
A Note on Computation of a Ray Bending Path

Jerry Tessendorf

April 20, 2022

1 starting point

Index of refraction spatial variations within a volume induce bending of the ray marching path that light
takes through the participating medium. The driving equations for this bending describes the shape of the
path ~x(s) and direction of propagation n̂(s) as functions of the arclength s along the path. Both are modified
by variations in the index of refraction n via the equations

d~x(s)

ds
= n̂(s) (1)

dn̂(s)

ds
= ~F(s) − n̂(s)

(
n̂(s) · ~F(s)

)
(2)

where ~F(s) is the gradient of the log of the index of refraction:

~F(s) = ∇ log n (~x(s)) (3)

The direction of propagation is also the tangent of the path. This sets up an initial value problem: Given the
values at the initial arclength s0 of ~x(s0) = ~x0 and n̂(s0) = n̂0, compute from these equations the position
and direction for arclengths s > s0 of interest.

Here we consider a situation in which the the gradient vector ~F is constant along a stretch of arclength
of interest. There are two situations in which this occurs, and many more may be relevant. One of them is
when the volume is modeled as a stack of layers and the gradient is constant within each layer. Another is
the volume rendering ray march process with ~F varying with each ray march step, but constant along the
length of a single step. This latter situation is consistent with other assumptions in ray marching, which
assumes that the material density and color are also constant over the distance of a single ray march step.

In the next section, equation 2 in solved exactly under the constant gradient assumption by expressing n̂(s)
as a rotation about an axis. The path is found in section 3 by integrating equation 1 exactly. A process for
specifying the desired accuracy to auto-adjust the step size is presented in section 4. This process is analyzed
using the example of curved light ray paths near black holes in the weak gravitation limit. Intersections of
the curved paths with planes is discussed in section 5.

2 ray bending as a direction rotation

Ray bending alters the direction of the path tangent, while preserving the fact that the tangent vector is
a unit vector. This means that the alteration of the path tangent can be represented by a rotation of the
tangent vector. A general rotation is described by a unit vector α̂(s) for the axis of rotation, and an angle
α(s) for the amount of rotation about the axis. Using these two quantities, the rotation is expressible as

n̂(s) = n̂0 cosα(s) + α̂(s) (n̂0 · α̂(s)) (1 − cosα(s)) + n̂0 × α̂(s) sinα(s) (4)

along with the initial condition α(s0) = 0. Ray bending with a constant ~F provides a natural rotation axis:

the path is contained in a plane defined by the two vectors n̂0 and F̂ = ~F/|~F|, so the axis of rotation is
constant and perpendicular to both of these:

α̂ =
n̂0 × F̂∣∣∣n̂0 × F̂

∣∣∣ (5)

1

Because of this choice of rotation axis, the second term on the RHS of equation 4 is zero, and the third term
has the vector

n̂0 × α̂ =
(n̂0 · F̂) n̂0 − F̂∣∣∣n̂0 × F̂

∣∣∣ (6)

which is a unit vector:

|n̂0 × α̂|2 =
1− (n̂0 · F̂)2∣∣∣n̂0 × F̂

∣∣∣2 = 1 (7)

This brings the expression for the path tangent to

n̂(s) = n̂0 cosα(s) + n̂0 × α̂ sinα(s) (8)

and the problem of describing the ray bending path tangent has been reduced to solving for the angle α(s).
To solve for α(s), this expression for n̂(s) can be inserted into equation 2. The derivative on the LHS

becomes
dn̂(s)

ds
=

dα(s)

ds
{−n̂0 sinα(s) + n̂0 × α̂ cosα(s)} (9)

Since equation 2 has reduced to a differential equation for a single degree of freedom, taking the inner product
of both sides with n̂0 simplifies the expressions. The LHS becomes

n̂0 ·
dn̂(s)

ds
= −dα(s)

ds
sinα(s) (10)

and the RHS side is

n̂0 ·
{
~F(s) − n̂(s)

(
n̂(s) · ~F(s)

)}
= sinα(s)

{
(n̂0 · ~F) sinα(s) −

(
(n̂0 × α̂) · ~F

)
cosα(s)

}
(11)

producing the differential equation

dα(s)

ds
= −(n̂0 · ~F) sinα(s) +

(
(n̂0 × α̂) · ~F

)
cosα(s) (12)

This expression can be solved for α by setting up the integral equation∫ α

0

dx(
(n̂0 × α̂) · ~F

)
cosx − (n̂0 · ~F) sinx

= s− s0 (13)

This integral has a closed form expression1

log tan

(
x + β

2

)∣∣∣∣α(s)
0

= (s− s0)

√
(n̂0 · ~F)2 +

(
(n̂0 × α̂) · ~F

)2
(14)

where n̂0 · F̂ = cosβ. Using √
(n̂0 · ~F)2 + ((n̂0 × α̂) · ~F)2 = |~F| ≡ F, (15)

1Gradshteyn and Ryzhik 2.557.4, pg. 149.

2

the solution is

tan

(
β − α(s)

2

)
= tan(β/2) eF (s−s0) (16)

Using some identities, this can be manipulated into the form

cos(α(s)) =
(1−Q2) cosβ + 2Q sinβ

1 +Q2
(17)

sin(α(s)) =
(1−Q2) sinβ − 2Q cosβ

1 +Q2
(18)

where
Q = tan(β/2) exp (F (s− s0)) (19)

This is a complete solution for the tangent of the ray bending path in a region of constant gradient.

3 integrating the path

The ray bending path ~x(s) follows from integrating equation 1 using equations 8, 17-19:

~x(s) = ~x0 + n̂0

∫ s

s0

ds′ cosα(s′) + n̂0 × α̂
∫ s

s0

ds′ sinα(s′) (20)

These integrals have the generic form∫
dt

A + B eFt + C e2Ft

1 + D e2Ft
(21)

for appropriate values of A,B,C,D. Using some integral identities2 this evaluates to∫
dt

A + B eFt + C e2Ft

1 + D e2Ft
=

A

2F

(
2Ft − log

(
1 + D e2Ft

))
+

B

F
√
D

tan−1
(√

D eFt
)

+
C

2DF
log
(
1 + D e2Ft

)
(22)

Assembling all of the algebra that follows from these expressions,∫ s

s0

ds′ cosα(s′) =
cosβ

F

(
F (s− s0) + log

(
1 + tan2(β/2)

1 + tan2(β/2) e2F (s−s0)

))
+

2 sinβ

F

(
tan−1

(
tan(β/2) eF (s−s0)

)
− β/2

)
(23)

and ∫ s

s0

ds′ sinα(s′) =
sinβ

F

(
F (s− s0) + log

(
1 + tan2(β/2)

1 + tan2(β/2) e2F (s−s0)

))
− 2 cosβ

F

(
tan−1

(
tan(β/2) eF (s−s0)

)
− β/2

)
(24)

2Gradshteyn and Ryzhik 2.313.1, pg. 92; 2.124.1, pg. 60

3

 0

 2

 4

 6

 8

 10

-4 -2 0 2 4 6 8 10

F
 ∫ s

0s d
s’

 s
in

 α
(s

’)

F ∫
s0

s
 ds’ cos α(s’)

β = 0 → π/2

Figure 1: The two components of the ray bending path, plotted parametrically. Each line is a different
value of β, which ranges in value from 0 to π/2.

Figure 1 shows these two functions, plotted parametrically by varying the value of F (s− s0), for a range
of values of β.

4 automatic adjustment of ray march step

This curved-path formula can be used in an environment in which the index of refraction varies spatially,
by ray marching over small steps ∆s. This process assumes two dimensionless threshold values, Tmax and
Tmin, with Tmax > Tmin. The threshold Tmax is maximum fractional change in the gradient within a step
that is tolerable, and when the fractional change exceeds this threshold, the step size is reduced and the
step recomputed with the smaller step size. When the fractional change in the gradient is less than the
threshold Tmin, the step size is increased because we are willing to tolerate some amount of error in return

4

for bigger steps and faster ray marching. These two thresholds drive the step size to smaller values in regions
of substantial change in the gradient, but restores larger steps in regions of relatively small change in the
gradient. A third parameter, Nmax is an integer for the maximum number of steps allowed along a segment
before terminating. Procedurally, this ray march algorithm has the following steps:

1. At the start of the ray march, initialize the position ~x, ray direction n̂, and step size ∆s.

2. If the position ~x is outside of the medium, terminate the ray march.

3. Compute the new position, direction, and step size:

(a) Initize a step counter Nsteps = 0.

(b) Compute the gradient ~F at ~x.

(c) Compute the new position ~x(∆s) according to equation 20.

(d) Increment the counter Nsteps+ = 1.

(e) If Nsteps > Nmax march has failed to converge. Terminate the ray march.

(f) Compute the gradient ~F
′

at the new position.

(g) Compute the gradient fractional difference ε =
∣∣∣~F′ − ~F∣∣∣ / ∣∣∣~F∣∣∣.

(h) If ε > Tmax, reduce the set size by ∆s → ∆sξ, where ξ is a random number from a uniform
random number generator with values between 0 and 1. Return to step 3c.

(i) If ε < Tmin, increase the step size by ∆s → ∆s/ξ, where ξ is a random number from a uniform
random number generator with values between 0 and 1.

(j) Compute the new direction n̂(∆s) using equations 8, 17, and 18.

4. Update the position ~x = ~x(∆s).

5. Update the direction n̂ = n̂(∆s).

6. Return to step 2.

4.1 Example demonstration of automatic step adjustment

Here we show an example of this curved ray marching using the example of weak gravitational lensing from
a Reissner-Nordstom black hole. Gravitational lensing describes light propagating in a geometric optics
approximation though a gravitational field. In the full general relativistic description of this, the path taken
by the light is a null geodesic in spacetime. In the weak-field limit, the differential equation for the null
geodesic reduces to equation 2, where the index of refraction derives from an analysis of the Christoffel
symbols in this limit. For a Reissner-Nordstom black hole3, the index of refraction is

n(~x) =
r2

r2 − r + q2
(25)

where r = |~x−~xC |/rS is the distance from the black hole center scaled by the Schwarzschild radius rS . The
dimensionless constant q is the charge.

The raymarching for this demonstration was implemented as a shader in Gilligan, and is shown here:

3Saswati Roy and Asoke Kumar Sen, (2019), “Study of gravitational deflection of light ray”, J. Phys.: Conf. Ser. 1330
012002 https://iopscience.iop.org/article/10.1088/1742-6596/1330/1/012002

5

https://iopscience.iop.org/article/10.1088/1742-6596/1330/1/012002

namespace ash{

namespace Shaders{

class VolumeCurvedRayMarch : public Shader

{

public:

VolumeCurvedRayMarch(const lux::ScalarField& IOR, const float step, ash::Vector& llc, ash::Vector urc) :

ior (IOR),

step_ds (step),

aabb(lux::makeAABB(lux::Vector(llc.X(), llc.Y(), llc.Z()), lux::Vector(urc.X(), urc.Y(), urc.Z()))),

max_steps (1000000),

step_tolerance_max (0.1),

step_tolerance_min (0.0001)

{}

~VolumeCurvedRayMarch(){};

void eval(ShaderData* shaderdata);

double max_tolerance() const { return step_tolerance_max; }

double min_tolerance() const { return step_tolerance_min; }

void set_tolerances(const double ma, const double mi)

{

step_tolerance_max = ma;

step_tolerance_min = mi;

}

private:

const lux::ScalarField ior;

double step_ds;

lux::AABB aabb;

int max_steps;

double step_tolerance_max;

double step_tolerance_min;

lux::UniformPRN prn;

double integrated_curved_raymarch(double& ds, lux::Vector& D, lux::Vector& P);

};

void VolumeCurvedRayMarch::eval(ShaderData* data)

{

ash::Vector endPoint = data->hitPosition;

ash::Vector startPoint = data->incomingRay->P;

lux::Vector eP(endPoint.X(), endPoint.Y(), endPoint.Z());

lux::Vector sP(startPoint.X(), startPoint.Y(), startPoint.Z());

lux::Vector direction = (eP-sP).unitvector();

double far_max = (eP-sP).magnitude();

double near;

double far;

if(!aabb->intersection(sP, direction, near, far)){ return; }

if(near < 0.0 && far < 0.0){ return; }

if(near > far_max){ return; }

if(far > 0.0)

{

if(far > far_max){ far = far_max; }

eP = sP + far * direction;

}

if(near < far)

{

sP += near*direction; // starting point of curved ray march

bool done = false;

double total_path = near;

int step_count = 0;

double step = step_ds;

while(!done)

{

total_path += integrated_curved_raymarch(step, direction, sP); // variable step size

done = !(aabb->isInside(sP));

step_count++;

if(step_count > max_steps){ done = true; }

}

if(step_count <= max_steps)

{

ash::Vector newD(direction.X(), direction.Y(), direction.Z());

ash::Vector newP(sP.X(), sP.Y(), sP.Z());

Ray outputRay;

outputRay.initRay(newD, newP);

outputRay.pixel_id = data->incomingRay->pixel_id;

outputRay.color = data->incomingRay->color;

outputRay.spectralOpacity = data->incomingRay->spectralOpacity;

outputRay.terminated = false;

outputRay.zDepth = data->incomingRay->zDepth + total_path;

data->outputStack->push(outputRay);

}

6

data->spectralOpacity = ash::Color(1,1,1,1); // this ray should not produce anything

data->incomingRay->spectralOpacity = ash::Color(1,1,1,1); // this ray should not produce anything

}

}

double VolumeCurvedRayMarch::integrated_curved_raymarch(double& ds, lux::Vector& D, lux::Vector& P)

{

lux::Vector F = ior->grad(P)/ior->eval(P);

double Fmag = F.magnitude();

lux::Vector F_hat = F/Fmag;

lux::Vector alpha_hat = (D^F_hat).unitvector();

lux::Vector D_alpha_hat = D^alpha_hat;

double cos_beta = D*F_hat;

double beta = std::acos(cos_beta);

double sin_beta2 = std::sin(beta*0.5);

double tan_beta2 = std::tan(beta*0.5);

double sin_beta2sq = sin_beta2*sin_beta2;

double tan_beta2sq = tan_beta2*tan_beta2;

double sin_beta = std::sqrt(1.0 - cos_beta*cos_beta);

double T = step_tolerance_max;

double ef = 0.0;

double actual_step = ds;

while(T >= step_tolerance_max)

{

actual_step = ds;

ef = std::exp(Fmag*ds);

double denom = 1.0 + tan_beta2sq*ef*ef;

double Q = Fmag*ds + std::log((1.0 + tan_beta2sq)/denom);

double R = std::atan(tan_beta2*ef) - beta*0.5;

double integrated_cos_alpha = (cos_beta/Fmag)*Q + (2.0*sin_beta/Fmag)*R;

double integrated_sin_alpha = (sin_beta/Fmag)*Q - (sin_beta/Fmag)*(1.0-tan_beta2sq)*R/tan_beta2;

lux::Vector Pnew = P + D * integrated_cos_alpha + D_alpha_hat * integrated_sin_alpha;

lux::Vector Fp = ior->grad(Pnew) / ior->eval(Pnew);

T = (Fp-F).magnitude()/Fmag;

if(T>=step_tolerance_max)

{

float random_number = 1.0;

#pragma omp critical

{

random_number = prn.eval();

}

ds *= random_number;

}

else

{

P = Pnew;

double cos_alpha = (cos_beta + 4.0*sin_beta2sq*ef + sin_beta2sq*(tan_beta2sq-1.0)*ef*ef)/denom;

double sin_alpha = sin_beta*(1.0-ef)*(1.0 + tan_beta2sq*ef)/denom;

D = D * cos_alpha + D_alpha_hat * sin_alpha;

if(T<step_tolerance_min)

{

float random_number = 1.0;

#pragma omp critical

{

random_number = prn.eval();

}

ds /= random_number;

}

}

}

return actual_step;

}

};

};

We set up the render using the environment map shown in figure 2. The camera is placed 5 m from the
center of the black hole, which has a Schwarzschild radius of 1 cm. The horizontal field of view of the camera
is 40 degrees. Figure 3(a) shows the scene from the camera POV without the black hole present. The black
hole is present in figure 3(b), but the tolerance values have been set to effectively prevent automatic step
size adjustment. The same black hole is rendered in figure 3(c), with tolerances set to induce automatic step
size adjustment. The automatic step size adjustment is able to resolve the black hole center, unlike the fixed
step size case.

For a path that skirts the limb of the black hole, figure 4 shows the components of the ray path perpen-
dicular to the axis between the camera and the center of the black hole. The path nears the Schwarzchild
radius rs, then deflects away without coming in contact. Figure 5 shows the step size as a function of path
length for the path in figure 4. As the path approaches the black hole, the step size drops by several orders
of magnitude, then grows larger once the path is well away from the Schwarzchild radius.

7

Figure 2: Environment map.

Choosing a ray that stops at the Schwarzchild radius, figure 6 shows the path and its termination. The
autmatically adjusted step size is in figure 7. In this figure, the step size is plotted as a function of step
number, rather that path length. The step size plunges in value as the path approaches the Schwarzchild
radius, reaching a value between 10−15 and 10−21, fluctuates in this small range of values, effectively never
advancing further, and the path is frozen at the Schwarzchild radius. This plot shows this behavior for 105

steps, but the full data set shows this behavior for 106 steps before termination by a threshold test on the
number of steps.

4.2 Path deflection: behavior related to the parameters Tmax, Tmin, and Nmax

The algorithm described in section 4 is driven by three user-selected parameters: A threshold Tmax for the
maximum allowed percentage change in the vector ~F at the start and end of a path segment and which
induces reduction of the step size ∆s, a threshold Tmin of allowable amount of percentage change in ~F which
induces increases in the size of ∆s, and the maximum number Nmax of path segments in a path before bailing
out of the path as incompletable. In this section we use a well-understood case for testing the accuracy of
the curved ray march, and its behavior as these parameters are varied.

The weak gravitation limit of general relativity provides a well-understood test case for ray bending, in
the form of the deflection angle of the ray path. In GR, this deflection angle is commonly represented as a
function of the impact parameter, which is the ratio 2rs/b, where rs is the Schwarzschild radius and b is the
closest-approach distance of the ray from the center of the gravitational object. The deflection angle is the
angle between the incoming and outgoing directions of the ray:

cosφ = n̂(0) · n̂ (smax) (26)

For Schwarzschild metric, this relationship is plotted in figure 8, based on the pertubation expansion4

4Carlos Rodriguez and Carlos Maŕın, “Higher-order corrections for the deflection of light around a massive object,” https:

//doi.org/10.48550/arXiv.1701.04434

8

https://doi.org/10.48550/arXiv.1701.04434
https://doi.org/10.48550/arXiv.1701.04434

(a)

(b)

(c)

Figure 3: Camera POV with black hole. rS = 0.01, q = 0.1. Default step size is 0.1. The images are
1920 × 1080. Render times reported based on 12 threads on a linux machine. (a) No black hole present.
Render time is approximately 5 seconds. (b) Tmax = 10000, Tmin = 0, to suppress automatic updates of
step size. Render time is approximately 9:03 minutes. (c) Tmax = 0.1, Tmin = 0.0001. Render time is
approximately 3.25 hours.

9

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 5 10 15 20 25 30 35 40

P
os

iti
on

Path length

X,Y components of position for a path that skirts rs

X
Y

Figure 4: Path components for a ray that skirts the Schwarzchild radius. Tmax = 0.01, Tmin = 0.0001.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 5 10 15 20 25 30 35 40

S
te

p
si

ze

Path length

Step size refinement as path skirts rs

"paths_T1_0.01_T2_0.0001.txt_10301.txt" using 1:2

Figure 5: Automatically adjusted step size for a ray that skirts the Schwarzchild radius. Tmax = 0.01,
Tmin = 0.0001.

10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

P
os

iti
on

Path length

X,Y components of position for a path that intersects rs

X
Y

Figure 6: Path components for a ray that stops at the Schwarzchild radius. Tmax = 0.01, Tmin = 0.0001.

 1x10-20

 1x10-15

 1x10-10

 1x10-5

 0 20000 40000 60000 80000 100000 120000

S
te

p
si

ze

Step Number

Step size refinement as path approaches rs

"paths_T1_0.01_T2_0.0001.txt_10466_sample.txt" using 0:2

Figure 7: Automatically adjusted step size for a ray that stops at the Schwarzchild radius. Tmax = 0.01,
Tmin = 0.0001.

11

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

de
fle

ct
io

n
an

gl
e

φ

2rs/b

Deflection from Schwarzschild Metric
perturbation expansion by Rodriguez and Marin

Figure 8: Deflection from a Schwarzschild metric according to the pertubation expansion from Rodriquez
and Marin.

φ =

20∑
i=1

κi

(
3x

4

)i
(27)

with the impact parameter x = 2rs/b, and the coefficients κi shown in the results from Rodriguez and
Maŕın. This relationship is for the full GR deflection, whereas our ray bending physically applies for the
weak gravitation limit only, and should be physically valid only in some range of small values of the impact
parameter. Nevertheless, we calculate ray bending for larger values of the impact parameter, beyond the range
of the physical validity of weak gravitation, as a way of testing the numerical stability and self-consistency
of the algorithm, but should expect disagreement with equation 27 for larger values of x.

Figure 9 shows both the rendered image and deflection data for a “baseline” case with relatively modest
thresholds and maximum number of steps. The scatter data for the deflection angle clusters with near-
neglible variance around a curve. The deflection angle exceeds the theory for small impact parameter b, but
agrees well with the theory for large impact parameter.

In the top image of figure 10, the maximum error threshold Tmax was reduce by a factor of 10 from
the case in figure 9. The parameters Tmin and Nmax are unchanged from figure 9. This lower maximum
error continues to produce an image with some reasonable visual accuracy. The images in the middle row of
figure 10 reduce the Tmin value by a factor of 100, and artifacts appear near the Schwarzschild radius. These
artifacts are a consequence of the ray step size ∆s remaining very small because of the reduced Tmin, so
that some paths exceed Nmax steps and terminate too soon. In the right image the number of steps Nmax is
increased by a factor of 10, but the artifact remains, although improved slightly. The bottom image increases
Nmax by another factor of 10 and the artifact is no longer visible. There appears to be a close relationship
between Tmin and Nmax: decreasing the minimum error requires increasing the number of steps to support

12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

de
fle

ct
io

n
an

gl
e

φ

2rs/b

Deflection by Reissner-Nordstrom Metric (charge=0.1rs)
T1=0.01 T2=0.0001 max steps=105

IOR φ
RM Theory φ

Figure 9: Deflection of rays through a Reissner-Nordstrom metric, with tolerance settings Tmax = 10−2,
Tmin = 10−4, Nmax = 105. Top: rendered image of a background star field deflected through a Reissner-
Nordstrom index of refraction. Bottom: Scatter plot of deflection angles for the computed paths, compared
to the pertubative expression for deflection for a Schwarzschild metric in equation 27. Note the agreement
in the weak gravitation regime 2rs/b . 0.3.

13

that minimum error.

5 curved path intersection with a plane

When using curved paths in a computer graphics scene, the paths may intersection objects in the scene.
When/where this occurs, the fact of the intersection and its location must be established, and the treatment
of the consequences of intersection (reflection, refraction, scattering, etc.) must be generated. In this note we
do not deal with the intersection consequences, only with the detection of the intersection and determining
its location.

As with straight-line rendering, the geometry of primary interest for intersection is (1) axis-aligned bound-
ing boxes (aabb), and (2) triangles. The aabb serve as containers and placeholders for triangles in acceleration
structures like kd-trees and Bounding Volume Hierarchy. For both types of geometry, the fundamental first
step is to detect the intersection of the path with one or more planes. In the case of the aabb, multiple
plane intersections are computed, and for a triangle only one intersection is calculated followed by evaluation
of barycentric coordinates for the intersection point. Once the path-plane intersection detection and point
of intersection is obtained, the remainder of the intersection algorithms is the same for curved paths as for
straight paths. So in this note we focus on (1) detecting the existence of an intersection with a plane, and
(2) determining the point of intersection. These are the only changes to the intersection problem.

Following the approach in the algorithm in section 4, we assume a path has been segmented into a
sequence of curved paths. The potential of intersection with geometry means that each segment must be
tested for intersection with the geometry in the scene. If no intersection is found, then the next path segment
is generated. We consider a single path segment with starts at point ~x0, in direction n̂0 and forcing ~F and
extends for segment path length ∆s.

We can evaluate the task of computing the point of intersection of a curved ray with a plane. The plane
is characterized by the implicit equation

(~x − ~xP) · n̂P = 0 (28)

where ~xP is a reference point on the plane, n̂P is the normal to the plane, and ~x is any point in space lying
on the plane. Abbreviating the curved ray expression 20 as

~x(s) = ~x0 + n̂0 f(s) + n̂0 × α̂ g(s), (29)

where f(s) is equation 23 and g(s) is equation 24, for 0 ≤ s ≤ ∆s. Figure 11 shows these functions. Note
that the function g(s) is monotonic, whereas f(s) may be monotonic or have a single peak. We assume that
the segment length is sufficiently small that the value of f remains in the monotonic regime on the left side
of the plot.

The equation for intersection of the curved ray with the plane is

L(s) = (~x0 − ~xP) · n̂P + n̂0 · n̂P f(s) + (n̂0 × α̂) · n̂P g(s) = 0 (30)

This is an implicit function. As a function of s, it is nonlinear. But if we consider this implicit function as
function of f, g, it is a straight line.

To make this intersection problem manageable, we make the assumption that, within a single segment
0 ≤ s ≤ ∆s, the function f(s) remains monotonic.

14

Tmax = 10−3 Tmin = 10−4 Nmax = 105

Tmax = 10−3 Tmin = 10−6 Nmax = 105 Tmax = 10−4 Tmin = 10−6 Nmax = 106

Tmax = 10−4 Tmin = 10−6 Nmax = 107

Figure 10: Runs showing errors near the Schwarzschild radius, with some cases having artifacts that are fixed
by increasing the maximum number of steps.

15

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

F
 f

F(s-s0)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

F
 g

F(s-s0)

Figure 11: Functions f(s) and g(s) for some choices of β, versus F (s − s0). Top: F f(s). Bottom: F g(s).
Notice that f(s) is quasi-quadratic, but g(s) is monotonic.

16

5.1 rejecting intersections

Most ray path segments do not intersect geometry, so it is very important to have the simplest possible test
of intersection that quickly determines whether there is an intersection or not. Here we lay out such a simple
and quick test.

The path segment involves a range of values of the functions f and g that is known in the course of
generating the segment. At the beginning of the segment, s = 0 and the values of f, g are 0, 0. At the end of
the path, the values of f, g are fe ≡ f(∆s), ge ≡ g(∆s). For the purpose of determining whether there is an
intersection, the question to address is whether the implicit function L(s) changes sign when evaluated over
the range 0 ≤ s ≤ ∆s. This requires that we evaluate the function at two points:

L0 = L(0) = (~x0 − ~xP) · n̂P (31)

Le = L(∆s) = (~x0 − ~xP) · n̂P + n̂0 · n̂P fe + (n̂0 × α̂) · n̂P ge (32)

If there is no intersection, then the signs of L0 and Le will be the same. So the rejection algorithm is:

If L0Le > 0 then no intersection. (33)

This is a fast test because it is constructed from quantities fe, ge, n̂0, n̂0 × α̂, that are already available from
the construction of the path, and linear algebra quantities with ~xP , n̂P . Thus rejection of an intersection
with a given plane is a fast operation.

5.2 refined search for intersection point

If L0Le ≤ 0 then there is an intersection and we must determine the location of the intersection, i.e. the
value of s where there is an intersection. There are three possible situations that must be evaluated:

1. L0 = 0 and the intersection is at s = 0, which is the point ~x0.

2. Le = 0 and the intersection is at s = ∆s, which is the point ~x0 + n̂0fe + (n̂0 × α̂)ge.

3. Both L0 and Le are non zero but of different sign, and the intersection must be found at a point along
the path segment.

In situation 3, the simplest solution approach is the bisection method5, which in this situation looks like:

1. Initialization: set

sa = 0

sb = ∆s

fa = 0

ga = 0

fb = fe

gb = ge

La = L0

Lb = Le

N = 0
5Bisection Method:https://en.wikipedia.org/wiki/Bisection_method

17

https://en.wikipedia.org/wiki/Bisection_method

2. Compute an intermediate point:

si = (s0 + s1)/2

fi = f(si)

gi = g(si)

Li = (~x0 − ~xP) · n̂P + n̂0 · n̂P fi + (n̂0 × α̂) · n̂P gi

N + = 1

3. If Li = 0, or N exceeds a threshold, then the intersection is at si, ~xi = ~x0 + n̂0 fi + n̂0 × α̂ gi

4. If LiLa < 0 then the intersection is between sa and si. Set sb = si, fb = fi, gb = gi, Lb = Li. Return
to step 2 and iterate.

5. If LiLb < 0 then the intersection is between sb and si. Set sa = si, fa = fi, ga = gi, La = Li. Return
to step 2 and iterate.

This bisection algorithm can be modified in two ways: (1) the termination test in step 3 could also test for
|Li| to be below a threshold, and consider that threshold to be sufficiently close to 0; (2) instead of evaluating
f(si), g(si) in each iteration, it may be faster to build look-up tables of values of f, g within the interval prior
to the start of the algorithm, and interpolate those values (this would be faster, but could be less accurate).
This intersection problem has properties (monotonicity) that are what make the bisection algorithm work
well.

18

	starting point
	ray bending as a direction rotation
	integrating the path
	automatic adjustment of ray march step
	Example demonstration of automatic step adjustment
	Path deflection: behavior related to the parameters Tmax, Tmin, and Nmax

	curved path intersection with a plane
	rejecting intersections
	refined search for intersection point

