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Radiometric receivers based on photon-counting tech-
niques are subject to photon-counting noise as the basic limit
to their signal detection performance. In some circum-
stances in which the number of photons received in a given
time interval is large, the Poisson distribution of photon
counting is effectively Gaussian and the receiver operating
characteristics (ROC) may be based on standard error func-
tion expressions.! In more stressing conditions the non-
Gaussian tail of the Poisson distribution becomes significant
and the ROC must be obtained by an alternative method. If
there is only one channel, the probabilities of detection and
false alarm are
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where B is the mean count level expected when a signal is not
present, S is the mean count level in excess of B when a signal
is present, and ny is the chosen threshold count level for a
detection declaration.

When the threshold is not too large these expressions can
be evaluated numerically even on a pocket calculator.23
However, when the threshold is large, or when there are
several channels combined into a test statistic, direct evalua-
tion of the sums becomes difficult and time-consuming.
Gagliardi and Karp developed ROC expressions for the de-
tection of a signal which may occur in any one of M channels.4
In that case, however, the decision was a choice between M
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hypotheses, giving operating characteristics different from
those of the classic binary decision problem. Inaddition, the
expressions they obtained for Py and Py, involved infinite
series, so that the difficulty in numerical evaluation was not
overcome.

In this Letter approximate expressions are given for P,
and Py, as functions of a threshold, and a derivation of the
expressions is outlined. Asymptotic conditions for the va-
lidity of the approximation are given, and a comparison with
an exact evaluation shows that these conditions are stronger
than need be at high threshold. The expressions are simple
enough to be evaluated on a pocket calculator.

The basic approach used here was developed by Thebaud,®
who constructed approximate expressions using analytic
continuation and a stationary phase approximation on the
integrals displayed below. The approach taken here is a
steepest-descents approximation. The results are an exten-
sion of those in Ref. 5 and are more well behaved at small
threshold levels.

Suppose a receiver system outputs N channels with counts
ni,i=1,..., N (e.g., the channels may be multiple radiome-
ters or successive samples in a time series). The photon
counting noise in each channel independently satisfies a
Poisson distribution with probability density

(ns)ni

n!
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where (n;) is the mean expected count level in channel i.
The probability density for the combination of the N chan-
nels is the product of the individual densities. The test
statistic used for declaring the detection of a signal is the log—
likelihood ratio from classical binary detection theory
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B; and §; are as defined previously but may have different
values for each channel. The detection and false alarm
probabilities for a given threshold Ag are (§ is the Heaviside
step function)

with
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By using the Fourier transform identity for the step function
(e=>0t),
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the summation over the ensemble of counts can be evaluated
exactly to give
dgq
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where r = d, fa, and
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These are the integral expressions obtained by Thebaud in
Ref. 5 and approximately evaluated by the analytic continu-
ation ¢ — ig and a stationary phase evaluation. The results
of the approximation are valid for thresholds that are very
large compared to the average of the test statistic A(n, . .
ng\.r)‘

The approximate evaluation below proceeds via the steep-
est-descents method, in which the integration contour is
deformed from the real axis to the complex plane. The
deformed contour does not cross the pole at the origin and
fixes the imaginary component of

F.(q) = i\p, + ¥, (q) — loglg) + ix/2
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tobe constant. Sincethe integralis real, the simplest path to
choose has the phase Im(F,) = 0. Along the constant phase
path the integral may be approximated by Laplace’s meth-
0d.® Theextremum pointis on the imaginary axis away from
the origin, and the steepest-descents path in the neighbor-
hood of the extremum point is a parabola oriented upward.
The result for the probability of detection is
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and @ is obtained implicitly from the extremum condition
N
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Similarly, for the probability of false alarm,
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Fig. 1. Comparisons between approximate and exact evaluations

of the ROC for one channel. The upper curve in each comparison

is the exact ROC, and the lower curve is the approximate ROC.
(a)S=1,B=1;(b) S=5,B=10; (c) S= 5,8 =40.
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and now the equation for @ is

i
Q
Note that the range 0 < Q < corresponds to the range — <

Ar < e, so that in principle the entire ROC curve can be
obtained. In practice, however, the approximation breaks

N
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down for small @, as can be seen by the fact that the probabil-
ities at Ay = — are >1;

(32 1/2
Py==) =P (—=) = (2—) = 1.084437551.
¥

If the mean number of counts is large, the value of § at which
P, = 1is approximately

2o 1 e 3 2 g x
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The range of validity of the approximation is obtained by
requiring higher terms of the steepest-descent approxima-
tion to be small. The conditions imposed are

Q* > 1/max[£}(S; + B))],

Q> 1/max[£4(S; + B)],
max(S;) > 0,

B; > 1 for all j.

The second condition guarantees that the range of @ for
which the probabilities are greater than unity is outside the
range of validity of the approximation.
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The examples in Fig. 1 show that the last condition that
the mean count level be large is not a strong condition. In
particular, the approximate expression is within 15% of the
exact result even for S = 1, B = 1. Best results are achieved
when the threshold is large compared to the averaged test
statistic (A(ny, ..., nx)).
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