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After a review of appropriate concepts in local surface geometry, a formally exact solution of
the radiative transfer equation is constructed, for transfer from one surface of arbitrary shape
to another. The solution is obtained from repeated application of the linear interaction
principle to form a path integral over paths that cross many intermediate surfaces. Invariant
imbedding in general geometries is presented and found to be manifest in the path integral
solution as an invariance under local coordinate transformations of the intermediate surfaces.
Aspects of possible numerical implementations of this geometrical approach are discussed.

I. INTRODUCTION

There are a number of problems of current interest in
atmospheric remote sensing and ocean optics that have the
common need for knowledge of the distribution of radiation
propagated through a medium with curved or irregular
boundaries. One such problem is the conversion of measured
brightness temperatures of clouds into an estimate of the
local rain rate,'? in which the microwave emission by rain-
fall suffers absorption and multiple scattering in the volume
of rain, ice particles, and cloud liquid water content. Plane-
parallel models of rain fields with finite horizontal extent, for
example, show that the brightness temperature-rain rate
connection is significantly affected by the spatial extent of
the rain field.*

There is a very active effort to calculate the radiance
distribution emitted and reflected by clouds in the visible
and IR regimes. Some Monte Carlo calculations have been
used to study the effects of cloud geometry,” and a multi-
mode technique exists for geometries that can be represented
by a collection of cuboids.” The cloud geometry is more im-
portant in these regimes than in the microwave emission
problem, because the cloud body itself is more attenuating in
the visible and IR than at microwave wavelengths.

The resolution of underwater imaging systems is limited
by blurring and contrast reduction, induced by scattering
and absorption in the water. These effects can be suppressed
somewhat by removal of the corresponding Mutual Transfer
Function (MTF) from the image, or by range-gating the
transceiver system.®® Typically the formulation of the un-
derwater imaging problem treats the imaged object as lying
in a plane parallel to the camera plane. When the object has
an extended structure within the field of view, however, it
may be necessary to accommodate the range of scattering
and absorption within the image by accounting for the ob-

ject’s three-dimensional shape.

These three examples illustrate radiative transfer prob-
lems with complicated spatial boundaries. In the first two
examples the medium itself is bounded by irregular surfaces
(the source of radiant power also has irregular bounds),
while in the third the reflecting surface has some three-di-
mensional shape and the medium is effectively unbounded
(ignoring for the moment any effects of the ocean surface in
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altering the light field). The geometric aspects of these ex-
amples are as important as the scattering and absorbing
properties of the media. In general, any radiative transfer
problem that involves an inhomogeneous medium and/or
boundaries exhibits sensitivity to the geometry.

It seems worthwhile, therefore, to frame the solution of
the radiative transfer equation in terms of the appropriate
geometrical setting. This has been carried out in great detail
and rigor for the special case of a medium composed of paral-
lel planes, under the elegant formalism of reflection and
transmission operators™'? in the context of the invariant im-
bedding relations. Preisendorfer also developed the full in-
variant imbedding relations for arbitrarily shaped media,'!
but, in that case, the emphasis was on developing relations
with structure analogous to the flat surface case, and the
geometric aspects were left implicit.

The purpose of this paper is to clarify the role of surface
geometry in the solution of the radiative transfer equation
and in the invariant imbedding relations. The approach tak-
en is to construct an evolution operator for the general solu-
tion of the radiative transfer equation. In this way problems
with constrained boundary conditions are restated as evolu-
tion problems with constrained initial conditions, and it is
this latter form of the solution that yields most directly the
invariant imbedding relations. A brief review is provided in
Sec. III of invariant imbedding on flat surfaces, along with a
generalization to curved surfaces.

The evolution operator approach has been used a num-
ber of times,”'*'* each distinguished by its own particular
variations. In their basic form all of the variations assume
the distribution is known on an initial plane, or assume com-
plementary partial information on several planes, and use
the evolution operator or transmission and reflection opera-
tors to obtain the distribution on the final plane(s) of inter-
est. The more recent references construct the evolution oper-
ator in terms of a path integral'? or a discretized matrix
operator.'? The two are related in the sense that the path
integral solution is obtained in the limit of a very fine discre-
tization for the matrix quantities.

However, as mentioned above, it is desirable to genera-
lize the bounding planes to curved surfaces with potentially
very complicated structure. The parametrization of the me-
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dium in terms of curved surfaces is accomplished in Sec. II.
The linear interaction principle is used to begin the construc-
tion of the evolution operator in Sec. IIL. The result is the
evolution operator for the transfer of radiance from the ini-
tial surface to the final surface, obtained from a sequence of
transfers across many intermediate surfaces. When a large
number of intermediate surfaces is used, the evolution opera-
tor for each transfer becomes an infinitesimal operator. The
infinitesimal evolution operator is constructed in Sec. IV us-
ing the radiative transfer equation, and the full expression
for the evolution operator in terms of a path integral is ob-
tained. The path integral method for constructing the evolu-
tion operator has been used in the context of ocean op-
tics,'>'*15 and much of the notation and techniques used
below can be found there.

One interesting consequence of incorporating surface
geometry into the path integral formalism is that the princi-
ple of invariant imbedding is the natural consequence of the
fact that the formal expression for the evolution operator is
invariant under arbitrary local coordinate transformations
of the intermediate surfaces. This invariance is demonstrat-
ed in Sec. V.

In Sec. VI, the explicit inclusion of the surface geometry
is discussed as a possible method of improving the efficiency
of numerical algorithms (such as finite-difference) that em-
ploy a spatial grid mesh.

The notation used below for the radiative transfer equa-
tion is

{7V + e} L(x,7) = Jdﬂ' BlaAa")L(x.7'),

where L is the radiance, x is the position in the volume, 7 is
the direction of propagation, c is the total extinction coefli-
cient, and 3 is the volume scattering function. The depend-
ence of the optical properties ¢ and 8 on position in the vol-
ume is ignored, although all of the results can be extended to
include a nonhomogeneous medium. For convenience, the
volume scattering function is written as

B(AR') =b P(Ai'),

where b is the scattering coefficient,

b= J.dﬂ Bla-f"),
and the phase function P has unit normalization

J‘dﬂ P(a-a')y =1

Il. PARAMETRIZATION OF THE CURVED GEOMETRY

Suppose the volume of the medium is bounded by the
two surfaces 5; and s, as in Fig. 1. Let u= (¢ ) = (u',u?) be
coordinates of a two-dimensional plane. A point x(z) on a
surface is a mapping of a point u of the 2-D plane to the
surface in the 3-D volume, indicated in Fig. 1 by the shape of
the (u',u%) mesh on the surface. All points in the volume of
the medium can be parametrized by introducing the label s
for each surface. The surface s = s, is the surface on which
the distribution is known, and s = s, is the surface on which
the distribution is to be obtained. The volume between these
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FIG. 1. Surface geometry showing (z',#?) coordinates, surface normal, and
layer of initial and final surfaces s;, 5.

surfaces is the layered set of surfaces s, <s<s,. Each point in
the volume is uniquely labeled by a triplet (u,s) with s label-
ing the particular surface, and u labeling the position on the
surface. Points in the volume can be denoted x(u,5).
Several concepts and quantities from differential geom-
etry come into the formal calculations below (Ref. 16 is a
good source). The primary quantity is the metric g. For a
fixed surface s, the metric with components g, is defined as

o (1,8) = x, (1,5)°%, (1,5),

where x, 18

X

4 Au® K

The metric considered as a matrix has an inverse whose com-
ponents are denoted g°*, and which satisfies (implied sum-
mation over repeated indices is used throughout)

gabgbc —ge =8¢,

where & is the Kronecker delta function.

The two vectors x,, (u,s) define the local tangent plane
to the surface, and are orthogonal to the surface normal (al-
though they are not necessarily orthogonal to each other).
The surface normal can be constructed from the cross prod-
uct of the tangent vectors:

i, (u,5) = X, (14,5) X%, (1,5)
|x; (24,8) X %5 (1,5) |

A third vector defined at each point is x(u,5), where, for
convenience, derivatives with respect to s are denoted by

X=—X.
ds

Although this vector at each point on the surface is not nec-
essarily orthogonal to either x, or x,, it does not lie in the
tangent plane, since it describes the layering of surfaces in
the volume. Therefore the set of three vectors %% %}
could be used to construct a local basis of the three-dimen-
sional space. However, as will be clear below, it is more con-
venient to use a basis in which x is replaced by its component
%, orthogonal to the tangent plane, given by
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are given by x = (x,,z), so that the basis {x,,x,,%, } is just
the orthonormal set {(1,0,0), (0,1,0), (0,0,1)}.

Imbedded concentric spheres: Using the spherical co-
ordinates (7,60,¢), we assign s = r, and # = (6,¢). Positions
on the surface of constant radius r are

x = (rsin & cos ¢,7 sin @ sin ¢, cos 0).
The derivative vectors are

X = (sin € cos ¢,sin @ sin ¢,cos 0),

x, = (rcos @ cos ¢,7 cos & sin ¢, — rsin ),

%X, = ( — 7 sin @ sin ¢, sin & cos ¢,0).

The metric is

S| 1 0
(8] =7 [O sin’ 6’]‘

The perpendicular component of % is

X, = (sin @ cos ¢,sin @ sin ¢,cos ),

and this is also the surface normal 7.

(c) () Imbedded concentric cylinders: The cylindrical coordi-
nates (p,@,z) are assigned as s = p, # = (¢,z). Positions on
the surface of constant radius p are

FIG. 2. Example volumes parametrized as layers of surfaces. (a) Layered X = (P Cos ¢,0 sin @.Z).

flat planes; (b) imbedded concentric spheres; (¢) imbedded concentric cyl-

inders; (d) translated Monge patches. The derivative vectors are

x = (cos @,sin ¢,0),
X, = ( — o sin @,p cos ¢,0),

X, :i‘:_fuxar X, = (0,0,1).
where The metric is
fﬂ :gah(xb-‘j;}_ [g ] _ [,02 0]
It can be verified directly from this definition that x,-x, = 0, ”b g 1l
and so x, is parallel to the surface normal, and we may write and the perpendicular component of x is
A, (u,s) =x, (u,5) /%, (u,5)]. X, = (cos @,sin @,0) = 7.
The local three-dimensional basis used below is the set of Translated Monge patches: A Monge patch is a surface
vectors {x,,X,,%, }. of the form

As examples of this description of local geometry, we
consider four examples illustrated in Fig. 2: layered flat i ]
planes, imbedded concentric spheres, imbedded concentric w:here his Sl well-behaved function and (x,y) are Carte-
cylinders, and translated Monge patches. Each example is sian coordinates. We can construct a volume by translating
discussad Below. and simmitized in Fable L the Monge patch in the vertical direction, so that each

Layered flat planes: Using the Cartesian coordinates  Monte patch is given by s = const, and
(x,3,z), we take u = (x,p) and 5 = z. Points x on each plane x(x,p,8) = (x,,A(x,p) + 5).

x = (xp,h(x,3)),

TABLE I. Summary of the example geometry coordinate systems.

u u s x x X, X, %,

Plane x » z (x.3.2) (0,0,1) (1,0,0} (0,1,0) (0,0,13
(rsin @ cos &, (sin 6 cos ¢, (rcos & cos ¢, ( — rsin @sin ¢, (sin @ cos ¢,

Sphere g ¢ r rsin #sin ¢, sin & sin ¢, rcos @'sin ¢, rsin 8 cos ¢,0) sin & sin ¢,
rcos &) cos #) — rsin §) cos &)

Cylinder @ Z pe! (p cos @, (cos @, ( —psin g, (0,0,1) (cos @,
£ sin ¢,z) sin ¢,0) p cos @,0) sin @,0)

Monge patch z v 5 {(x.ph(x.p) + 5) (0,0,1) (L0,A,) (0,1,A,) C—hy, = hy,1)
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We take # = (x,p), and the derivative vectors are

x=(0,0,1), x,=(L0A,), x,=(0,LA,).
The metric is
(2] L+h%  h.h,
gab i L]
h.h, 1+ hi

and the perpendicular component of x is
& =1 =k k1)
The surface normal is
o= (—h,—h,1)/(1+hZ+h)"

These examples are used in the sections below to illus-
trate the geometric structure of the evolution operator.

lll. THE EVOLUTION OPERATOR AND INVARIANT
IMBEDDING

A functional definition for the evolution operator G can
now be made. It is convenient to write G in the form G(u,s,
i, u',s;,i'), and it is implicitly a function of the points on
each of the two surfaces, and the intervening points. In this
form the solution of the radiative transfer equation at points
on the surface s, is

L(x(u,s,),n) = jd u' dQY G( w,sp,f; 1,5, ,R")

X L(x(u',5,),7). (L)

For this solution the evolution operator must satisfy the ra-
diative transfer equation with the initial condition
Gu,spii; u',s;,0') |, ,=6(u—uw)6(h— /).

The operator G is an evolution operator because, ac-

cording to the linear interaction principle, it can be con-

structed from intermediate solutions. Suppose a particular

intermediate surface s, between s; and s, is chosen. Using G,
the radiance distribution at this intermediate surface is

L{x(u,s),0) = J-dzu’ dQ G(u,s, i u',s,,h")

X L{x(u',s,),7').

Using the distribution at this intermediate surface, the distri-
bution at the final surface s, is

L(x(u,s,),7) = Jd *u' dQ Gu,s,fzu',s,f7')

X L{x(u',8,),0).
Combining these two results with the expression in Eq. (1),
the operator G satisfies the convolution relationship

G(u,8p,R51,,5;,7")

:fdzu" do”

X G(u,sp,f; u",s,0") Glu",s,0"; u',s;,/t"). (2)

Anmn alternate method of constructing a solution to the
radiative transfer equation employs information about the
radiance distribution on two parallel planes to obtain the
distribution between them, using transmission and reflec-
tion operators. This method leads to the invariant imbedding
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principle, and is the source of the adding—doubling algo-
rithm in some numerical methods of solution.” We review
briefly this form of the invariant imbedding principle, and
discuss how it is modified in a more general geometric set-
ting.

Suppose surfaces s, and s, are flat parallel planes (see
Fig. 3), with the normal of s, pointing (“‘upward”) toward
5,. The portion of the radiance distribution on 5, with com-
ponents parallel to the normal (i.e., “upward™) is denoted
L (s,), and the portion of the distribution on s, with com-
ponents antiparallel to the normal (i.e., “downward”) is
Lp (s5). The radiance distribution between s, and s, is given
by

L(s) =F, (85 )L ;(5,) + Fp(55)L,(s.), (3

where (Fy,F,) are the transmission and reflection opera-
tors, and we have suppressed the surface and angular convo-
lutions. Explicitly,

Fup(ss)Lyp(s)

Ejd u'f dqy’
u.D

><'FTU,D (ur&ﬁ;u’:Shﬁ{}LU_D (uras'sﬁJ)3

I

and the angular integrations are restricted to just the upward
or downward direction, as appropriate. Equation (3) is the
invariant imbedding equation. Its fundamental importance
is that the radiance distribution on any plane s is determined
by the distribution on the initial planes s, and s,, but not by
how the region between s, and s, is represented.

This solution can be iterated by choosing two planes s,
and s,, such as those shown in Fig. 3. From Eq. (3),

L(s3) = Fpy (83,8 Ly (5)) + Fp(53,5) Ly (82),
Lim,) = Hy (5.4.:S|)LU (5,) + Fp(s,8)L,(5,).

We can also write the invariant imbedding equation just in
terms of the s; and s, surfaces:

L(s) = Fy(5.5) Ly (53) + Fp(s,s,) L (s,).

Denoting the upward component of F, by F,,,, the down-
ward component by F,, etc., we obtain

FIG. 3. Planar geometry used to describe the invariant imbedding principle.
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FU(.S',S'l} = FU (5,53)FUU(-5'3,51) = FD (3734)Fu.=) (54:51),
Fp(8,5) = Fy(8,8:)Fp (53,8,) + Fp(5.5.) Fpp (54,5,).

Although this is an expression for Fy; (s,s,) and F}, (s,5,) in
terms of transmission and refiection operators at the inter-
mediate planes s; and s,, recall that s; and s, were introduced
as convenient surfaces on which to iterate the invariant im-
bedding equation. The original solution is independent of
any particular intermediate planes. Thus the invariant im-
bedding equation allows us to introduce additional conve-
niently located planes imbedded between s, and 55, but guar-
antees that the solution obtained from such a decomposition
isindependent of the chosen imbedding. In Sec. V, this result
is generalized to allow the imbedded surfaces to have arbi-
trary shape as well.

Despite the manipulations used above, the invariant im-
bedding principle can be stated in a simple, physically intu-
itive way: given a medium partitioned into regions, the oper-
ators in the full volume can be built up from the operators in
the individual regions, and the result is independent of the
choice of partition of the medium.

Preisendorfer considered the invariant imbedding prob-
lem in more general geometries. The basic change in the
formalism arises from the fact that there is no lon ger a
unique up and down orientation as in the planar geometry.
Instead, up and down are defined locally according to the
direction of the surface normal at each point. However, it
should be possible to construct the invariant imbedding
equation without choosing particular orientations. The ne-
cessity of the up and down directionality arises from the
choice of the initial condition problem: the known distribu-
tions are L, (s,) and L, (s,), and so the problem is phrased
in terms of these up and down directions.

We can, however, phrase a new problem: Suppose
{s, ,...,sN} is a set of surfaces on which the radiance distribu-
tion L(s;) is known. We wish to find a solution L(s) in the
rest of the medium. From the linear interaction principle or
the general form of the invariant imbedding equation, we
might expect to write the solution as

(4)

N
L(sy= ) F(s,5,)L(s;),

=
with
F(s..5) =6,
but we do not know yet what the F’s are. Note that each of
L;(s) = G(s,5;)L(s;),

are solutions of the radiative transfer equation, with
L;(s;) = L(s;), but that the sum of these does not satisfy the
conditions on each of the surfaces. However, a general solu-
tion using the evolution operator can be written

L{s) = fds’ G(s,s")H(s").

The task is to find a function H that satisfies the initial condi-
tion on each surface. An ansatz for the solution is

H(s) = 3 85 —5)4,L(s,),

=1
where the 4, are operators:
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N
H(H,S,f!) = Z S(S—Sj) dzu'dﬂ’
i=1
><A;-{u,&;u’,ﬁ’)L{u’,sj,ﬁ’)‘

The solution is found if the operators 4 ; satisfy the equation
Z (G(s1.5)4; — 8,;)L(s;) =0.
7

This is just the requirement that the functional determinant
vanish:

Det(G(sy,s;)4; — 8,;) = 0.

Thus the A; are related to the eigenvalues of G(s, »5;). It is
unclear under what conditions the A; fail to exist. Presum-
ably some choices of distributions and surfaces are incom-
patible, and a solution cannot exist. On the other extreme,
we can reduce the geometry to the flat plane case discussed
above, and only specify the appropriate up and down compo-
nents, for which the solution is known to exist. The transi-
tion between these extremes is not understood, however.
Assuming for the moment the 4 ; exist, the solution is

L(s) =) G(ss5)4,L(s;),
J

which is the invariant
F(s,sj) = G(s,5 )4, .

imbedding equation with

IV. CONSTRUCTION OF THE PATH INTEGRAL
REPRESENTATION

The path integral representation constructed below fol-
lows from the linear interaction principle by iterating Eq.
(2) over many intermediate surfaces. Suppose there are
N + 1surfacess;,j=0,...,N, withs, =5, and 5, = s¢; then
successive iterations of Eq. (2) produce the result

G(upSpiy; u;,s,,h,)
N
=J H d’u; dQ;
F=

N
38 HG(H),—,S},?EJ; U; 1;Sj_lsﬁj_1)- (5
i=1

In the limit NV — o, this expression becomes the path integral
representation.

To aid in understanding the path integral representa-
tion, we can think of G in terms of an effective attenuation
coeflicient 7 for an arbitrary path that starts at s, and ends
at sr, summed over all such paths'%:

G(sps:) ~ > exp{ — 7.z (path) }.

path
Loosely speaking, when the number of intermediate surfaces
N is large,
G{Sf’ g ) wﬁ){p{ = Terr (Sj,Sj_ 1 )}s
so that

Ti:IT (path) NZTeﬁ' (Sj:Sj 1 )
J

This statement is not rigorous, although it can be a useful
way of picturing the physical content of the path integral. Tt
is rigorous, however, to write
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G(sjs*s}— e exp{ =57 (Sp j— 1 )}Gsczm (Sj"s} 1)

in the limit ¥V — oo, in which 7. accounts for total extinction,
and G,.,,, accounts for the distribution of scattering. Analo-
gous to the construction of the evolution operator in quan-
tum mechanics, a phase space is introduced below combin-
ing the set of all paths with the set of all directional modes of
scattering at each point on a path, to yield a rigorous con-
struction

G(Sfys';} — z

configurations

exp{ — 7.x (configuration) }

where 2. ngeurations M€aNS the sum over all phase space con-
figurations of paths.

The first step in the construction is to parametrize an
arbitrary path in the medium. This amounts to tracing a ray
from the initial surface to the final surface, with its position
on surface s denoted 1(s). The local tangent of the path is a
unit vector 3 pointing in the direction of propagation along
the path, and is defined as'®

- _ dl(s)/ds
BV = o) sy

Alternatively, we can write this relationship in the differen-
tial form

d1(s) = dI(s)B(s).

The path 1 and its differential elements d1 have been
parametrized just in terms of the surface label s, without the
use of the surface coordinates u. However, for the purpose of
construction of the path integral representation, it is conven-
ient to describe the path in terms of the local tangent vector
fj’(s), and the points I(SI;‘} and I(s;) on the initial and final
surfaces. Thus we treat S(s) as the prescribed quantity of a
path, and find an expression for the position along the path
in terms of the surface coordinates 1. Recalling that the trip-
let {x,, x,, X l} forms a local basis, the differential 41 can be
decomposed as (see Figs. 4 and 3)

dl=dIB
=xds+ x, du’

=%, ds + f%, ds +x, du”.

FIG. 4. Three-dimensional geometry showing the relationship between fig
and d1.
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Because %, is normal to the local tangent plane, the distance
traveled between s and s -+ ds is

dl = [|%, |/ (Bis)]ds. (6)
This expression is obtained by taking the inner product of d1
with x, .

Taking the inner product with x, and using the result
for dl, du® satisfies the constraint

du = {(x“B) [ |, |/(Bs)] —f} ds, @
where x“ is related to x,, by
Xu . gabxb’

and summation over the repeated index is implied. This con-
straint equation for du® can be converted to the nonlinear
differential equation

du’(s) _ [x; (u,5)|
ds

Bs)r, (u,s)
describing the path in terms of the surface coordinates of a
ray having the direction of propagation [(s) at each surface
5. Table II is a list of the path equations for the example
geometries.

The effective attenuation factor s has a contribution
due to the total extinction coefficient ¢, and one due to the
distribution of scattering described by the phase function.
For a ray from surface s to s + ds, the total extinction is

7. (5 4+ ds,;sy =cdl.

(x“(1,5)B()) ~ U5y (8

This expression is the straightforward consequence of the
exponential character of total extinction.

The redistribution due to scattering is more difficult to
obtain. However, the procedure used by Tessendorf'>'* is
the same as is needed here. Simply stating the result,

G.‘u_‘mt ('S + dS?S)

f d3p explids pB(s) + bdITI(p)}, (9)

where II is the “pseudo-Fourier transform” of the phase
function P

P(fei) = j 4P 11 (pyexplips (i — i)}

(2m)

FIG. 5. The decomposition of d 1 in the {x,x,,X, } basis.
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TABLE II Path equations for the example geometries.
£(5) = (cos €(s)sin A(s5),sin e(s)sin A(5),cos A(s)).

Layered flat planes

E:cmetani
d.

Z
Q=sinetan,?.
Fg

Imbedded concentric spheres

db‘_(l tan A cos(e — ¢) — tan &
?_ _) 1+ tan A tan 0 cos(e — ¢)
d¢ 1) tan A sin(e — ¢)

ar (7 cos & 4 tan A sin Heos(e— ¢)

Imbedded concentric cylinders

Wyl g
o p

dz

—— = cot 4 sec(e — @)
dp

Translated Monge patches

dx {I-i—.h Jcosetan A — Ak, sin etan A +h f1,

ds 1 —A.cosetan A — b, sin etan A I+.‘r:‘.+kf,
dy  —hh,cosetand + (1 +hi)sinetand + 4, i,

ds 1 —h, cosetan A — h, sin € tan A i T hi +h;

The term “pseudo” refers to the fact that the representation
of Pin terms of Fourier amplitudes I cannot be inverted in
the usual sense of Fourier transforms to provide a unique
expression for I1. We can, however, define I1 as the inverse
Fourier transform of a function P:

T(p) = Ja’ 30 Plo)expl — ipal, (10)

where, for <2,

P(o) =P (1 —d/2),

and, for o>2, P converges to zero sufficiently fast to ensure
the existence of Eq. (10). For example, if we choose P=10
for o> 2, then

2 2
II(p) = 4—ﬁ‘[ O'dosin(pa)P(l —E).
P Jo 2

A similar approach for handling the phase function is used in
the small-angle approximation of the radiative transfer
equation.'” This “pseudo-Fourier” representation is not re-
stricted to small-angle problems, however, and is sufficiently
general to include backscatter.

Note that the scattering contribution G...,,, has the form
of an integral over the “scattering modes” p. This brings
about the introduction of the phase space, consisting of
points (,6’ p). The conﬁ gurations described earlier are com-
binations of paths B (s) and scattering modes p(s) at each
surface.

1016 J. Math. Phys., Vol. 31, No. 4, April 1990

In addition to the attenuation factors from extinction
and scattering, there must be in G an additional factor to
enforce the ray-path constraint in Eq. (8). This can be in-
cluded by setting

G(s + ds,s)
= 8(i°(s) — (x°(1,5)+B(5))
X [ 1%, (,5) [/B(8) s (u,5) | + £ (1,5))

X (1/ds)? exp{ — 7. (s + ds,8) }G.,, (s + ds,s).
(1)
The full expression for G now follows from this expression
placed in Eq. (5), in the limits N— oo and ds— 0 such that
N ds = s, — 5;. The notation for this solution is

G (U5t ,S,7,)
- f(Dﬁ) (Du) (Dp)YSB(s,) — ANSB(sy) — )
X &(u(s;) — u)o(u(sy) —u;)

[x, |
bl )
E[( (Xﬁ)ﬁ”

x Det(—q)v exp{ — 7.+ (Bp) 1.
ds

The integration measures (D), (Du), and (Dp) are
— H dfl(s),

+f")

(12)

(DB)
(Du) =[] 4°uls),

(Dp) =[] d°p(s),

and the effective attenuation is

% s clx, | (¥ 2
T (5,D) =j ds = _IJ‘ dsp(s)-B(s)
5 (S)'HS 5
J—sjd bII(p(s)) %
— ' —
5 B(S)'ﬁs

The constraint delta function introduced in Eq. (11) isa
convenient method of obtaining the radiance distribution on
each surface by following each path. The procedure for con-
straining integration variables in path integrals was intro-
duced by Faddeev and Popov, '® and it requires the inclusion
of the factor

o %
Det(fi) DEt{5ab£'——l( ",8) x| f"”.
ds das B
Because the argument involves the first derivative in s, this
termis equal to 1, and so is omitted. This was shown by Fried
and Tessendorf in evaluation of a similar determinant in a

fluid dynamics context.'®

V.LOCAL COORDINATE TRANSFORMATIONS AND
INVARIANT IMBEDDING

According to the invariant imbedding principle, the
path integral expression for G should be independent of how
the intermediate surfaces are parametrized. However, the
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expression in Eq. (12) for G clearly uses an explicit parame-
trization of the intermediate surfaces. In fact, the path inte-
gral representation is independent of the parametrization, in
the sense that local coordinate transformations can be per-
formed on the surfaces, and the expression for G is left invar-
iant. This invariance is demonstrated below.

A local coordinate transformation u# — % () on a surface
is characterized by a transformation matrix A with compo-
nents

du’
du°
A physical position x on a surface is not altered by a coordi-

Az =

nate transforation, although the local tangent plane is now -

characterized by the transformed vectors
T, =N
This transformation follows from the chain rule for a change

of variables. Transformation of the tangent plane vectors
also transforms the metric:

gaf) = A;gcd Ag'
It also follows that
2= (A Hxl

The second type of local coordinate transformation is a
rescaling transformation of the surface labeling: s—75(s).
Note that this transformation preserves the order of the sur-
face, since s = const implies 5 = const also, but this transfor-
mation allows the density of the surfaces to be changed. We
assume, however, that 5 is a monotonic function of s, so that
the order of the surfaces is preserved.

We wish to examine the behavior of Eq. (12) under the
most general transformation (u,s) — (% (u,s) ,5(5)), but leav-

ing 5; and s, fixed. This imposes the conditions
u(u,s;) =u;, u(us,)=u;,

5(s;) =5, 5(s,) =3p

All of the terms in the exponential are invariant under the

transformation. For example, the term

5
dopt ! 33 (s)
5 AY
becomes
£ ds 8,8 ds J
ds — ds
W= i vb

and so is invariant. Similarly, the remaining two terms are
invariant if

|x1 | |xi !
B fs dS Bhs
To show that this is the case, note that we can write

i=Trmars
ds
where

ds 97°

ds 8s
Using X, and X, f* can be written

Ll
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f":ﬁ Ai(}?b -l—Kb),
ds

with
fr=8"(3%,).

Combining these expressions to construct %X,, the depen-
dence on K¢ cancels, and we have

X, = ji_: X, .
ds
Since %, is parallel to the surface normal in both coordinate
systems, the normal is invariant, and we have the result that
T.r is invariant under local coordinate transformations.
From the expression for the measure, (Du) transforms
as

(Du) — (DE)H det(A),

while the determinant becomes

d ds D t(é‘)z
Js.

peil )T |

ds
The delta function argument transforms as [using the fact
that X, = (ds/ds)x, ]
x| | = ]
T__ +fﬂ' *
B ng

%, |
— (xX%B)—
Joxsi
so that the delta function constraint becomes
T deccA]T |2 H5(_“ (%) ‘;, ! u:)

i g
The det(A) and I1|ds/ds| factors in the delta function, de-
terminant, and measure transformations cancel each other,
leaving Eq. (12) invariant under transformations of the im-
bedded surface parametrization.

Invariance under local coordinate transformations is a
generalization of the invariant imbedding principle, in that
the imbedded surfaces can be arbitrary shape without alter-
ing the evolution operator.

+fr_r otk Ah{—a o {ia.’é)

VI. NUMERICAL CONSIDERATIONS

The geometrical formalism and invariant imbedding re-
sults described above potentially can influence the design of
numerical algorithms and codes for integrating the radiative
transfer equation. The purpose of this section is to speculate
on avenues of exploiting these geometrical results in numeri-
cal schemes. We exclude from the discussion algorithms that
explicitly trace ray paths through the entire medium, such as
Monte Carlo algorithms, because it is not necessary to in-
clude geometry in them as we have done here.

An important class of numerical schemes are finite-dif-
ference methods such as those presented in Refs. 20 and 21.
Such methods in fully three-dimensional problems are gen-
erally best suited for rectilinear geometries because the finite
differences are along Cartesian coordinate axes. More com-
plicated boundaries are handled by using a rectilinear grid of
spatial points with sufficient resolution to include the de-
sired features. However, if these schemes could be written in
terms of finite differences in the (u,s) variables, i.e., by the
replacement
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i, 4

x| ds

o a ﬁ-‘ 5

+ (s )2
two possible advantages may be realized. The first is that the
boundary conditions are easier to specify on the spatial grid,
since the boundaries correspond to s = const. The second
could occur when the number of spatial points in a calcula-
tion exceeds the capacity of the computer core memory. In
this situation a large fraction of the total execution time can
be spent swapping portions of the spatial grid in and out of
the core (the I/O operation is the slowest operation in many
computers). However, in a geometrical formulation, the
spatial grid could be replaced by a single set of points {z, } on
the u plane, and points in space generated by a mapping
formula for each surface. The time spent in I/0 operations
would be replaced by time for calculation of the geometric
quantities, such as the metric, on the surfaces. The second
potential advantage should be realizable when the total com-
putational time for repeatedly executing a mapping formula
is less than the total I/0 transfer time for swapping grid
points in and out of the core. The balance between these two
approaches would depend on the machine, as well as on the
particular geometry under consideration. This time-savings
argument may be valid for other numerical schemes, also.

One possible numerical algorithm which is different
from the typical finite-difference algorithms, yet has a simi-
lar structure, is based on the interaction principle in Eq. (2).
Changing notation somewhat, Eq. (1) can be written

Lusn) = jd ‘u' dQ' Gu,s,izu s, 7')

X EL(u's; /"),
Using the interaction principle in its iterated form, we obtain
the finite-difference equation for the distribution at s; in

terms of the distribution ats; _:

L(u,s;,h) = J‘dzu’ dQ' Gu,s;,fizu'ys, | ,7t")

XL(u'ys; 4,7'). (13)
This solution has the form of a finite difference. A numerical
algorithm would follow if a suitable discretization scheme
can be found. In fact, Eq. (13) is analogous to the starting
point of a finite-difference algorithm constructed for time-
dependent radiative transfer,'* and the discretization steps
used in that case can be applied to this problem as well.
Those steps, as applied to this current problem, are summar-
ized below.

The first step is to discretize the angular degrees of free-
dom by introducing a set of directions {#, }, k=1, N,
which point in the directions of the centroids of a set of solid
angles {AQ, }. Defining the averaged radiance

L, (u,8) = dQ L(usf)AQ,,

AL,

the angularly discretized finite difference equation is
L, (uys}) == 2 J- d>u’ Gy (ur's}';u’,‘gj- 1)
—
XL (W51 ),
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where

Gip (w530’ ') = 1 fdﬂf dq’
AQ, Ik ke
X G(u,s,nu’ s, /')
is the discretized version of the evolution operator.

The next step is to construct Gy, . in terms of the discre-
tized phase function. This will require the interpretation of
the difference s, — S; 1 =ds as a small quantity. The pre-
cise criterion for smallness follows from examining the mag-
nitude of the higher-order terms excluded in the approxima-
tion. In analogy with the time-dependent case, the criterion
is essentially b ds|x, | < 1, i.e., that the propagation distance
between adjacent surfaces is less than a single scattering
length. Assuming ds is small, we can use Egs. (9) and C11)
to write an approximate discretization (see Ref. 12 for the
full derivation)

G (1,5 + ds;u',s)
= O(u® — u'* — duj. (s,u))expl — c dl(u,s,7,. )}
X (expid %, | (,5) |ds QP -,

where
a a - !Xl (”,S” a
dug (s,u) =ds{{x (u,) Ap )—— — — ()},
R, fg(u,s)

Q is the matrix with elements

Qui- = Py /Py g (u,5),
and P is
I J‘ J. , ; .
Py dQ) | dY P(a-#’).
T K

This method of discretizing the phase function has been used
in both time-independent®®?? and time-dependent'® radia-
tive transfer.

Assembling these steps, the numerical algorithm is the
explicit finite-difference formulation

Ly (u,s +ds) zzexp[ —clx| - dSA }
& Ry flg

Xexpld |x, |ds Qe Ly (u — du,.,s).

In this form the computationally intensive elements of the
algorithm are the exponentiation of the matrix and the spa-
tial interpolations needed to estimate the distribution at the
points ¥ — du, .

An alternative discretization is to expand in spherical
harmonics, so that the elements of the matrix Q are obtained
from the spherical harmonics expansion for P and 7. The
numerical algorithm would follow by truncating the expan-
sion to some finite number of harm onics, and exponentiating
Q as before. The utility of each of these two methods of
discretization should depend on the structure of the phase
function and on the angular resolution necessary for a specif-
ic calculation, although this issue has not been examined in
detail.

The primary test of the utility of any algorithm based on
geometric methods, however, will be the actual construction
and execution of a code to determine directly its computa-
tional resource usage.
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VIi. CONCLUSIONS

The path integral solution of the radiative transfer equa-
tion has been constructed for problems involving curved or
irregular boundaries in a medium. Several concepts and
quantities from differential geometry have been used to
make the solution compact. The path integration is over
paths through the surfaces intermediate (imbedded) be-
tween the initial and final surfaces. The principle of invariant
imbedding is satisfied by this solution, in the form of explicit
invariance of the path integral to local coordinate transfor-
mations of the imbedded surfaces. It is hoped that this form
of invariant imbedding can be exploited efficiently in a nu-
merical algorithm and code. Existing and new numerical
algorithms could incorporate this geometrical formulation
to exploit its convenient parametrization of boundaries, and
possibly to save execution time in calculations involving
large numbers of spatial points.
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