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Abstract

Natural volumetric media have phase functions which typically are
sharply peaked in the forward scattering direction, with backscat-
ter accounting for only a few percent of the total angular redistri-
bution from a single scattering event. This property has been ex-
ploited in the past in the small-angle approximation for radiative
transfer, successfully for many engineering and science applica-
tions. The small-angle approximation also robustly describes the
multiple-forward-scattered behavior of the light field many scatter-
ing lengths into the participating medium, including the asymptotic
regime, in agreement with experimental measurements and compu-
tationally intensive simulations. Physically, the important missing
ingredient not found in the small-angle approximation is occasional
large angle scatters that reverse the propagation direction of some
of the light. This paper introduces a quantitative model of multiple
scattering which contains both the multiple-forward-scatter charac-
ter and a few large-angle scattering events. The model is derived
directly from the Green’s function representation of radiative trans-
fer, and path integrals are used to construct the appropriate form of
the small angle approximation. The model is suitable for media that
have internal structure. This paper reports on a work in progress,
presenting the model but no rendered results.

1 Introduction

Many naturally occurring participating media share a common trait:
their scattering phase functions are sharply peaked in the forward
direction in visible light. In all cases, the value of the phase func-
tion near 0 degrees is 10-1000 times higher than the peak in the
backscatter direction. The source of this forward-peaked charac-
ter is the particulate nature of the media; the particles are generally
much larger than the wavelength of visible light, which is a regime
that favors forward scattering. An important exception to this is
the molecular medium of the atmosphere, in which oxygen- and
nitrogen-based molecules are comparable in size to visible light. In
this limit, Rayleigh scattering dominates and the phase function is
very broad. This paper is concerned more with particulate media
that have forward peaked phase functions.

This quality of the phase function is important for multiple scat-
tering. For example, a volume that is 100 scattering lengths thick
(e.g. a cumulus cloud or a human hand), only a few of those scat-
tering events are large angle scatters, while the great majority of
them are scatters through a small angle from the incoming direc-
tion. The diffusive look of a cloud or tissue arises mostly from the
multiple forward scatters, with the few large angle scatters playing
a "secondary" role.

The small-angle approximation [Dol80] to the radiative transfer
equation focuses on just the multiple-forward-scatter behavior. For
a light beam incident on a participating medium, the radiance dis-
tribution at a distancez into the medium is proportional to

exp
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where~n is the component of the direction vector perpendicular to
the incident direction,〈θ2〉 is the square of the width of the forward
peak of the phase function, andb is the scattering coefficient. This
form is a diffusion of the light in the angular degrees of freedom
at depths in the medim. In addition, the radiance distribution is
proportional to

exp

(
− ~r2

2〈θ2〉bz3

)
and~r is the component of position in the medium perpendicular to
the incident direction. This is a diffusion in the spatial structure of
the the light field.

This form of the small angle approximation is useful for some
applications because of its simplicity. A re-examination of the
approximation procedure by [Tes87] produced a version that is
slightly more complex, but much more accurate, especially at great
depths. In this improved small angle approximation, the angular
and spatial diffusion are replaced with the altered factors:

exp

(
−~n2 sinh(2q)
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)
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)
In this form, a new parameter`, which has dimensions of lenght,
comes into the picture. Its definition is 1/`2 = 〈θ2〉ab, combining
the scattering coefficientb, the absorption coefficienta, and the
width of the phase function peak〈θ2〉. The dimensionless quantity
q is z/`, and the functionsh and R reduce to the previous small
angle approximation in the limitz� ` [Tes88].

The length scalè arises from this approximation as the marker
between a purely diffusive regime over short distances (z< `) and
the so-called asymptotic regime (z > `) studied by [HZ77], for
which the light distribution is effectively frozen in shape and de-
cays exponentially with depth according to a diffuse attenutation
coefficient. This improved small angle approximation compares
well with experimental and simulation data [Tes88] in an angular
region around the initial propagation direction, and shows very well
the transition to the asymptotic regime. Note that the original form
of the small angle approximation does not predict the existence of
an asymptotic regime at all. This more accurate second form of
the small angle approximation will be used in the remainder of this
paper.

The small angle approximation successfully captures the mul-
tiple forward scattering behavior that comes from phase functions
that are sharply peaked in the forward direction. The remainder of
the light distribution coming from a participating medium comes
from large angle scattering events. Only a few of these scattering
events need occur, even within optically thick media, for a much
more accurate rendering of the full light field. The aim of this paper
is to fuse the small angle approximation for multiple forward scat-
tering with a discrete scatter model. The fusion qualitatively con-
sists of having light propagating through the medium in a multiple-
forward-scatter process, suffering a large angle scatter at a point
in the medium volume, then continuing to propagate in the new
direction with multiple-forward-scattering. By iterating this basic



picture, more and more large angle scatters can be incorporated as
long as it is computationally practical to do so.

To accomplish this fusion, there are two tasks. The first one is to
build an integral form of the radiative transfer equation that allows
us to select large angle scattering events separate from multiple for-
ward scatters (section 3). The second task is to rebuild the small
angle approximation in a form that is more suitable for general vol-
ume rendering applications. The form discussed above is rigidly
tied to half-space geometries. We recast it in section 4 to be more
suitable for general volume rendering problems. The final fused al-
gorithm has the form of a raymarching process. As the ray march
proceeds deeper into the medium, the spatial and angular blurring
from the diffusion can be exploited to increase the step size of the
raymarch.

2 Background

There are several approaches to multiple scattering in use in com-
puter graphics. The subsurface scattering approach of [DJ05] is de-
sign specifically for geometries and material properties that support
the diffusion approximation for the radiance leaving the surface of
the medium. Multiple scattering has been implemented in hardware
volume rendering by [HL01], who used to concept of multiple for-
ward scattering to motivate using textured cards in the field of view,
and [REK∗04], who implemented multiple scattering in hardware
by building a look up table of phase function convolutions to de-
scribe multiple scatters.

Multiple forward scattering has also been exploited by [PAS03]
and in hardware by [HPAD06], with algorithms based on the small
angle scattering approximation. This approach was motivated by
the path integral methods for solving the radiative transfer equa-
tion first introduced by [Tes87] for underwater optics, and later
by [PaIF94] for tissue optics.

3 Green’s Function

We have chosen to build a fused algorithm using the Green’s func-
tion for the radiative transfer equation. Imagine we begin with a
dark medium and turn on a focused laser light source emitting a
very short pulse from any point~x′ in the medium in any direction
n̂′. Scattering and attenuation redistribute the light in the volume,
and at a times after emission, the light arriving at any other point
~x in a directionn̂ is proportional to the Green’s function, written
G(s,~x, n̂,~x′, n̂′). In principle, this function is the solution of the
time-dependent radiative transfer equation{

∂
∂s

+ n̂ ·∇+c(~x)
}

G(s,~x, n̂,~x′, n̂′) =

b(~x)
Z

dΩ′′ P(n̂, n̂′′) G(s,~x, n̂′′,~x′, n̂′)

with the initial condition

G(0,~x, n̂,~x′, n̂′) = δ
(
~x−~x′

)
δ
(
n̂− n̂′

)
For light sources that stay on indefinitely, the radiance distribution
L is the convolution of the Green’s function with the light source:

L(~x, n̂) =
Z ∞

0
ds

Z
d3x′ dΩ′ G(s,~x, n̂,~x′, n̂′) S(~x′, n̂;)

This solution for the radiative transfer problem is naturally imple-
mented as a ray march algorithm. The integral over time serves
as the ray march stepping mechanism. This will be made explicit
below.

Using the time-dependent Green’s function to find a time-
independent light field lets us exploit certain technical simplifica-
tions, because the time parameter effectively sorts all of the light
arriving at a point into packets that arrive at different times. This
also helps to build approximation strategies for multiple forward
scattering.

The Green’s function handles both scattered and unscattered
light. To get at strategies for scattering, we first split it into a term
for unscattered light and a term for scattered light:

G(s,~x, n̂,~x′, n̂′) = δ
(
~x−~x′− n̂s

)
δ
(
n̂− n̂′

)
T(0,s,~x, n̂)

+ ∆G(s,~x, n̂,~x′, n̂′)

andT is the exponential attenuation due to the extinction coefficient
between~x and~x′:

T(s′,s,~x, n̂) = exp

(
−

Z s

s′
ds′′ c

(
~x− n̂(s−s′′)

))
Because the unscattered light term satisfies the initial conditions
for the Green’s function, the initial conditions for the scattered
light Green’s function is that there is no scattered light initially, i.e.
∆G(s= 0) = 0.

The scattered Green’s function satisfies an integral equation con-
siting of two terms, one for single scattering and one for multiple
scattering:

∆G = ∆GSS + ∆GMS

where the first term is a single scatter expression

∆GSS(s,~x, n̂,~x′, n̂′) =
Z s

0
ds′ T(0,s−s′,~x, n̂)

× b
(
~x− n̂(s−s′)

)
P(n̂, n̂′)

× T(0,s′,~x− n̂(s−s′), n̂′) (1)

and the second term is for more than one scatter:

∆GMS(s,~x, n̂,~x′, n̂′) =
Z s

0
ds′ dΩ′′

× ∆G(s−s′,~x, n̂,~x′+ n̂′s′, n̂′′)

× b
(
~x′+ n̂′s′

)
P(n̂′′, n̂′)

× T(0,s′,~x′+ n̂′s′, n̂′) (2)

These two contributions to∆G tell relatively simple stories. The
first one, ∆GSS, is the single scattering of light from the direc-
tion of the light source to the direction of the viewer. From the
light source to the scattering point, the light suffers attenuation
T(0,s′,~x− n̂(s− s′), n̂′). In some implementations of volume ren-
dering, this factor is included in a deep shadow map volumetric data
structure. The phase function scatters the light from the direction
n̂′ to n̂, and from the scatter point to the viewer there is attenuation
T(0,s− s′,~x, n̂). Because the single scattering event may occur at
many possible points along rays from the light source, the integra-
tion

R
ds′ finds the appropriate intersection point for each ray. This

single scattering term is commonly evaluated as a raymarch from
the viewer into the volume, with the integration variables′ playing
the role of stepping the ray through the volume.

Multiple scattering occurs in∆GMS. This term has similarities
to the single scattered one. Propagation from the light source is
accompanied by an attenuationT(0,s′,~x′ + n̂′s′, n̂′), which again
may be incorporated into a deep shadow map. There is a single
scatter of the light at the point~x′ + n̂′s′, and the light which leaves
there and arrives at the viewer is then scattered more by the scat-
tered Green’s function∆G. This term is the primary focus of this
paper. Notice that it has the form that is desired from the discussion



in section 1: there is scatter, which may be a large angle scatter,
followed by other scatters. Since the first scatter fulfills the need of
incorporating a large angle scatter, the∆G factor in the convolution
can reasonably be approximated by a multiply-forward-scattered
expression. The approach in this paper is to build an expression for
the multiple forward scattered Green’s function,∆GMFS based on
the small angle approximation discussion above, and the multiple
scattered Green’s function is

∆GMS(s,~x, n̂,~x′, n̂′) =
Z s

0
ds′ dΩ′′

× ∆GMFS(s−s′,~x, n̂,~x′+ n̂′s′, n̂′′)

× b
(
~x′+ n̂′s′

)
P(n̂′′, n̂′)

× T(0,s′,~x′+ n̂′s′, n̂′) (3)

4 Multiple Forward Scattering Green’s Func-
tion

The small angle approximation that we use here is based on the
one introduced by [Tes87] using path integral methods. That form,
however, is not sufficient for us for three reasons: (1) the original
form does not separate scattered and unscattered light for apply-
ing the small angle approximation, so the solution in [Tes87] will
not satisfy our initial conditions; (2) when the unscattered light is
removed prior to the small angle approximation, some of the quan-
tities are altred in important ways; (3) the derivation used in [Tes87]
assumed a plane-parallel geometry in which the medium occupied
a semi-infinite volume, while we need a more general structure for
the medium.

In this section we run through the path integral formulation and
small angle approximation to arrive at an expression for the multi-
ple forward scattered Green’s function∆GMFS. The result is valid
for a general participating medium. For simplicity in the explana-
tion, a homogeneous medium is used, then in section 5 we discuss
the changes to the result that are needed to make in valid in arbitrary
media.

The path integral expression for the scattered Green’s function
is an exact but formal solution of the radiative transfer problem in
terms an an infinite-dimensional integral over the phase space all
all possible paths through the medium and all possible scattering
modes. Following [Tes89], it is

∆G(s,~x, n̂,~x′, n̂′) =
Z

dµ(β̂,~p) δ
(

β̂(0)− n̂′
)

δ
(

β̂(s)− n̂
)

× δ
(
~x−~x′−

Z s

0
ds′ β̂(s′)

)
exp(−cs)

× exp

(
i
Z s

0
ds′ ~p(s′) · dβ̂(s′)

ds′

)

×
(

exp

(
i
Z s

0
ds′ b Z(~p(s′))

)
−1

)
(4)

The unit vectorβ̂(s′) describes all possible paths through the
medium that start at(~x′, n̂′) and end at(~x, n̂) after a times. Specifi-
cally, it is the tangent to the paths.

Multiple forward scattering is enforced by approximating the
Fourier-transformed phase function,Z, using the fact that the phase
function has a very strong and narrow peak around the forward di-
rection. In this situation, the dominant contribution of scattering to
the paths comes from setting

Z(~p)≈ 1 − 〈θ2〉
2
|~p|2 (5)

with the understanding that〈θ2〉 has a small value. In this situa-
tion, the path integral over the scattering modes~p can be evaluated,
leaving only the path integral over the pathsβ̂. This integral has the
form

∆GMFS =
Z

dµ(β̂) δ
(

β̂(0)− n̂′
)

δ
(

β̂(s)− n̂
)

× δ
(
~x−~x′−

Z s

0
ds′ β̂(s′)

)
exp(−as)

×
(

1−e−bs
)

× exp

−
(

1−e−bs
)

2〈θ2〉b

Z s

0
ds′

∣∣∣∣∣dβ̂(s′)
ds′

∣∣∣∣∣
2
 (6)

Since light travels at a fixed speed, the scattered Green’s function
should enforce that speed even in approximate evaluations. In fact,
it is easy to see the fixed speed constraint directly from the full exact
path integral expression. The spatial delta function

δ
(
~x−~x′−

Z s

0
β̂(s′)ds′

)
requires that for every path through the medium that contributes
light, the pathβ̂ must be restricted to

~x−~x′ =
Z s

0
β̂(s′)ds′

When we take the magnitude of this expression and use the Schwarz
inequality

|~x−~x′| =
∣∣∣∣Z s

0
β̂(s′)ds′

∣∣∣∣
≤

Z s

0
|β̂(s′)| ds′

≤ s

So it must be exactly true thatGMFS = 0 whenever|~x−~x′| > s.
The procedure that we need to follow in our approximate evalua-
tion must pay attention this constraint. For this purpose, we can
arrange the representation of unit vectorsβ̂ in terms of a compo-
nent perpendicular to~x−~x′, and one parallel to it. When we label
the perpendicular component by the two dimesional vector~γ, the
representation is

β̂ =
~x−~x′

|~x−~x′|

√
1−|~γ|2 +~γ (7)

with the understanding that~γ · (~x−~x′) = 0. Then the delta function
spatial constraint is divided into two constraints:

|~x−~x′| =
Z s

0

√
1−|~γ(s′)|2 ds′ (8)

0 =
Z s

0
~γ(s′) ds′ (9)

The benefit of this expansion using~γ is that we can enforce the
causality constraint. However, it does not describe paths with seg-
ments that are backwards facing relative to~x−~x′, which is the rea-
son why the small angle approximation does a poor job with large
angles in the radiance distribution. Fortunately, the large angle be-
havior has been handled separately, and we are only interested here
in multiple forward scattering.

In the multiple forward scattering scenario, we anticipate that
all paths are deviations from the forward direction, we can use the



deviation vector~γ as a small quantity in the first constraint. To
leading order then, the time delay satisfies

s= |~x−~x′|+ 1
2

Z s

0
|~γ(s′)|2 ds′ (10)

This order of expansion is a reasonable one to use because it en-
forcess≥ |~x−~x′| no matter the deviation path chosen. Iterating the
expansion, we obtain an explicit expression fors as:

s= |~x−~x′|+ 1
2

Z |~x−~x′|

0
|~γ(s′)|2 ds′ (11)

Now the procedure is to go back to the path integral expression
for GMFS and substitute fors either equation 11 or the simpler
expressions = |~x−~x′| into each term, depending on the order
of the term, so that all dependence up to quadratic in~γ is kept,
but higher orders are ignored. Using the shorthand|~x−~x′| ≡ z,

〈θ2〉2b/
(

1−e−bz
)
≡ T, and 1/(aT)≡ L2, the resulting path inte-

gral is

GMFS = e−az
(

1−e−bz
)

×
Z

dµ(~γ) δ
(

s−z− 1
2

Z s

0
ds′

∣∣~γ(s′)∣∣2)
× δ(~γ(0)−~γn̂′) δ(~γ(z)−~γn̂) δ

(Z z

0
~γ(s′) ds′

)
× exp

(
− 1

2T

Z z

0
ds′
{∣∣∣∣d~γ(s′)ds′

∣∣∣∣2 +
|~γ(s′)|2

L2

})
and~γn̂′ ,~γn̂ are the components of ˆn′ andn̂ that are perpendicular to
~x−~x′.

In the original definition of the deviation vector~γ, it is bounded
to a unit disk, i.e. |~γ|2 ≤ 1. However, our approximations have
produced an expression for the path integral that is mathematically
well behaved if the support of~γ were extended to the entire two
dimensional planeR2. Understanding that the integration over the
additional area of the plane contributes relatively little error because
larger values of|~γ|2 are suppressed by the gaussian character of the
integrand, the extended path integral has an exact evaluation into:

GMFS(s,~x, n̂,~x′, n̂′) =
e−az

(
1−e−bz

)
2πT2L4 h(z/L) sinh(z/L)

× exp(−M(z/L,~γn̂,~γn̂′))

× δ
(

s−z− 1
2

Z s

0
ds′

∣∣~γMFS(s
′)
∣∣2)

with the functions defined as

h(x) =
xsinh(x)+2(1−cosh(x))

sinh(x)
(12)

M(x,~γ,~γ′) =
(|~γ|2 + |~γ′|2)sinh(2x)/2 −2~γ ·~γ′ sinh(x)

2TLsinh2(x)

+
|~γ+~γ′|2(cosh(x)−1)2

2TLsinh2(x) h(x)
(13)

The multiple forward scattered path~γMFS(s′) is the path through
the medium with the least attenuation between the points(~x′, n̂′)
and(~x, n̂)

~γMFS(s
′) =~γn̂ f (s′)+~γn̂′ f (s−s′) (14)

with the function

f (s′) =
sinh(s′/L)
sinh(z/L)

(15)

4.1 Angular and Spatial Blurring

Multiple scattering has the effect of blurring the radiance distribu-
tion, in both the angular and spatial degrees of freedom. In this
section the amount of blurring is quantified direction from the solu-
tion in equation 13.

The first term ofM(x,~γ,~γ′) is the angular blurring factor. To see
more clearly how it acts as an angular spread, we can look at its
form in the limitz� L. In this limit, the term is approximately

|~γ−~γ′|2

2Tz2/L

and it is reasonable to interpretz
√

T/L as the angular spread of the
light distribution over short distances. At large distancesz� L, the
blurring looks like

|~γ|2 + |~γ′|2

2TL

and the angular spread of
√

TL is much narrower at large distances
than would have been expected from the short distance spreading.

Similarly, the second term inM accounts for spatial spreading
in the plane perpendicular to the primary direction~x−~x′. It arises
from the process of exactly evaluating the spatial propagation con-
traint

δ
(Z z

0
~γ(s′) ds′

)
and has the spatial width√

TLh(x)L
sinh(x)

cosh(x)−1

There is also spatial spreading along~x−~x′ due to the constraint
term

δ
(

s−z− 1
2

Z s

0
ds′

∣∣~γMFS(s
′)
∣∣2) (16)

which delays the constributions from various timess according to
the direction the light takes coming into the point.

For the multiple scattered Green’s function in equation 3, the
constraint is

s−s′ = |~x−~x′− n̂′s′|+ 1
2

Z |~x−~x′−n̂′s′|

0
ds′′|~γMFS(s

′′)|2

To first order, the value ofs′ that satisfies this equation is

s′ =
s2−|~x−~x′|2

s− n̂′ · (~x−~x′)

Sinces′ must be positive, this solution requires thats≥ |~x−~x′|.
This allows us to evaluate the time integral in equation 3 to leave

∆GMS(s,~x, n̂,~x′, n̂′) = θ
(
s−|~x−~x′|

)
b
(
~x′+ n̂′s′

)
× T(0,s′,~x′+ n̂′s′, n̂′)

×
e−az

(
1−e−bz

)
2πT2L4 h(z/L) sinh(z/L)

×
Z

dΩ′′ exp(−M(z/L,~γn̂,~γn̂′′))

× P(n̂′′, n̂′) (17)

and theθ(x) is the Heaviside step function, which enforces the
speed of light constraint.

This expression is the last ingredient needed for an imple-
mentable algorithm.



5 Conclusions

Further effort to implement this algorithm is in progress.
The small angle approximation is a very different regime of light

propagation from the diffusion approximation used in models such
as subsurface scattering. As such it should provide an additional
useful tool in volume rendering for achieving a different kind of
appearance for clouds, tissues, and water.

The structure of the Green’s function makes the algorithm very
flexible for introducing objects in the volume. In fact, although
the multiple forward scattered portion of the result in equation 17
was built explicitly for a homogeneous medium, it applies with only
small modification when the medium has internal structure. The es-
sential ingredient is to define the total number of scattering lengths
`(s) along a path by

d`(s′)
ds′

= b(~x′+ n̂′s′)

With this definition, all of the dependence ons andb can be ab-
sorbed intò . A ray march to evaluate the radiance marches out
fixed steps iǹ , and the derived steps insare variable depending on
the variability of the medium along the ray march.
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