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1 Introduction

This is a very brief note that outlines the derivation of a connection between a
heuristic, art-driven fake multiple scattering method with a mathematically/physically
motivated breakdown of radiative transfer that expresses a similar outlook. This
note is very brief, providing just an outline for the approach. More details need
to be filled in through numerical implementation.

2 Radiative Transfer via Kernel Integration

The radiative transfer equation has a solution in terms of a propagation kernel
G:

L(x, n̂) =

∫ ∞
0

ds

∫
d3x′

∫
dΩ′ G(s,x, n̂,x′, n̂′) S(x′, n̂′) (1)

where S is the distribution of light emitted by an “external light source”. The
kernel satisfies the time-dependent radiative transfer equation{
∂

∂s
+ n̂ · ∇ + c(x)

}
G(s,x, n̂,x′, n̂′) = b(x)

∫
dΩ′′ P (n̂, n̂′′)G(s,x, n̂′′,x′, n̂′)

(2)
along with the initial condition

G(s = 0,x, n̂,x′, n̂′) = δ(x− x′) δ(n̂− n̂′) (3)

Note that one way to compute approximations for the kernel is to apply a
perturbation approach in the number of scattering events. The single-scatter
approximation is implemented numerically as a ray march process, with variable
s serving as the arc-length of the path of the march, and the integral over s
driving the ray march.
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3 Path Length Segmentation

Before applying approximations, there is an alternative segmentation of the
integral over path length than exploits the property of the kernel that it can be
deconstructed in path length, i.e. for any length of path s∗ < s,

G(s,x, n̂,x′, n̂′) =

∫
d3x′′

∫
dΩ′′ G(s− s∗,x, n̂,x′′, n̂′′) G(s∗,x′′, n̂′′,x′, n̂′)

(4)
Using this exact relationship, the integral solution for radiance can be exactly
expressed as two terms:

L(x, n̂) =

∫ s∗

0

ds

∫
d3x′

∫
dΩ′ G(s,x, n̂,x′, n̂′) S(x′, n̂′)

+

∫ ∞
0

ds

∫
d3x′

∫
dΩ′ G(s,x, n̂,x′, n̂′) F (x′, n̂′) (5)

where F is an ”internal light source” derived from propagating the external light
source through the volume for the path length s∗:

F (x, n̂) =

∫
d3x′

∫
dΩ′ G(s∗,x, n̂,x′, n̂′) S(x′, n̂′) (6)

A natural choice for the path length s∗ is the longest distance through the
volume that single-scattering would encounter. Then the first term on the right
hand side is can be evaluated with the single-scatter approximation, which is the
ray march process that is well known. The second term involves and additional
“level of indirection” involving some amount of scattering from the light source
into the volume, followed by scattering to the radiance location and direction.
An interesting first idea for evaluating the second term is to again apply the
single scattering approximation for the kernel in the second term, and a higher
order multiple scatter expression for G(s∗) in the expression for F . This would
make the connection with heuristic artistic techniques of using internal lights,
but now the internal light has a quantitatively precise form in F .

4 Monte Carlo Evaluation Using Internal Lights

For numerical evaluation, the spatial integral in the second term of equation 5
could be evaluated using a Monte Carlo procedure. Suppose ρ(x) is the density
field for the volume. The density could be used as the unnormalized probablity
density for generating the spatial locations for the Monte Carlo evaluations.
Choosing to approximate the spatial integral using M random point in space
{xi, i = 1, . . . ,M} distributed using the density, the second term becomes(∫

d3x′ ρ(x′)

)
1

M

M∑
i=1

∫ ∞
0

ds

∫
dΩ′ G(s,x, n̂,xi, n̂

′)
F (xi, n̂

′)

ρ(xi)
(7)
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This form for the second term is simply a ray marching process with M internal
point lights (∫

d3x′ ρ(x′)

)
F (xi, n̂

′)

M ρ(xi)
(8)

5 Iteration

Using a more brief operator notation, equation 1 is written as

L =

∫ ∞
0

ds G(s) S (9)

where the production of G times S implicitly includes convolution over space
and angle. The path length segmentation result in equation 5 now looks like

L =

∫ s∗

0

ds G(s) S +

∫ ∞
0

ds G(s) G(s∗) S (10)

Note that the segmentation process can be applied to the second term to give

L =

∫ s∗

0

ds G(s) S +

∫ s∗

0

ds G(s) G(s∗) S +

∫ ∞
0

ds G(s) G(2s∗) S (11)

In this expression, we have used the fact that G(s∗)G(s∗) = G(2s∗). This
expansion can be iterated indefinitely, to give

L =

∫ s∗

0

ds G(s)

( ∞∑
n=0

G(ns∗)

)
S (12)

Defining the kernel H as1

H(x, n̂,x′, n̂′) =

∞∑
n=0

G(ns∗,x, n̂,x′, n̂′) (13)

The full radiative transfer solution now looks like

L(x, n̂) =

∫ s∗

0

ds

∫
d3x′

∫
dΩ′ G(s,x, n̂,x′, n̂′) J(x′, n̂′) (14)

where the “source” is

J(x, n̂) =

∫
d3x′

∫
dΩ′ H(x, n̂,x′, n̂′) S(x′, n̂′) (15)

Similar to the previous discussion, we can use spatial Monte Carlo sampling
to reduce this to

L(x, n̂) =

∫
d3x′ ρ(x′)

M

M∑
i=1

∫ s∗

0

ds

∫
dΩ′ G(s,x, n̂,xi, n̂

′)
J(xi, n̂

′)

ρ(xi)
(16)

1Note that, because the RTE is a linear integro-differential equation, the infinite sum can
be evaluated in operator notation as H =

∑∞
n=0

G(ns∗) = (1 −G(s∗))−1.
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This form of the radiance has several very desireable features. First, as
written it does not approximate the scattering behavior, although to implement
it in a renderer some approximation will have to be constructed for H. Second,
we are free to choose the integration distance s∗ so that it is convenient, i.e.
small enough that G(s) in equation 16 is reliably expressed as a single scatter
kernel. This effectively makes ray marching an accurate numerical means of
evaluating equation 16, with multiple faux lights J(xi, n̂

′)/ρ(xi). Third, all of
the compromises for numerical expedience occur in only two places: the Monte
Carlo distribution of points in space, and the approximation that will have to
be chosen for H, and consequently for J .

Regardless of the approximation scheme for J and the number of Monte
Carlo points, equation 16 is a systematic framework for attacking practical
computation of multiple scattering.

6 Single Scatter Ray March

Here we apply the single scatter expression for G in equation 16. This means we
assume that we can effectively choose s∗ to be small enough for single scatter
to be appropriate.

For single scatter, the kernel is

GSS(s,x, n̂,x′, n̂′) = T (s,x, n̂) δ(n̂− n̂′) δ(x− x′ − n̂s)

+

∫ s

0

ds′ T (s− s′,x, n̂) β(x− n̂(s− s′), n̂, n̂′) (17)

× δ (x− x′ − n̂′s′ − n̂(s− s′)) T (s′,x− n̂(s− s′), n̂′)

where β(x, n̂, n̂′) is the product of the spatially-varying scattering coefficient
and the spatially-varying phase function:

β(x, n̂, n̂′) = b(x) P (x, n̂, n̂′) (18)

and

T (s,x, n̂) = exp

(
−
∫ s

0

ds′ c (x− n̂(s− s′))
)

(19)

and c(x) is the spatially-varying extinction coefficient.
The two terms in the single scattering kernel divide up the radiance output

into two terms. For the first term the two delta functions mean that we do not
have to resort to Monte Carlo integration. Instead, we can apply the first single
scattering term to equation 14, to get

L0(x, n̂) =

∫ s∗

0

ds T (s,x, n̂) J(x− n̂s, n̂) (20)

For the second term there is only one delta function constraint, but it can be
used to specify n̂′ and s′ in terms of the other variables:

s′ =
|x− xi − n̂s|2

2 (s− n̂ · (x− xi))
(21)
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n̂′ =
x− xi − n̂(s− s′)

s′
(22)

The derivation of these expressions also makes it clear that there is a non-zero
contribution only when s > |x− xi| and s > n̂ · (x− xi).

With these, the second term for the radiance is

L1(x, n̂) =

∫
d3x′ ρ(xi)

M

M∑
i=1

∫ s∗

0

ds
T (s− s′,x, n̂)

s′2
β(x− n̂(s− s′), n̂, n̂′)

ρ(xi)

× T (s′,x− n̂(s− s′), n̂′) J(xi, n̂
′))

× Θ (s− |x− xi|)
× Θ (s− n̂ · (x− xi)) (23)

The last two factors in this expression are Heaviside step functions to insure the
constraints.
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