and
Modified MacCormack, as a function of time step, for the Shear case. The CM
XGS was calculated using M = 11 and N = 20.
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(a)

(b)

(c)

(d)

Figure 7: Sphere prior to advection (left) and with maximum advection (center),
and returned to original position (right). (a) Semi-Lagrangian; (b) BFECC; (c)
Modifed MacCormack; and (d) Gradient Stretch with N = 6. The time step
was 30/150 and there were 15 advections. Each solver used M = 4 folds.
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Figure 8: The rms error σE for the three solvers Semi-Lagrangian, BFECC, and
Modified MacCormack, as a function of time step, for the LeVeque Twist case.
The CM XGS was calculated using M = 11 and N = 20.
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the LeVeque Twist test all three schemes made a transition from their respective
short time error to nearly identitical O(∆t) behavior.

In the interest of motivating future investigation, here is a speculation on the
source of this transition. The ordered exponential term can have a wide range
of behaviors depending on the magnitude and specifics of its argument. In the
case of the rigid rotation, the ordered exponential reduced to a purely oscillatory
behavior. When there is a very large argument, i.e. large gradient or large time
step or both, strong oscillations in magnitude and phase would be very difficult
to reproduce via an advection scheme with an asymptotic error O(∆tp) with
p relatively small. In such a situation, the oscillations could dominate an rms
error measure such the one used here. Thinking of the ordered exponential as
a rapidly fluctuating random variable, the error measure associated with the
variance calculation would generate the O(∆t) behavior seen in some of the
results for the shear and LeVeque Twist cases.

Appendix: Matrix Exponential and Sinch

Matrix exponentiation has a relatively simple implementation in terms of a
truncation of the Taylor series

eA =
∞∑

n=0

An

n!
(36)

to include only the first N powers of A, and is depicted in algorithm 2. For many

Algorithm 2 Matrix exponential via Taylor expansion

procedure Exp(A, N)
E← 1
M← A
for i← 1, i ≤ N do

E← E + M
M←M ∗A/(i+ 1)
i←i + 1

end for
return E

end procedure

choices of A, this approach produces reasonable accuracy for truncations N ∼
50. Cases in which the exponential is oscillatory can require many more terms,
N ∼ 200 or more, to insure good reproduction of the phase and amplitude. A
good strategy for reducing this load is to take advantage of the multiplicative
property of the exponential

eA =
(
eA/`

)`
(37)
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This relationship is similar to the one for logarithmic acceleration of advection
in section 3, and can be exploited similarly in algorithm 3. This algorithm gives

Algorithm 3 Fast matrix exponential via Taylor expansion

procedure FastExp(A, N , M)
E← Exp(A/2M , N)
for i← 0, i < M do

E← E ∗E
i←i + 1

end for
return E

end procedure

accurate results even for relatively small values of N ∼ 30, M ∼ 10 unless A
has elements with very large magnitude.

For the sinch function, there is a simple expression in terms of the exponential
when A is invertible:

sinch(A) = A−1
(

1 − e−A
)

(38)

When A is not invertible, there is no choice but to use a relatively time con-
suming truncation of the Taylor expansion

sinch(A) =
∞∑

n=0

(−A)n

(n+ 1)!
(39)

as implemented in algorithm 4. In practice, the Taylor expansion truncation

Algorithm 4 Matrix sinch via Taylor expansion

procedure Sinch(A, N)
E← 1
M← −A/2
for i← 1, i ≤ N do

E← E + M
M←M ∗ (−A)/(i+ 2)
i←i + 1

end for
return E

end procedure

must be very large, i.e. N ∼ 200, to produce reasonable accuracy over the
range of cases in this note.
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