


Reprinted from SPIE Vol. 925—0cean Optics IX
© 1988 by the Society of Photo-Optical Instrumentation Engineers, Box 10, Bellingham, WA 98227-0010 USA

Finite-Difference Evolution of a
Scattered Laser Pulse in Ocean Water

J. Tessendorf, C. Piotrowski, R.L. Kelly

Areté Associates
P.O. Box 6024
Sherman Oaks, CA, 91413

ABSTRACT

The propagation of a finite-sized laser pulse through ocean water is
simulated. In-water absorption and scattering are included in the sim-
ulation by using an explicit finite-difference formulation of the
evolution equation equivalent to the time-dependent radiative transfer
equation. The finite-difference scheme assumes that the time step is
sufficiently small that the distance the light travels in one step is
less than one scattering length. It also includes a causal interpola-
tion algorithm which insures that the observed speed of light is equal
to the physical speed to within the spatial and temporal resolution of
the calculation. It is shown that the scheme is stable regardless of
the grid geometry. With only a few restrictions connecting the spa-
tial, angular, and temporal grids, it is also consistent. As guaran-
teed by Lax’s theorem, the consistency and stability of this scheme
imply that the finite-difference solution converges to the continuous
solution as the grids become dense. The propagation, absorption, and
scattering of a cylindrically symmetric pulse are shown, and the spread
of the pulse is calculated from the simulation.

1. INTRODUCTION

There is increasing interest in the use of pulsed laser beams in the

ocean, for example, in bottom mapping by airborne laser hydrography1

I
or in high-bandwidth underwater communications. The operational suc-
cess of such applications is limited by the extent of "pulse stretch-

ing" and other multiple scattering effects, as well as absorption. 1In
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order to assess scattering and absorption degradation on particular
designs, it is useful for system design and performance engineers to
have available analytic models of such effects. Analytical expressions
for ©pulse broadening have Dbeen constructed using small-angle
approximations and equivalencing range with propagation timez, but
these two assumptions are severely limited in predictive ability of the
evolution of the full light field. Monte Carlo methods have been used
to extract pulse properties in both water and‘clouds3, but these results
have not been reduced to models of the radiance field. 1In addition, it
may be difficult to calculate a full radiance field over a large volume
with good Monte Carlo statistics.

The aim of the efforts outlined below is to develop such models. The
approach is a combination of numerical and analytic methods for obtain-
ing the spatial and angular distribution of radiance of a pulse as it
evolves in time. A finite-difference code for the radiance distribu-
tion has been developed and is the principal subject of discussion in
the remaining sections. The algorithm on which this code is based
exhibits several advantages over finite-difference codes developed by
others4, including unconditional stability and propagation of 1ight at
only the physical speed. The numerical results from these calculations
can act as numerical experiments which can be compared with analytic
models under consideration. A particular model discussed below was
obtained from a non-rigorus approximate evaluation of a path integral

expression for the evolution operator satisfying the time-dependent
radiative transfer (TDRT) equation.

The starting point of both the numerical and analytic approaches is
with the evolution operator defined in the next section. All solutions
of the TDRT equation can be obtained from the evolution operator and
the initial radiance distribution, which is why it is natural to formu-
late the solution in this fashion. The evolution operator is formally

jdentical to the nradiative process" introduced by Preisendorfer5.
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2 a FINTTE-DIFFERENCE EVOLUTION AILGORITHM
The TDRT equation for the radiance L(s,%,n) at time s, position §, and

in direction n is

a A -2 A AA - A )

{§s+ n.¥ + ¢} Ii{s, x,n) = bfP(n,n’) Li{s,.x,n’3d n’
where ¢ is the total attenuation coefficient, b is the scattering coef-

A

ficient, and P(n,n’) is the unit-normalized phase function. The time s
is measured in units of length with s=vt, where t is time measured in
seconds and v is the speed of light in the ocean (~ 2.3 x 108 m/s). A
formal solution of this equation can be written in terms of a space

and angle convolution of an evolution operator with the initial dis-
tribution:

- A 3 r ) 4 p - _)' AA _).' A'
L(s,x,n) = [a’x a°n @&(s,x - x’,n,n’) L (27m%), (3]
- -+ Lo e 7 -+ fa i
where G(s,x - x’, n,n’) is the evolution operator and Lo(x’,n') is the

initial distribution. This is equivalent to the finite-difference

scheme
A AN Pt
L(s+As,§,n) = fd3x’dzn’ G(As,%—%’,n,n') L(s,%’,n’). (3)
The development of a finite-difference algorithm based on equation 3

which 1is suitable for numerical implementation is described by

Tessendorf.6 A partition of the unit sphere must be chosen, providing

a finite set of directions of propagation {ﬁk}, k =1,...,N, and a
corresponding set of solid angles {Aﬂk} such that

N

Z A0 = 4anm.

k=1 k

Restricting the size of the time step to be smaller than one scat-
tering length (As<<1l/b) allows an approximation of the expression for
the bin-averaged evolution operator G. The resulting algorithm is

- N - A

Lk(s+As,x) = exp(-cAs) 2 Tkk,(ﬁs) L (s,x-n As). (4)
k’=1 .

k k’
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The elements of the transition matrix T are

Tkk" = eXp(bﬁSP)kk: (3)

where the elements of the phase matrix P are

X 2 2 R
b == [aw| da'n'Pm,n); (6)
kic © B g 5

The radiance LK(S,§) is an average over bin k:
3 1 2 = %
Lk(s,x) = . fkd n L{(s,x,n).
k

A complete numerical alqorlthm follows from equation 4 once a set of
spatial grid points {x } and an 1nterpolat10n scheme for estimating

-

the radiance at the p01nts Ylk = Xy = rlﬁs are chosen. As denon-
strated by Tessendorf,6 this algorithm is unconditionally stable.
When an appropriate interpolation is used, the original TDRT equation
is reproduced as the spatial, angular, and temporal grids become
arbitrarily dense, i.e., the algorithm is consistent. From Lax’s
theorem7, the solution from this algorithm converges to the continuous
solution. There is considerable freedom in choosing the spatlal grid
relative to the partition of the unit sphere and the time Step , but
the interpolation algorithm must be chosen carefully to insure the

correct speed of propagation.

Most interpolation schemes allow the radiance to propagate at a speed
faster than the physical speed of light. The reason for this is that
interpolation using points surrounding the point x - n bs usually
includes points which 1lie at a distance greater than As from §

consequently, in a single time step radiance travels more than As,
which produces acausal behavior. The problem is eliminated by using

the following set of steps, called "causal interpolation® (CL)::
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(a)

(b)

(c)

(d)

(e)

A position-, direction-, and time-dependent length scale ﬂik(s) is
defined which replaces the time step length As in the interpolation
formula. The modified algorithm is

N
Lk(s+As,§i) = exp(—cAsirzl Tkk,(As)

X Lkss,xi— nk,iik,(s)) (7)

Choose the interpolation point §ik1(s) from the set of points
within a distance Eik(s) of §i, and within the angular bin ﬂk.
Generate the weights wikl(s) and interpolate the radiance. Typi-
cally, the set of points and weights used varies from time step to
time step.

Find the distance

Sik(s) = milx {lxi e xikl(s)l}'
which is the greatest distance light traveled in the direction ﬁk
to reach §i during this time step.

Update Eik to the next time step by the procedure

Eik(s+ﬂs) = Eik(s) + As - Sik(s).

A time step index mik(gz is defined to account for situations in
which no points except x, are found for the interpolation.
mik(s) is equal to the number of time steps backward the
distribution must be sampled. For situations in which points in
addition to 21 were found in the previous time step, mik(s) = 1.

If no points in addition to }i were found, mik(s) = mik(s—As)
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+ 1. Equation 7 is the algorithm used when mik,(s) =i u). o BOE
larger values, the algorithm is generalized to

= N

L, (stAs,x );’ilexp {-cm, ., (s)As) Tkk,(mik,hs)

ik:—l)Aeri = nkrgik: (S))

The consistency of the finite-difference algorithm is maintained under
CI because As < Eik(s) < As + 0;yr Where 04k is the local grid spacing,
so that Eik+As as 0,;,20, restoring the original finite-difference

algorithm. After m time steps, the apparent speed in direction ﬁk at

X. 1s
1

o
app = ik
Vik (S) o 1 £ 0 ( s )l

where s=mAs, so that the apparent speed of 1light resulting from this
algorithm is the physical speed plus a term which vanishes with time.

3. THE CALCULATION
The finite-difference algorithm described in the previous section was
coded and executed in FORTRAN on a VAX 11/785 for the propragation of a
cylindrically symmetric pulse through 100 meters of ocean with no
absorption (a=0), a scattering coefficient b=0.1m *

r and a phase
function obtained by a piecewise fit to Petzold’s data® (see Figure 1).

Cylindrical symmetry is the property that the radiance distribution is
invariant when the spatial and directional azimuthal angles are rotated
rigidly together. If the propagation direction is given by the angle
(6,9) in spherical coordinates, and the position by (p,%2,2z) in
cylindrical coordinates, then the symmetry is

L(s,p,%,2,0,8) = L(s,p,® + A,z,0,¢ + A). (10)
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The FORTRAN code obtains the radiance in the plane ¢=0 at each time
step. This requires knowledge of the radiance at non-zero gpatial
azimuths in each previous time step, which is obtained using equation 10.
The unit sphere was partitioned into 26 direction bins, with an equi-
angular division of 8 into 5 regions, and an equi-angular division of ¢
into 8 regions for the bins away from 8=0° and 180° The spatial grid
in the ¢=0 plane is rectangular, with grid Spaéing Ap= Az = 1m.
Initially, the number of points in the p- and z- directions is Np = 11
and Nz = J10. As the pulse propagates, the grid expands in the z-
direction to a maximum of NZ = 102. The initial distribution of the
pulse has energy in the forward direction bin only, at the single grid
point at z = 1m on the z-axis, the axis of propagation. The evolving
distribution was obtained for 95 time steps, which required about 15
hours of cpu time and 3/4 Mbyte of memory on the VAX 112785,

Contour plots of the resulting distribution in the forward direction in
the (p,2z) plane at several times are bPresented in Figure 2. The
contour levels have a maximum value of .1LO, where L0 is the initial
pulse strength, and decrease by a factor of 10 to a minimum of 10_6 E .
If causal interpolation had not been used, the edge of the distri-
bution would have the shape of a square, with the sides moving at the
physical speed of light in the p- and z- directions, and the corners of
the square propagating faster than the physical speed.

4. MODELING

The development of analytic models for the radiance distribution based

on numerical work such as described in the previous sections is in its
initial stages. Two approaches have been examined: (1) a pheno-
menological method in which the numerical data is searched for
patterns which can be expressed in analytic form; (2) a highly
theoretical method using approximate evaluation of a path integral
expression, the result of which could be compared with the numerical

data to fix a constant in the evaluation and to determine the condi-

tions of validity of the approximation. From the preliminary results

28 / SPIE Vol. 925 Ocean Optics IX (1988)



presented here, these two approaches appear to be complementary in that
the phenomenological method is useful for modeling the development of
the distribution in the region near the pulse, and the approximate
theoretical method gives the distribution many scattering 1lengths
behind the pulse.

The common theme in both approaches is to concentrate on developing
analytic expressions for the evolution operator. The initial
distribution of the calculation in Section 3 approximates a point
distribution to within the resolution of the grids, so the dis-
tribution at later times should correspond to that of the evolution
operator in a cylindrical geometry.

In the context of the phenomenological approach, Figure 3 is a plot of
the maximum value of the radiance at each time in the forward-direction

(k=1) . The peak attenuates in a simple exponential way
-K_s
Lpeak(s) Lpeak(o) e p, {11}
with Kp ~ 0.0262 m_l. Calculations with several choices of values for

a and b show that this attenuation coefficient can be written as

K, =8+ B0 Y, (12)

This expression 1is exactly what would be expected if multiple-
scattering could be ignored, since the finite-difference equation in
the forward direction would become

L,(s + As,%) ~ e KPAS Ll(s,§ - 31 As).
This result implies that energy radiates from the propagating "core" by
single-scattering, with multiple-scattering important only in the
region behind the pulse.
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Figures 4 and 5 illustrate the evolution of the radiance distribution
at the initial position from a single scattering behavior to a
multiple-scattering one. The angular distribution after one time step
mimics that of the phase function (compare the relative magnitudes of
the forward and backward values in Figure 4). With time however, the
relative magnitudes of the radiance in each direction converge, as
depicted in Figure 5. (The oscillations in the 45° ang 135° directions
in Figure 5 are due to the causal interpolation Procedure, and are
damped with time as the spatial distribution becomes uniform. They can
also be suppressed by using a densor spatial grid. The oscillations will
never grow beyond their amplitude at early times because the finite-
difference algorithm is unconditionally stable.) A general rule of
thumb which follows is that at great distances behind the pPulse, the
distribution become relatively insensitive to angle.

The "theoretical" approach is an attempt to approximately solve the
TDRT equation for the evolution operator. Perkins solved the TDRT
equation in the small-angle approximationg. That solution predicts,
however, that the angular distribution is always sensitive to angle.
The method adopted here begins with a path integral representation of
the evolution operator described in the Appendix of Reference 6. An

approximate evaluation of the path integral has been obtained in the
form

G(s,§-§’,ﬁ,ﬁ') = G_(8) (ﬂbC(s)Y3/2e -A(s)_ n - n’B(s)

+ exp { = ﬂic(s) (x - X' - (h + ﬁ')o(s))2},

with

GD(S) = in sinh/wcs )—3/2

W
o
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Yo sinh(2wcs)

A(s) = . B
2pb sinh (wcs)
w
RO - oo,
B (5] ~ @b sinh(wcs)

c(s) = [wc3sinh(mcs)]-l {(wcs)sinh(wcs)

£ 2] — cosh(wcs))}

D(s) = [wcsinhz(wcs)]_l [(0,S) (cosh(w_s)-1)].

The approximations required to obtain this expression are:
1: The phase function includes only forward scattering, with a mean-
square width g defined by

p=2n [ "d(coss) sin®s p(4).

For ocean water (g~.03

2 The magnitude x - x*| < s, although a more precise statement of
the range of validity of the expression will have to be obtained

from numerical data.

In particular, this expression does not assume a small-angle approxi-
mation. The constant 1/&)c is a diffusion length arising from the
approximation, and must be determined from numerical data. The reason
it is indefinite is that this expression is not a correct approximate
evaluation of the path integral. Instead ® should be a function of

time. Nevertheless this expression could be reasonable at positions
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sufficiently far behind the Pulse that the angular distribution is
dominated by many forward-scattering events. The predicted angular
distribution at the initial position is

G(s,0,n,n’) « exp { it o Ebc?s)]}'

which becomes insensitive to angle when s >> 1/mc. More numercial work
" 3 ¥ =%

1s needed to determine the value of @, and the ranges of x - %’ and s
over which the expression is valid.

: 5. CONCILUSIONS

The finite-difference algorithm and code presented here has two
properties not available in other algorithms or codes: unconditional
stability (i.e., independent of choice of grids), and Propagation of
the radiance distribution at the correct physical speed in alil
directions at all positions. It does suffer from the ray effects found
in other algorithms that partition the propagation directions (6,0)
into discrete bins. Nevertheless the numerical experiments which can
be generated should prove useful in the development of new models of
in-water pulse bropagation.
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