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Fradkin-type propagator representations are written for solutions to Navier Stokes and related
equations, for arbitrary dimension D and arbitrary source geometry. In the limit of very small
viscosity, velocity/vorticity solutions are given in terms of Cauchy position coordinates g of a
particle advected by the velocity flow v, using a set of coupled equations for g and v. For localized
point vortices in two dimensions, the vectors g become the time-dependent position coordinates of
interacting vortices, and our equations reduce to those of the familiar, coupled vortex problem.
The formalism is, however, able to discuss three-dimensional vortex motion, discrete or
continuous, including the effects of vortex stretching. The mathematical structure of vortex
stretching in a D-dimensional fluid without boundaries is conveniently described in terms of an
SU(D ) representation of these equations. Several simple examples are given in two dimensions, to

anchor the method in the context of previously known, exact solutions. In three dimensions,
vortex stretching effects are approximated using a previous “strong coupling” technique of
particle physics, enabling one to build a crude model of the intermittent growth of enstrophy,
which may signal the onset of turbulence. For isotropic turbulence, the possibility of a singularity
in the inviscid enstrophy at a finite time is related to the behavior of a single function

characterizing the intermittency.

PACS numbers: 47.30. + s, 47.10. + g, 03.40.Gc¢

I. INTRODUCTION

Motivated by recent work suggesting chaotic behavior
of a particle advected by the velocity flow due to three or
more interacting vortices,' we would like to present a for-
malism based directly on the coupled velocity/vorticity
equations of Navier—Stokes (NS) theory, which should be
capable of describing situations involving specified, exter-
nally produced vortices as well as the possibility of spontane-
ous vortex generation at low viscosity. Based on this formal-
ism, in this paper we offer an alternate way of characterizing
known, two-dimensional flows, and a somewhat crude pic-
ture of the onset of turbulence in an infinite, three-dimen-
sional, inviscid fluid without rigid boundaries.

To the best of our knowledge, the representations de-
rived here are new; they are based upon a Green’s function
method invented by Fradkin® in the context of scattering
problems in potential theory and quantum field theory.
Fradkin’s original functional differential forms may readily
be converted to an equivalent functional integral formalism,
and when applied to the NS problem it turns out that a great
simplification can be made in the limit of small viscosity.
There, the necessary functional integral can be well repre-
sented by an extremum method, analogous to the small % or
large IV expansions of quantum field theory, with corrections
given in ascending powers of viscosity. We expect the spon-
taneous generation of vortices to be associated with such
corrections; however, the general structure for arbitrary spa-
tial dimension D and arbitrary source geometry and time
dependence is most simply discussed in the limit of zero vis-
cosity.

*'Supported in part by the U.S. Department of Energy under Contract DE-
ACO02-T6ER03130.A009—Task A.
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In this formalism, solutions to the inviscid NS problem
are given in terms of a time-dependent position vector of a
fictitious particle, or of a passive marker, whose position and
velocity are codetermined by the exact velocity flow, in a
construction which emerges from the extremum calculation
appropriate to the small viscosity limit. For a system of dis-
tinct, point vortices, these marker coordinates represent the
time- and position-dependent coordinates of the vortices
themselves. An interesting feature of this method, which ex-
plicitly couples velocity and vorticity flow of the NS system
in D dimensions, is the natural appearance of what may be an
underlying SU(D ) symmetry, associated in a nontrivial way
with the presence of vortex stretching. - ]

In this paper we present an alternative way of charac-
terizing known, two-dimensional velocity/vortex flows,
along with some simple generalizations, and a somewhat
crude picture of what may be the onset of turbulence in an
infinite, three-dimensional, inviscid fluid without ri gid
boundaries. This is easiest to see for the case of isotropic
turbulence, where there is but one length scale characteriz-
ing the spatial scale of vortex motion. In the nonisotropic
case where (at least) two length scales enter, there is another
function which must be determined, and which acts to damp
the intermittent growth, and the possibility of a finite-time
singularity. These results, special to three dimensions, fol-
low from a representation of vortex stretching effects in
terms of the growth of a nonunitary SU(3) matrix, whose
components are related to time integrals of velocity gradi-
ents. With the aid of a “strong-coupling” technique pre-
viously used in particle physics, one can obtain approximate
forms valid for large velocity gradients. The nonlinearities of
the problem are still formidable; but, in a crude, dimensional
way, it is easy to watch the growth of vorticity, and, in an
intermittent way, as a function which essentially controls the
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increase of enstrophy becomes large, not smoothly but in
spurts.

The output of our method is closely related to solutions
for vorticity suggested more than a century ago by Cauchy,?
o (1) = w,(1,)d/da,X(a,t ), X(a,r,) = a, in terms of the posi-
tion coordinates X(a,? ) of the moving, material fluid; our
“Marker” coordinates g are in essence Cauchy’s X, general-
ized to arbitrary vorticity source distributions.

Il. THE FORMALISM

‘We begin with the standard NS equation

v+ (vV)Iv—1vWiv= —Vp 4 flrr), (1)
where p denotes the fluid pressure, v is the kinematic viscos-

ity, and f represents a divergenceless velocity source. Taking
the curl of (1) generates

3,0 + (vV)o — vWo — (o-V)v = gr,t), (2)
where @ = V X v is the vorticity and g denotes a correspond-
ing divergenceless vorticity source, g = V X f. For a specified
velocity field v(r,z ), (2) is linear in @, and can be solved in
terms of an appropriate, if formal, functional representation,
® = w{v}. That solution must then be combined with the
relation @ = VX v, or its inverse v = v, — V2V X @, where
¥, is some specified, initial velocity field in the absence of g
and w, satisfying V <X v, = 0. Other methods of resolution of
(2) are possible, but this is the simplest for our purposes; in
fact, we shall further simplify matters by supposing that v,
denotes a constant, not-too-large velocity flow. A vorticity
source of arbitrary strength g(r,? ) is then turned on atz = 0,
and we ask for the subsequent velocity/vorticity flow.

The corresponding solution to (2), for specified v(r,z )
and under the assumption that @ vanishes for all <0, is
given by

e fd 2y f Ao G (XYLl 015 (VPo): 3)

where G [v] denotes that casual Green’s function which satis-
fies®

D
E { [ar 3} (v-V] T sz]éab =5 abva }Gb:{r’Y;:LvOiv}

5=1
=8 (r — y)8(t — yo).c (4)
in D spatial dimensions. Using an obvious shorthand, one
can write the formal equivalent of (4)
([d: + (v-¥) —+V?] — (@V))G [v] =1, (5)
and a corresponding formal representation

G [v] = fmds exp{ —s([d, + (v¥V) — vV?] — (v))}.
(6)

It will become clear, subsequently, that (6) does indeed define
aretarded Green’s function. The symbol v in (5) and (6) now
denotes an operator with matrix elements diagonal in config-
uration space and time, (X,%,|v|¥.po)
= v(%,%,)5% (x — ¥)8(x, — ¥o), while 3, and V retain their
customary operator meanings.
It is convenient to rewrite the square bracket of (6) as

[6. — vV — vw/2v) + v /4v],
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since it is assumed that v is divergenceless, =, [d,,v,] = 0;
all the complications of the representation that follow arise
because a general component of v(x,x,) does not commute
with ¥V, or with V2. With this step, one has

G [v] =J:Dds

2
><exp{ —-5([5! —v— l) i ] —(au))}.
2v 4v
(7)
The essence of the Fradkin method is to introduce an
auxiliary, s-dependent field whose fluctuations reproduce
the effects of noncommutivity of (&,,V) and v. Thus, the inte-

grand of (7) is replaced by

o= (e~ [ (20 3,
ey ol D) al) e

where u(s’) denotes a D-dimensional vector whose parame-
tric dependence gives meaning to the s'-ordered exponential
of (8); that is, in the expansion of (exp[ — f§ds’ 4 (s')]) ., the
noncommuting terms A (s,)---A4 (s, ) are to be arranged in an
ordered fashion, with those bearing the larger values of s,

standing to the left.® In terms of (8), (7) may be rewritten as

G [v] =fds TS _o. ©)

The advantage of this procedure is that differential
equations can now be written for U (s), as a function of sand a
functional of u:

RS
= Vu{s]-(V = —2"; )] = (é?v))U(s},

00 = v(v it )U,
Suls) 2v

under the boundary condition U (s = 0) = 1. The solution to
this pair of equations can be written in the form

U{s}:exp[i'rieds' & ]—V(s}, (10)
Vv (4]

Su(s’)
where

Vis)= (exp{ — J:ds'

X([0, + ¢ (xxs) — 1] — @)}

and

with € a small, positive parameter subsequently set equal to
zero, and @ (x,%xy;5") = V2 (x,%x,)/4v + iu(s’)-v(x,x,). Strictly
speaking, one cannot display (x,x,) dependence before taking
matrix elements of G [v], and at this stage it should be under-
stood that we are calculating (x,x,|G [v], with the ¥V (s) of (10)
replaced by {x,x,| ¥ (s).

To find a representation for ¥ (s), one may set

Vis)= exp{ — J:ds' [, —vuls')V] }-W{s}, (11)

so that W (s) satisfies the equation
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aW .
Sl =exp{—Lds [2. —vu[s’}-V]}
XA (x,x035) — [Fv(x.%0)13}

Xexp{ -+ J:ds' [4, — vu(s')V] }-W,

— — = [q& (x —v (:ds' ufs’),x, + S;S)

= (au(x % O-ds’ u(s').xo 4+ s))]-W. (12)

Because of the particular sequence of translational operators
written in (12), the (x,x,) dependence inside W (s) is the same
on both sides of (12); and hence (12) represents a differential
equation that can be solved in terms of actual functions rath-
er than formal operators.

Consider now the tensor quantity d, v, (x,x,), written in
matrix notation as Q,, (x,x,). Because v is assumed divergen-
celess, =,0,, = 0, and this D X D matrix is traceless. But
any such matrix can be written in terms of the fundamental,
or defining representation of SU(D ),

Qoo =Fpva = 3> A)awthi(x.%0), (13)

f=1
where the 3, are a set of appropriate, complex, coefficient
functions, forming a “vector™ in the space of D 2> — 1 dimen-
sions. For example, for D = 3, the A, may be represented by
the eight, traceless, Gell-Mann matrices.® Writing out all
matrix indices, (12) takes the form
W, i

— % == [5ab¢ (x — v | ds’ ufs'),x, + s;s)
ds 0

= Z[’{'a')ablj’i(x — 7 OdS’ u(s’),xo + s)] w,.,

and, with the boundary condition W, [s = 0] = §,,, has the
solution

Wis) = exp( = Lsds' .4 (x = 'ds”u[s”),xo + 5’;3'))
(exp[ s [aem(x—vf astusrhz+5)]) .

(14)

If the vortex stretching term was missing from the origi-
nal Eq. (2), (e-V)v—0, this would be equivalent to 3, = 0,
and G [v] would be diagonal in SU(D ) space. This is precisely
the case for D = 2, where the nonsinglet terms can always be
“gauged away,” and possibly for those situations in three
dimensions where the vorticity source geometry may be suf-
ficiently symmetric to enforce this “singlet” property. In
general, however, the specification of vorticity in terms of a
given velocity field is a nonabelian problem of the same order
of difficulty as that of calculating a particle propagator in the
presence of a specified field containing isotopic or color de-
grees of freedom. There is no known way of finding an exact
solution to either problem.

For the moment, we designate the 5* ordered bracket of
(14) by the matrix symbol U [vu], and postpone a discussion
of its properties until the three-dimensional analysis of Sec.
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IV. All the effects of vortex stretching are contained in U.
For the two-dimensional examples of Sec. III, one may set
U =1, and study the properties of a singlet G [v],
[2: + (vV) —v¥*]G [v] = 1. (5)
Grouping together the results of Egs. (9)—(11) and (14),
we have the representation

Glv] = fwds-exp-[ iJ-)(.is’ &
o v Jo  Su’(s)

-exp[ — fds’ & (x +v| ds" uls")xyg — 5+ s’;s’)]
(o] £

T tvulexp| — (a5 3, —vsvi}|
CC,;(X9Y;XQ=J’0| v)

= (%,%,|G [v]|¥.¥5)

= s 2
iJ’ ds-exp L J- ds’ o
o v Jo  Su’s)

-exp[ = de’ ¢ (x +v| ds” uls")x, — s+ s,s)]
0 £

.U [vu]-c‘i”(x — ¥+ vf ds’' u{s'])
(e

Bxe — Yo —5) | u_o> (15)
where the (x,x,) arguments of U may be replaced by (y.p,).
From the temporal § function of (15), and the positive range
of integration of the variable s, it is clear that this is a retard-
ed Green’s function, nonzero only for x,>y,.

Equation (15) is an example of the Fradkin representa-

tion, given in terms of the action of a functional differential
operator,

T
=[]

a la Schwinger. For some purposes, however, it is more con-
venient to recast (15) into the form of functional integration,
and effectively into a path integral, a la Feynman. Imagine
the continuum range of integration broken up into a summa-
tion over a set of discrete points s,, and for each s; replace

eX.p[ L —62 ]
v Su’(s,)

by its Gaussian equivalent. Then take the limit of arbitrarily
dense s,, to define the functional integral replacement

exp[ % J:ds‘ 5112;) ]: Nis)|d [x ()] —exp[- { f ds'x(s')?

+ [ as'x "‘Eﬁ_') ]
where ;
N o) = [d Lo exp| — 2 [[as 1], (16)

With (16), any operation of form

Lo 52
exP[jJ;dS W]'F{“H..:o
becomes N (s)-5 d [y] exp[ — (v/4)s5 ds' x*s")]-F {x}, and
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{15) may be rewritten as
G xyxoolt) = 00—y N 6) [ d 11 87(x —y ++ ds'als) T [vx]

-exp[ — % J’ ds’ y3(s’) — J:)ds' & (x +v| ds” xls")xe — 5+ s’;s')]
(8] 5 5= X, — Vo

where ¢ is the same function as that of (10), with ¥(s’) replacing u(s'). A final rescaling, x(s') = (s')/v, puts this into the more
useful, and indeed more compelling, form

G (X¥sxowolv) = 0 (X0 — yo)-N* [ d [£ 167 (x oy J:ds'g{s’})-ﬁ [£]

.exp[ — % J:ds' (g(g‘) + vy — J:ds”g{s"},yo + s’))zl
where

(V1= = [ate) exp[ = ﬁfds’ g{s’)z],

and & (x) denotes the unit positive step function, 8 (x) = + 1,x> 0,6 (x) = 0,x < 0. The T of (17)is now given by its formin (14),
with the (x, x,) arguments of ¥, replaced by (¥,V,). So far, this is an exact resolution of Eq. (5).
Even a cursory glance at (17) leaves no doubt about the next, appropriate step to be taken in the limit of small viscosity. As

v—s0, the only appreciable contribution to the functional integral will come from vectors £(s’) chosen to minimize the effective
action

1 S o A2
ste1= - [(as [g)+v(y — [ a5 66+ )
4v Jo o
which vectors must then satisfy the Euler condition 85 /8 = 0 at some £%s,), s>s,>0, given by

0= J:ds' [6}55(.&" —5,) —d.vp (Y — J:ds" E(s").yo + .s")-@ (s" — sl)].[gb(s’} Ly (y — J:ds" E(s”).¥0 + 51)]‘

» (17)

—
The appropriate solution to this equation is, clearly, that with

iven by the vector £(s’) satisfyin
£ &= T (s1alQss,b)

E90) + v, (y - J: ds” §%s" )y + s') 0 (18) as il st (y = f B 51)
(4]
since it is only the solution to (18) which can provide a non- e 3 w
/ — 06— 50,0,y — [ @5 Bivohso+5.) + [ as
0 o

vanishing contribution to the functional integral of (17), as
v—0. Because of the (y,y,) dependence of the v of (18), §” is <
o1 —s)0t —s) Aoy~ [ a5 B vadre+s )
(o]

then an implicit function of these variables.
In the limit of small v, we approximately evaluate (17)
by expanding &(s’) about §'¥(s;y.,), and retaining only qua-

dratic (£ — £ ) dependence in S. The resulting functional
integral is then Gaussian, and can be evaluated without diffi-
culty; taking into account the normalization factor &', and
dropping the superscript of £ ', one obtains

G (%,¥:X0.Yo V), 0
= 6 (xy — yo)-expl — (1/2) TrIn[1 + Q 1N-UI[E]

5 (x—y + [[as ssv0) , (19)
0 5= X5 — Vu
where the determinantal factor is defined by
1 5
Trin[l + Q] =J dflj ds, 2 (s1,a2|Q
0 (8] o
1 +4Q 17 Yspad
1 5 s
:J- dA j dsi J‘ dsz Z(SIraIQ !SZ!b)
o o [\ S
s, |[[1+AQ 17 |5 a), (20)
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5
-3y, (y = J. ds” E(s”;¥.Yo)-Yo + S')-
o

Corrections to (19) and (20), expressed in ascending powers
of v, can be generated in the standard way.

One very great simplification of these equations, the
replacement of the determinantal factor of (19) by unity, can
be seen from the following argument. Defining an operator
R by its matrix elements

{a,s;|R |b,s3)

=By s (y g f ds' E(5"syPolde + si),

it is then possible to replace the operator 1 + Q by
(1+R™)1+R)=(1+R)"(1+ R),wherethesuperscript
T denotes ““transposed’” in both spatial (y) and s variables. It
follows that TrIn(l + Q) =TrIn(1 + R)” + Trin(l + R)
= 2 Tr In(1 + R), and one may now examine the latter,
simpler quantity,

e [_I}!+I

2 Tr[R'].

=1 I
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But because R is a “retarded” operator [all matrix elements
{as, |R |bsy ) proportional to factors 8 (s, — s;)], the trace
operation vanishes for />>2; and because V-v = 0, the trace
operation also vanishes for / = 1. Hence this term vanishes,
and exp [ — 1 Tr In(1 4 Q)] may be replaced by unity.
However, the properties of the matrix elements of @, or of R,
are of considerable importance when one asks for small-»
corrections to (19).

The special properties of the extremum vector §(s,;¥,V,)
are central to the solutions that follow. If, in terms of a speci-
fied v(x,x,), the velocity vector § is to satisfy (18), it is easy to
see that

d& wo dv +{v-Vy}v], (21)

ds’ dy,
v =v(y — f,ds'E,y, + 5'), so that variation of the parameter
s’ corresponds to the full, nonlinear, *hydrodynamic’ vari-
ation of v with respect to space and time. The rhs of (21) is not
zero, as it would be for the motion of a simple shock,” but is
given by whatever is forced upon g by the form of the speci-
fied velocity field v(x,z ), via (18). We interpret (s;¥,y,) as the
velocity vector of a fictitious particle, or passive marker, ad-
vected by v according to (18). If v is sufficiently smooth, § can
always be developed in a power series in 5/,

E(s¥v0)>~ — v(y.yo) + S’—[ o (V'V)V] +y
dvg =0
but, because s = x, — y, can be arbitrarily large, this will not
in general be a practical way to construct &.
It will turn out to be useful to integrate (18) once and
consider the position vector of this passive marker. Setting

5a(5"5¥.p0) =ldx,/ds') (s';y.00) and 5 ds’ E(s';¥.p)

a(s;¥.Ve)=¥y — 4x(s,;¥.0,) as the marker’s position vector,
thereby replacing (18) by

abiyro) =y + [ ds' viasyore + ). (22)
0

For a problem dealing with discrete, pointlike vortices, the g
vectors turn out to represent the time-dependent position
vectors of the vortices themselves.

With (3), (19), and (22), we are now in a position to calcu-
late vorticity and its corresponding velocity in the v—0 lim-
1t:

@4 (X, %) = jdp}’ dyy G s (X, ¥:X0:.V0|0)g5 (V. 20) (23a)

and
v(r,t) = v, + jd Px Gylr — x)V X o(x,t), (23b)

where G,(Q ) denotes the appropriate, D-dimensional
Green’s function, G, = — V~°. For simplicity and clarity,
we henceforth use the three-dimensional form, G,(Q)
= [47|Q|1 ', except when reference is made to D = 2. We
shall assume the vorticity is of finite spatial extent, and freely

drop surface terms, replacing (23b), for example, by
v(r,t) = vy + LJﬁd 2 [v,- ! ]Xm{x,t L (23]
4 Ir — x|
Note that there is a zero contribution to the integrand of
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(23c) when x sweeps over the point r, for, while apparently

singular, that contribution vanishes by symmetry, as in the

relation fd *p p(p?) ? explip(r — x)]|, _ ]
Combining (23) and (18), we obtain

6 L
Up(rt) =0l + ﬁ”— J.d 3yf dyo £5(¥.V0)

ir — als;y.70) 1
Ir — als;y.p0)®
where s =7 — p,; and 5,,5 [als;;¥.00)]1 denotes
(exp [Z; 4,05 ds’ ¢:(als";¥.00).v0 + 5°) ).+ - Equations (22)
and (24) represent our resolution of the inviscid N'S problem.
With the aid of (24), one can rewrite (22) in the form

oS 3¥ Vo) = ¥, + Vs,

€upy st (FF
+ fd yf ds J- dayh
4 o e

'Uyé'gstyfd’é)
. 19515%5520) — 915”5505
lals";¥.20) — als’;y'w5)1°
where the U of (25) denotes
(exp[Z, 4, 55ds” lals";y'w6)wb +5")]) -

It is perhaps not an easy equation to solve exactly, but there
are, perhaps, reasonably simple vorticity source distribu-
tions where exact or reasonably simple approximations to
(25) may be devised. Once one has solved, or approximated
(25), knowledge of q(s;y.y,) can then be used to construct the
desired v(r,? ). Equation (25) provides, in essence, a determin-
ing equation for the Cauchy Lagrangian-position coordi-
nates, generalized to arbitrary source distributions g(y,p,).

U, [als;;y.50)1, (24)

Iil. EXAMPLES

For simplicity we henceforth consider a “one-shot™
vorticity source, turning on and off rapidly at #~0, and mo-
deled by g(y.y,) = g(y)-8(y,); that is, at # = 0 a specified vorti-
city distribution is inserted into the fluid, and we watch the
resulting fluid flow develop in time. Generalizations corre-
spond to a continuous input of vorticity are easily written
down for every example, but will not be considered in this
paper. The examples of this section will deal with two-di-
mensional flows, for which we set U = 1 and use the D = 2

form of G, = — V2 In this way (24) and (25) become
i) =vo + 2L a2 gy LmaEA]
2 Ir — alt;¥)|”

and

R e S
qis;¥) =¥ + vo5; + —f ds fd v gly')
27 Jo

Lals’sy) — als’sy)] 27)
lals'sy) — alsy )|
where the y, = O coordinate of ¢ has been suppressed. The
radius vector is here given by r = ix, + jx,, with the source
g(y) pointing in the & direction; the vector y is understood to
lie in the (x,,x,) plane. We discuss the solution of this pair of
equations for the following three situations.
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{A) One very thin vortex tube, of radius much less than
any other length dimension, modeled by
= g6(y) = g6(y)/ 2my.
Here, both the y and y’ variables of (26) and (27) are to be set
equal to zero. Remembering the comment following (23c),
which is also true in two dimensions, one has, directly,
q(s,;0) = v,3, as the solution of (27). There then follows

L a1t [r—owur]
W Vork o B s (28a)
w(r,f) =6 (1)gb(r — vyl ). (28b)

Equations (28) should be exact; that is, they should simulta-
neously satisfy the Euler equation (d, + (v-V))e = g8(r)é(¢ ),
together with @ = V 3 v. This is easily verified.

(B) A circular vortex sheet, modeled by a dense collec-
tion of very thin vortex tubes, all of equal strength, all point-
ing in the % direction, and arranged in a ring of radius 7, in
the (x,, x,) plane. In the limit of a continuous number of such
thin tubes, we write g(y) = (G/r,)5(v — r,), and for simplicity
set vo = 0. In the (x,, x,) plane, we set |y| = |y’| = 7, and
q(s5¥) — a (5;0) = ig, (530 ) + jg» (s,;0 ). Substitating these
into the two-dimensional form of (27) yields the pair of equa-
tions

2 »
g.ls;8) = rgcos 6 — Gf gy
2
(4:50) — :(530)] o)
lals's0) — als:0)|* ~
: 5 2 d9 v
g.(5;0) = rysin 6 —|—GJ ds’j _—
0 0
[g.(5:0) — g4(s:€8 )] (29b)

lals’;0) — als’:0)1>
where y = ir, cos € + jr,sin 6.
Equations (29) can be solved with the aid of the ansatz
g1 = Pals,) cos 8 — B, (s) sin O,
(30)
g, = ¢,(s) sin & + &, (s) cos 6,
which, when substituted into (29), leads to the pair of equa-
tions

G 8,15
B , 31
e 2J; " 16260+ 626)] 2
$als')
¥ (31b)
ol J [P26)+0260]

Equations (31) may be solved most simply by rewriting them
as differential equations parametrized in the form

Pals) = pls) cos Y(s), &,(s) = pls) sin ¢fs).
One immediately finds that p(s,) = const = r,, while
Pls) = (G /2r3)s. Regrouping and substituting into (30), one
has the solutions

g, =rocos[ @ + (G /2r3)s], q.=rosin [6 + (G /2r3)s].
(32)

Inserting (32) into (26), one finds

J.dﬂx
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Ir—aqr0)]

HERIE= ST

(33)

The quadrature of (33) can be performed, and yields
virt) =GX?(r), olr,t)=28) G/ r)8(r —r,), (34)

whereg (r)=r " r>r,, @ (r) = (2r,) ',r=rpande (r) =0,
r < 7, Again, (33) represents an exact solution to the inviscid
Euler equation. It will be noted that the special angular sym-
metry of the vorticity source distribution effectively removes
all the time dependence of the g, of (32), resulting in the
relatively simple form of (34), which indeed could have more
easily been guessed from an inspection of the original Euler
equation. However, in other situations where such symme-
try is lacking, our method may turn out to be useful.

{C) Two thin vortices of arbitrary strength generate a
soluble problem without the overwhelming symmetry of the
previousexample. Wetakeg(y) = £,8 (¥ — ¥,) + 28 (¥ — ¥2)
and write the pair of equations corresponding to (27),

[a.s") — (;2[5 )]
fiag 4 e . (35
a.(8) = ¥, + Vo5 + f = la:(s") — azls")]? S
10 [4(s") — au(s')]
s L e lrbl—mbll - g
%) = ¥2 + Vo5 + zﬂL B A .

Writing gfs) = q,(5) — @.(5), ¥y = ¥, — ¥2, G =g, + g, the
difference of Eqgs. (35) becomes

q{s1:y+G><fds' du - (36)
o |gls)]

which has a strong resemblance to the equations of example
(B). Since y is a vector in the (x,, x;) plane, perpendicular to
G, we can use §, G and $ < G as three orthogonal directions,

writing q(s) = PF,(s) + (92X G )F,(s). Substitution into (36)
then generates the pair of equations
Fl(s)=y—Gf gpse el g (37a)
o [Fi(s) + F3(s]

Fy(s)
[Fi)4+Fi601

Ffsl— 4+ 6 f ds" (37b)
0
with solution [by comparison with Egs. (31)]
Fi(s) = y cos(Gs/y?), Fsls) =y sin(Gs/p,).

Now that g(s) is known, one returns to the original Egs. (35)
to construct, by simple quadrature, the individual q,(s), g.(s);
for example,

q,(s) =¥, + Vo5 + %gz

xppanl 5 J R ]

and similarly for g,(s). These g,(¢ ) are then inserted into the
expression corresponding to {26) to obtain

6(:} [r—al)]

)=V + T 38
e s .
From (38) one calculates
w(r,t) =8|z )‘Z g6(r — q2)), (39)

showing that these vortices, inserted into the fluid at posi-
tions y, at ¢ = 0, subsequently move relative to the fixed co-
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ordinate system, or to each other, as specified by the time
dependence of the q,(¢). Again, in this problem of very thin
vortices, the “marker” coordinates have become those of the
vortices; and, again, it is easy to show that (38) and (39) form
an exact solution to the inviscid Euler equation. Of course,
these solutions are well known; their usual differential equa-
tion, given in terms of complex position coordinates,® can be
read off from the time derivative of Eqgs. (35).

Generalizations to the case of V point vortices may be
handled in the same manner. The complexity of the analysis,
of course, increases rapidly with &, while for N — 4 there is
evidence for a chaotic behavior of the solutions. !

IV. VORTEX STRETCHING

In this section we discuss some properties of the nonun-
itary matrix U relevant in three dimensions. For simplicity,
the analysis continues to assume that 2(r.yo) = g(¥)S(vy), us-
ing the source to insert an arbitrary vortex distribution into
the fluid at £ — 0. We suppress the Yo = Ocoordinate of g(s; y,
Yo) = gls; ¥), and first inspect the ¥ dependence of q, as ex-
pressed by (22).

Under the variation y—y + 5y,

Ay +8Y) =y + 5y + [ dv vials'y + 5v)),
0
or to first order in Sy,

(6yV)a. (s3y) = By, + f ds' [(6yV)g,(s'5y)]

[G.v.(als’;¥)s)].
If 8y has a nonzero component only in the & direction, this
becomes

9,q.(s;5) =6, + f ds' 8,4.(s":¥)-3,v.(als";y),5').  (40)
(o]

But (40) is just an cxpression of the integral equation whose
solution is the U of (25), since the quantity
Qea8)=3, 0. (a53¥),5) = Z,(4,)., ¥, (als;y).s) is precisely the in-
teraction term of the differential equation built from (40,
au., A
— 7 =0 (5) Tl ls), (41)
ds
where we have written U, (s)=3,q.(s;y), in anticipation of
this result. Thus, the exact solution to (41)is

)= (exp] [as 0 ). (42)

which is precisely the (v, = 0) quantity U of (25).

Knowing that the vortex stretching term U, is nothing
other than the spatial gradient of the vortex source, or mark-
er, coordinate d, ¢, (s;y) is interesting® and may even turn out
to be of some practical use in finding an approximate solu-
tion to (25). For the qualitative purpose of this paper, how-
ever, we will examine the behavior of I/ in terms of its SU(3)
coordinates.® The first task is to define the ¥, which follow
from the definition of Q and the properties of the Hermitian
Ay

For convenience, these properties—taken from Ref.
4—are grouped together in the Appendix, and will be used as

needed.
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From the definition, d, v, = (A+)as ;. application of the
trace property Tr[1,4;] = 28, leads to o, = 12004 )
d,v,. From the explicit forms of the Appendix, one then
constructs the components

Y =18v:+ dw,], o, =l — d,u; + A, 1,
¢3 = %[alvl +‘92’-’?.]x ¢ :é{allh +83-U,],

¥s = 5‘!{ — s + dw, ], Uy = I, + 3,1, (43)

"b‘) = ff{ = 5253 -+ 6392])

¥s = (1/3)[3,0, + v, — 2 3,0, 1.

Since each @, must be real, the three components ¢, i, ¥
are imaginary because the corresponding A,, A5, A, have
purely imaginary components. It is interesting to note that
these three ¢, are just proportional to the three components
of vorticity, w, ; while the remaining i, are given by real
symmetric velocity gradients. It will be useful to divide this
collection of real and imaginary terms into two sets:
Aiti=il,w, + A_ ¢, where the A, run over the imaginary
matrices, g = (2, 5, 7), and the A, run over the real matrices,
a =(1, 3, 4, 6, 8), with the ¢, corresponding to the real,
symmetric, velocity gradient components of ¢. It should be
emphasized that all of these AqA, are Hermitian.

Equation (41) can then be rewritten in the form

% =({d-wo+A1¢)U, Uls=0) =1, (44)
and the nonunitary nature of the vortex stretching becomes
clear upon writing the Hermitian conjugate of (44), and add-
ing the two equations to obtain

%ﬁfﬁ} =2U1A-¢T, (45)

showing that it is the symmetric components ¢, which gov-
ern the increase of U/ 'T7. The s dependence of &, as of @, is
contained in the space-time (a(s;¥).5) arguments of these
functions.
In order to construct solutions to (44), it is useful to
extract the manifestly Hermitian part of U by settin g
U(s) = P (s)- W (s), with P (s) = (exp[ifsds’ A-w(s')]), , where
the ordering symbol refers to the s° variable, as in (8). The
matrix ¥ (s) is then unitary, ' = 7 1 and all the nonuni-
tary behavior of U can be transferred to W, which satisfies
I AD W), Fr(0) =1, (46)
ds
where A-@ = T H(5)1.¢ (s)¥ (s). Thereal components, @, (s) are
given by

D, =4 Tr[A, 714V ], (47)
and it is also true that the magnitudes of &, and ¢, are equal,
=PI Vgi=p? (48)
From (46), it follows that
d

= (W'W) =2 1(V'A-4 V)W,

s :

which is consistent with (45) and the unitarity of ¥,
WiWw=U'T
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The way in which these properties shall be used is as
follows. We begin with the “vectors” ¢, and @, , and assume
that all velocity gradients are increasing in magnitude with
time (s=¢ when y, = 0), while their “angular” variations are
relatively slowly varying. That is, we take ® = G, @ =1,
and assume that

da)
dr

A corresponding relation for the angular behavior of the
symmetric components ¢ — ¢¢- will not be necessary, al-
though we continue to assume that the time integral of the
magnitude of ¢ increases in a reasonably steady way,

fi'det’ ¢ (¢")> 1, while g?ﬁ does not change too rapidly in time.
These assumptions will be justified, in a crude way, a poster-
fori.

Under these conditions we are interested in finding an
approximate solution” for W (t ), and begin by considering an
explicit representation for ¥ (¢ ), which satisfies the differen-
tial equation

% = i(A-w)7(t), V(0)=1 (50}

<o, f dt’ o(t')>1. (49)

Because ¥ (¢ ) is unitary, it may be written in the form

V() = expliF,(t ) + iA-F(t)], where F is, in general, a vector
with eight real components. The initial condition 0 =1
then becomes F,(0) = F,(0) = 0. Substituting this form of

¥ (z) into (50), with the aid of the general formula

i el [ A ; i) ar (1 — e} (E)
e due —e E (51)
dt o dt

useful when [I", dI" /dt ]0, one immediately learns that
F,(t =0, as one builds a differential equation for F'(z},

: ; dF o
rew(t) = d, :,u,A-F[r;.(]L. ) - q...JL-F[rI’
il L £ dr
or
1 dF s
g {,a e’F*F(x-a) e
olt)= - [ duTr - (52)

It follows from (52), by multiplication by =, 7}, and the
trace properties of the 4, that
dl idE
dr dr’
where F = F? = (Z,F )"/ Further, if F is written as FF,
{52) can be rewritten as

~ dF dF A
)= F Aol s T ){ fpd- l‘(l ) e P]_
ol e j‘” r[ ¢ dr

F-m F-

(53)
An alternate representation for (53) is obtained by expanding
the exponentials of the second term, using the basic commu-
tation relation of this Lie algebra, [A,,4;] = 2if A, , where
the f;, structure constants are real, completely antisymme-
tric numbers as written in the Appendix. Introducing the
adjoint representation, Hermitian matrices, (4 Vi =+ (59)
may be rewritten as

~ dF dF
mmde—+FJﬁ dp —! (2‘*‘”],,,
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or
~ dF i dF Sz JAFE
w,(t)=F, e ( = )[(AF} (= s
(54)

Assuming that (4-F) ' exists, that is, det(4-F )70, Eq. (54} 1s
exact. It may be used to infer the form of F in the special
circumstance that £ 1 and [dF/dt | €|dF /dt | or w, for the
second rhs term of (54) may be discarded in comparison to
the first; because all the components of F, or F, are real
numbers, and the A are Hermitian, the exponential of (54)
simply oscillates rapidly as F increases. In this limit, (54)
reduces to

@; wF, e (55)

which in comparison with (52), yields the approximate
“strong-coupling” solution,

Fit)=a&,, Fit) =J dt’ olt’). (56)
0
The conditions for the validity of this approximate solution,

Vit }gexp[il-@(f }J:dr " wlt '1], (57)

are those of (49).

One can now see in a clear way, from (47) and (48), the
effect of such a unitary ¥ under the supposed conditions (49).
Writing the components &; as (D(D,, where @ = (2, @ 3)1/2, it
followsthatthemagnitude @ (¢ ) = ¢ (¢ )is unchangedby the v
unitary transformation, while the unit vector F (z)is given a
rapidly oscillating time dependence, with a frequency pro-
portional to (1/¢)$5dt * w(t’). That is, if one writes an alter-
nate expression for (57), in terms of the vector
Q=afpdt’ w(t’),

V(t) = expliQ-AI=fo + iSAS0 + SAules

where f, = 1 Tr [exp(iQ-A)], f, = — 4 Tr[4, exp(iQ-A)],
g. = 1 Tr[A, exp(iQ-A)]. The quantity f; can be calculated
directly from the three eigenvalues of the matrix Q-A, which
satisfy the relations 22 _, &, =0, 2} _, £2 = 2Q? and
3, &3 = —3D=2%,d,;0,0;0,. For the above choice
of the @, it can be seen that I = 0, following from the ex-
plicit 4, of the Appendix, so that
& = — &= + O0=jJQ? &, =0, generate f; and
f, = —3(8/90,) fo- But the functions g, are not directly
calculable in this way, although they may be inferred in an
indirect way from the requirement of unitarity.

A more elegant way of calculating both f, and g, at the
same time is to write exp[/Q-A] = £, + iZ!_ | A.f; and ima-
gine that Q has projections in all eight directions, although
its extension in the a directions is very small. Then [D |<Q?,
and the cubic equation for the £, is easily approximated to
yield
£,~0 — D /203 £,~+D/Q? £~—0— D207
so that £,(Q )=~1[1 + 2 cos Q1 + (D /Q?)[1 — cos @], and
the f; = — 3(8/90;)f, can be evaluated in the D—0 limit as

fo=0,sinQ,f, =iv, (1 —cos Q)= —ig,, where

U =2 50 Qe @0 O - Note that all the matrix elements of 2
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are real,

Vi) =11 +2cosQ] + ir& sin Q@ — YA,v,(1 —cosQ).
: (58)

Using the property v’=% , v2 = 1, also found via the Appen-
dix, it is easy to verify unitarity; e.g., 1 = f2 P
+3=, &%-

The effect of such a F unitary transformation, as in (47),
is to make the unit vectors @, rotate with frequency propor-
tional to (1/2)f;dt’ w(t’), here assumed to be a reasonably
large number, while leaving the magnitude unchanged,

@ = ¢. One then tries to solve (46) under these conditions,
and in a more explicit and useful form than that given by the
formal solution,

W(t) = (exp[sodt’ A-@(t")]).
If one adopts the ansatz'® W (z) = exp[G,(¢) + A-G(z)], and

forms the differential equation for (Go,G) using (51), one im-
mediately obtains G,=0, and in a manner analogous to (54),

= oG - 4G, 2uA-GG
#-a - G’L du—= (e Jes (59)

For large G, which we also assume and which turns out
to be a more stringent assumption than f'dr’ ¢ (¢ 131, the
exponent of the second rhs term of (59) cannot be treated as
oscillatory, as in the analysis of (54), for the eigenvalues of
A-G are real numbers, of both signs. It is still true, however,
without approximation that

36
E-G‘-‘D-§{t}¢[r],

or
G(z)=fodr'§{r'wr'l, (60)

where £ (£ ) = & (z }-6 (¢ ). Rewriting (59) in the form

~ PN 1 dG. =
29— 6.CB) =G [ au e, b
V]
and, multiplying both sides of (61) by (A-G ),,, one forms
ek -
5 (A5 1), = 9B/ (AG),, (62)

with the quantity proportional to &. {A-a }; vanishing by
symmetry. Just as one performed the analysis expressing the
approximate form of 7 in terms f(\)f the eigenvalues of A-(Q, as
in (58), so the eigenvalues of (A-G ) can be invoked to rewrite
(62). For large G, only the largest positive eigenvalue, 7.,
will be important, 4616 __ 2% Tmax, (1), and there follows
from (62) the qualitative expression

dG

dr
showing that, for large G, dG /dt is damped exponentially,
i.e., afteracertain time has been reached for whichG> 1, G (¢)
isessentially constant. Theunit vector @ (¢ ), however, contin-
ues to oscillate wildly; and theresultis that & () = G z)-D (1)
oscillates to zero for sufficiently large 7. For small ¢, G and @
are in phase, leading to £ (¢ )~ 1; but as time increases, they
fall out of phase, and then in phase again, etc. Because G is

e 267?max_¢é\j {A-@ }’
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supposed large and positive, ¢ (¢ )£ (¢) is more often positive
than negative, of qualitative form given in Fig. 1. If this pic-
ture is correct, then G (¢ ) does not grow smoothly, but only in
spurts, when £ () is reasonably positive. Since the onset of
turbulence will be associated with G 1, the behavior of £(z)
provides a possible mechanism for the fact of intermit-
tency.!' A detailed analysis depends upon a systematic reso-
lution of (59). Finally, since # = exp(A-GG ), an eigenvalue
analysis of A-G will generate W ~e%“).0 (1), which is the
only part of this discussion to be used below. In particular,
for the nonunitary matrix 7,

Wi —~e2%.0(1). (63)

To see how these SU( 3) forms can be useful, we now
insert them into a crude, dimensional model which examines
the growth of enstrophy, £2 (1) = 1fd *x o?(x,z). With {(23a)
and (19), 12 can be put into the form

2 :%J‘d‘iydeyr

X8 (alzy) — a(ty')e"(y')

‘W alty'),2 )W (alzy).t )gly).
using an obvious matrix notation. It is simplest to change
variables from (y,y') to (q,q’), observing that the determinant
of each transformation is unity, d 3¢ — det(dg)-d *y; and with
(42), det(dg) = expl(tr In T )=>1. Then, (64) can be written as

2= éfd *q £'ig)- Wt Wglvlg)),
or with (63)
£ _fd 3g-ghe2¢.0 (1).g. (64)

We now invoke a crude, dimensional argument to de-
termine the possible significance of the above assumptions,
by transferring them to the behavior of a time-dependent
length scale, /(r). If only a single Iength scale is used, we
assume we are studying the growth of “‘isotropic’ turbu-
lence, as represented by the growth of enstrophy.'? What is
fixed in the fluid is assumed to be its energy/density, x = E /
© = 4§d *x v, and we write the dimensional relation s — / =5
or v~x'/2.] =32 Then, 2 — 1d % @~ 130/l ~w/12.
Comparing with the rhs of (64), the dimensions of Jd’g g'g
arealso ~L 72, but these coordinates must refer to the initial
configuration of the velocity/vortex fields, since the latter
are introduced by the source g at r = 0. Hence we write
sd3q g'g~x/13, where I, refers to a typical length scale at a

FIG. 1. Expected, qualitative form of £ {1}, expressing the feature of intermit-
tency.
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pre-growth-of-turbulence time #,, which for simplicity is set
equal to zero, ¢, = 0. Finally, we estimate

G(t)=fodt' £(t')p ('), using ¢ (2)~(v/1)~x'2/1°%(1). In
this way, a crude model of / (¢ ) can be extracted from (64),

P& nm(x/zg)-e;;p[zxmf dt’ £ (") 3z ')],
0

or

He)~1, exp[ —x”zfdz‘g(: N Sy '}]. (65)

The decrease of / (¢ ) as 7 increases presumably corresponds to
the transfer of the original input energy into vortices of
smaller and smaller spatial scale. To solve (65), it is only
necessary to differentiate once and form the differential
equation

dl
dt
which can be integrated immediately,

Iit)= [13’2 w2 Edr’g{:')]m,

generating

r)[z)~[13’2 — 2 J; di' &t ')] Fegs (66)

It is clear that the type of growth of {2, as f increases, now
depends upon the falloff of £ (¢ ), which we crudely model
according to the following possibilities:

Q) IfFE(t)~ + ¢ — " —P, 0<p < 1, then 2 has a finite-
time singularity, 42 (£)~ (£ * — ¢ )—%/3.

(ii)if & (£)~ +¢ ~ " *+P, p> 0,2 may ormay not havea
finite-time singularity, depending on the specific constants
involved. The singularity'” of possibility (i) is less severe than
that previously found in the quasinormal approximation'*
2~ (¢* — t) 72, but it may well be that possibility (ii) is more
accurate.

If it is initially assumed that there are two relevant
length scales, rather than one, e.g., L (¢ ) corresponding to the
length of typical vortex, and /(7 ) corresponding to its radial
dimension, an analysis similar to that leading to (66) yields

— K3 (1)1 ),

1(t)=I3 — Zx”zjdr’g(r')L = NN
o

and possibilities similar to (i) and (ii) can be developed. In any
case, nonzero viscosity will smooth out an inviscid finite-
time singularity.

V. SUMMARY

In this paper a formalism to study the properties of an
inviscid NS fluid without rigid boundaries has been devel-
oped and applied to two classes of problems—relatively sim-
ple, exact examples in two dimensions—and to the extrac-
tion of a crude, dimensional model from an SU(3) analysis of
vortex stretching in three dimensions. That the basic method
is correct can be verified from these initial examples, but
whether it will be useful in more complicated two- or three-
dimensional problems is a different matter, which remains to
be seen.
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To the best of the author’s knowledge the application of
Fradkin’s generic Green’s function representation, and the
use of an SU(3) description for the ensuing vortex stretching,
have not previously appeared in the (voluminous!) NS litera-
ture; and it is hoped that these techniques will provide tools
for calculations less crude than those presented in Sec. IV.
One interesting feature of the SU(3) analysis of strong vortex
stretching has been the automatic appearance of a certain
degree of intermittency, characterized by the function £ (¢ ) of
(60), which may turn out to be a useful way of describing the
properties of experimental, intermittent turbulence. This
tentative identification of £ (¢ ) with intermittency is here only
suggested, rather than claimed; but it is, perhaps, a sugges-
tion which may turn out to be at least partially true.

The formalism itself suggests various other calcula-
tional attempts, such as the approximate solution of (25)
when vortex stretching is represented by d, g, , or the behav-
ior of these estimates when vortices are continually fed into
the fluid, with the aid of a source g(y,y,) more general than
the G(y)-6(y,) used above. Perhaps the most interesting modi-
fication would be the inclusion of viscosity corrections to all
the calculations of this paper. A somewhat different resolu-
tion of Fradkin’s original representation, not tied to the ex-
tremum calculation of Sec. IT and valid for v=£0, will be
presented separately.

It should be mentioned that hardly any methods exist to
treat the nonabelian, vortex-stretching problem, when per-
turbation in (@-V)v is improper, other than the strong-cou-
pling approach of Sec. IV. Other possibilities are to treat the
dimension D as very large, and search for simplifications in
the large-D limit, in analogy with current work on the large-
N limit of certain'® quantum field theories; or for fixed D to
replace the matrices A,, of the defining representation of
SU(D ), by semiclassical coordinates corresponding to high-
er-dimensional representation of SU(D ). For example, for
SU(3), the hypercharge and isospin quantum numbers pres-
ent in this formalism could be treated as if they were contin-
uous coordinates, following an approximation technique
long known in nuclear and particle physics. But these are
just stop-gap measures, which really do not get to the heart
of the problem of how to find a useful, nonformal representa-
tion for the ordered bracket of (14).

The appearance of such SU(D ) coordinates suggests
that there may be an underlying SU(D ) symmetry of the basic
velocity/vorticity NS equations. Clearly, an analogy exists
between certain aspects of hydrodynamics and nonabelian
field theory; perhaps an analogy may also be drawn between
the topological structure of bent, closed, or knotted hydro-
dynamical vortex tubes, in a semiturbulent situation, and the
Copenhagen (*‘spaghetti’’) vacuum of interwoven flux tubes
of QCD.'® We do not know the answer to this, but point out
that, among others, it is an interesting question to ask.

ACKNOWLEDGMENTS

It is a pleasure to thank colleagues already well versed
in matters hydrodynamical for their encouragement and pa-
tient explanations of many topics quite obvious to them, if
not to the novices who received and were enlightened by
their remarks. In particular, we warmly thank H. Aref and

H. M. Fried and J. Tessendorf 1153



8. Libby of Brown and U. Frisch and J.-D. Fournier of the
Observatory of Nice.

APPENDIX

All the material of this appendix has been taken from
Ref. 4. The eight, traceless SU(3) matrices A, satisfy the rela-
tions

TrfA;4;] =28,
[40:4 ] = 28 As,

and
fA;A;} = 0, + 2 Ay

An explicit representation of the A, may be written as

G ] OF = 0
A, = 1 0 o} A,=i]1 0 oy
6 0 0 0 0 0
1 0 0 6 -0 1
A= (0 —1 o} 4,=— o o o]}
0 09 1. 0 /0
oo )
A;=ilo o0 o), ;= |o o 1),
i 0 0, ([ B ]
0= 0 0 143 0 0
Adz=ilo 0  _—Eloa — 0 143 0 :
01 0 0 0 —2/3

Nonzero elements of f;; and d ;. are given below. The
J are odd under permutation of any two indices, while the

d; are even.

ik S ijk iy
123 1 118 1743
147 1/2 146 1/2
156 — 1/2 157 1/2
246 1/2 228 143
257 1/2 247 —1/2
345 1/2 256 1/2
367 — 2 338 1/43
458 V372 344 1/2
678 V372 355 1/2
366 — 172
377 172
448 — 1/(243)
558 — 1/(2.f3)
668 — 1/(2y3)
778 — 1/(24/3)
888 — 143

'H. Arefand N. Pomphrey, Phys. Lett. A 78, 297 (1980), and other papers
quoted therein.
?E. S. Fradkin, Nucl. Phys. 76, 588 (1966}); E. S. Fradkin, U. Esposito, and
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8. Termini, Nuovo Cimento, Ser. I, 2, 498 (1970).

*See, for example, G. K. Batchelor, 4#n Introduction to Fluid Dynamics
(Cambridge U. P., Cambridge, 1967), Chap. 5.

“It should be noted that only the symmetric part of d, v, can enter into (4},
or (2), as long as & = Vv, although for simplicity and possible applica-
tion to other problems, we keep to the SU(3) forms of the text. But when
approximations are made, one must be careful to consider quantities mani-
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