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1 Introduction

This note addresses the subject of advection around the theme of applying
Characteristic Maps as a method of constructing solvers. Typically the accuracy
of solvers is characterized as an asymptotic function of a short time step, short
usually defined by restricting the value of the CFL parameter. Within the range
of the CFL limit the asymptotic function is expressed as a formula in terms of
a power of the time step, i.e. O(∆tp), for some power p.

A key issue is the implementation of solvers that are accurate for “long”
time steps. Long time steps might be described as situations that violate CFL
restrictions, or at least situations in which it is ambiguous whether the solver
can be expected to work based on the CFL restriction. Of course, an advection
solver can be used well beyond its CFL limit, with consequent error in the
advection. Characterizing the magnitude of that error is of interest. A common
approach for computing error is to advect a field over a period of time with some
number of steps, then reverse the advection so that, in principle, the field should
return to its original form. The error measure is related to the disparity between
the original field and the advected one. Defining advection solvers in terms of
characteristic maps offers another measure of accuracy. Characteristic maps
depend only on the velocity field, and exist independent of the material subject
to advection. Given a “reliable” characteristic map, the error of a particular
solver could be assessed without invoking any particular material model. This
approach is employed in section 7, along with “traditional” evaluation methods.

These issues are addressed here in three stages:
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1. Build accurate and fast advection solvers for long time steps using the
composition property of characteristic maps. This process is somewhat
similar to the Geometric Integration approach for dynamical systems, in
that the algorithm starts with a solver that is accurate for short times and
builds up one for long times. The product solver has less error than the
original. In the case of Geometric Integration, the product solver would
have less asymptotic error, i.e. if the original solver has asymptotic error
O(∆tp) the product solver would be O(∆tp+2) or higher. But in this case,
the asymptotic error for the product solver is the same as the original, but
with a significantly smaller proportionality. However, the construction of
the long time advection solver is fast. Typically when a long advection
time T � ∆t is desired, the object must be advected over the short time
step ∆t for N = T/∆t times. However, the composition property of the
CM generates a solver in log(T/∆t) steps. For example, if T = 1024∆t,
the typical method would require 1024 advections, while the composition
approach requires only 10, and has an error 10/1024 times smaller. This
is presented in section 3.

2. Build the exact solution of the characteristic map equation. In section
4 the exact solution of the characteristic map equation is derived, ap-
parently for the first time. The solution is explicit, but not analytic.
However, a general numerical algorithm, named here “Gradient Stretch,”
follows in section 6, that is relatively simple but potentially time consum-
ing because accurate exponentiation of 3 × 3 matrices is required. The
appendix includes a discussion of accurate matrix exponentiation. One of
the “traditional” test cases for advection solvers employs a velocity field
corresponding to a rigid rotation. This test has the fortunate property
that the exact characteristic map can be completely evaluated analyti-
cally, and as should be anticipated, the map is a rotation transformation
in standard form. The general numerical implementation accurately gen-
erates this result also.

3. Characterize solver error relative to the exact characteristic map. Typical
tests of solver accuracy include two ingredients: a specific velocity field,
and an initial object to be advected. The test conducts advection in a
way that the exact outcome is known. The measure of solver error follows
from the disparity between the advected and expected object. Three of
these tests are reproduced in section 7, comparing four different solvers:
Semi-Lagrangian, BFECC, Modified MacCormack, and Gradient Stretch.
All of these tests involve multiple steps of advection and storing inter-
mediate data on grids. The errors of the solvers cannot be determined
directly because the grid storage and interpolation requirement adds er-
rors to the tests. The coupled impact of gridding with multiple advections
is demonstrated qualitatively and visually. We also see a set of quanti-
tative error measures by comparing the Gradient Stretch solver directly
to other solvers. At short time steps, the classic asymptotic error forms
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are reproduced, and at long time steps the solvers transition to a differ-
ent behavior that has less, but still substantial, error than projected from
the asymptotic formulae. This long time error behavior may hint at a
“universal” error behavior because the solvers seem to converge on nearly
identical behavior.

Before carrying out the outlined stages, the next section reviews the charac-
teristic map formulation of the advection problem. Solvers for Semi-Lagrangian,
BFECC, and Modified MacCormack are written in terms of characteristic maps.
The approach is phrased for a wide range of velocity fields, including those that
are not divergence-free.

2 Characteristic Map Solvers

Advection problems can formally be solved in terms of a vector field called
the Characteristic Map (CM) [1], which maps a point in space back to the
originating point from which material advected. Generally the CM tracks the
time of origination, t′, and the current time, t. If the CM is labelled X(x, t, t′),
a field φ advected over a time interval ∆t updates to the value

φ(x, t+ ∆t) = det (∇X(x, t+ ∆t, t)) φ(X(x, t+ ∆t, t), t) (1)

Scaling by the determinant accounts for changes in field magnitude due to con-
centration or rarifaction by the underlying velocity field, which may be either
compressible or incompressible. This is an exact expression for advection. The
time interval ∆t is not assumed to be small or large, although it is assumed here
to be positive.

The prototypical advection problem in PDE form is

∂φ(x, t)

∂t
+ ∇ · (u(x) φ(x, t)) = S(x, t) (2)

where φ is the material, and S is an external source/sink of material. The
material is assumed to have an initial distribution

φ(x, t = 0) = φ0(x) (3)

The advection equation has an conservation law for the total amount of the
material. Integrating this equation over all 3D space, and assuming there is no
material located at spatial infinity, the conservation law is

d

dt

∫
d3x φ(x, t) =

∫
d3x S(x, t) (4)

which shows that the total amount of the material varies over time due solely
to sources and sinks. Advection does not cause net gain or loss of material.
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The characteristic map solution of equation 2 is

φ(x, t) = det (∇X(x, t, 0)) φ0(X(x, t, 0))

+

∫ t

0

dt′ det (∇X(x, t, t′)) S(X(x, t, t′), t′) (5)

with the Characteric Map satisfying

∂X(x, t, t′)

∂t
+ u(x) · ∇X(x, t, t′) = 0 (6)

and initial condition X(x, t′, t′) = x. This solution also explicitly satisfies the
conservation property in equation 4. Integrating this solution over all of 3D
space, we have∫

d3x φ(x, t) =

∫
d3x det (∇X(x, t, 0)) φ0(X(x, t, 0))

+

∫ t

0

dt′
∫
d3x det (∇X(x, t, t′)) S(X(x, t, t′), t′) (7)

The combination ∫
d3x det (∇X(x, t, t′)) (8)

signals a change of integration variable from x to X. Applying this change,∫
d3x φ(x, t) =

∫
d3x φ0(x)

+

∫ t

0

dt′
∫
d3x S(x, t′) (9)

which is equivalent to equation 4.
In a numerical setting in which the material and velocity data may exist on

a grid, evaluating advection using the CM means that it is necessary to inter-
polate the gridded data using whatever interpolation algorithm is of interest.
Assuming the interpolation algorithm is bounded, advection via equation 5 is
unconditionally stable for the same reason that Semi-Lagrangian advection is
unconditionally stable, i.e., the update is bounded by gridded values of the field.
But unlike Semi-Lagrangtian advection, we might want our CM advection solver
to be valid for higher orders of ∆t than linear.

For the remainder of this note we only look at advection over a ”single
timestep”, meaning effectively that the velocity field is constant-in-time during
the advection. In this situation, the CM has a time shift symmetry, i.e.

X(x, t, t′) = X(x, t− t′, 0) (10)

This lets us simplify the notation from X(x, t, 0) to X(x, t).
The CM solver corresponding to Semi-Lagrangian advection is

XSL(x,∆t) = x − u(x, t)∆t (11)
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Although Semi-Lagrangian error is O(∆t2), other advection schemes have for-
mally smaller error. The BFECC1 algorithm is constructed from the semi-
lagrangian advection as

XBFECC(x,∆t) = XSL

(
x +

1

2
(x−XSL (XSL(x,∆t),−∆t)) ,∆t

)
(12)

and Modified MacCormack is

XMM (x,∆t) = XSL(x,∆t) +
1

2
(x−XSL (XSL(x,∆t),−∆t)) (13)

Both of these advection schemes have asymptotic error of O(∆t3).
The ideal advection scheme would provide a method to insure as much accu-

racy as needed for a particular problem. One solution is to employ even higher
order advection schemes. But an issue of interest is maintaining accuracy when
the time step is large, and it is not known whether high order advection schemes
hurt or help.

These issues occur in related dynamical problems in classical mechanics,
where the approach of Geometric Integration (GI) fruitfully guides better qual-
ity and flexibility in solver construction. GI provides explicit strategies for con-
structing solvers with high order accuracy from simpler, less-accurate solvers.
For example, given a solver S(∆t) that updates a dynamical system over time
interval ∆t with asymptotic error O(∆t2p), the solver

S(γ∆t) S((1− 2γ)∆t) S(γ∆t) (14)

where

γ =
1

2− 2
1

2p+1

(15)

has asymptotic error2 O(∆t2p+2). This property is valid universally for Hamilto-
nian systems of all type, and there are many more similar relationships between
solvers. Collectively these universial relationships are valuable tools for select-
ing a range of accuracy and efficiency criteria for any particular application. No
such tools are known for advection.

3 Logarithmic Evaluation of the Characteristic
Map

The CM enjoys a composition-in-time property following from the fact that
advection conceptually can be deconstructed into a sequence of small advections.

1BFECC [3] and Modified MacCormack [5] were not originally constructed as characteristic
map solvers. Here they are rebuilt in the language of characteristic maps. Although the error
properties and overal structure of these versions follow the original logic, the exact solver is
not identical to the originals.

2Robert McLachlan and Reinout Quispel, “Six Lectures on the Geometric Integration of
ODEs.”
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Advection solvers that are valid only for small time steps are still useful when
long time steps are desired, because a long time advection can be built from
iteratively advecting with time steps small enough for the solver to be valid. If
the long time step is T , and the solver is valid for time steps ∆t < T , then the
material must be advected N = int(T/∆t) steps. For a solver with error O(∆tp),
the error for taking a single long step T is O(T p), whereas taking multiple small
steps, the error is N O((T/N)p), or N1−p O(T p). As long as the error exponent
p is larger than 1, multiple small advections are more accurate than a single
long one. This kind of error analysis does not account for information loss if
the data is regridded at each advection step.

The CM has the same composition property for building long-time advec-
tions from a sequence of small ones. But for the CM there is an additional
fact that the advected CM is also a CM suitable for longer time steps. This
is exploitable to reduce the number of advections required from int(T/∆t) to
int(log2(T/∆t)). This is a substantial reduction in the number of operations
that much be performed, meaning that the advection is faster to execute and
there is less regridding loss.

The composition property is the following: given a CM for a time step t1
and a CM for a time step t2, the CM for the time step t1 + t2 follows from the
composition of the two:

X(x, t1 + t2) = X (X(x, t1), t2) (16)

In particular, if t1 = t2 = t,

X(x, 2t) = X (X(x, t), t) (17)

This propery sets up the following procedure to construct the CM X(x, T ) for
long time T :

1. Define a short time step ∆t = T/2M , for M sufficiently large that ∆t is
small enough to build an accurate solver.

2. Construct a CM for a chosen short time step ∆t, i.e. X0(x) ≡ X(x,∆t),
using an advection scheme that is accurate for that time step.

3. Construct the following iteration of maps:

Xn(x) = Xn−1 (Xn−1(x)) , n = 1, . . . ,M (18)

The map XM (x) is the CM X(x, T ), and is generated from only M advections
of the maps. Normally, a field advected to time 2M∆t using an advection
scheme accurate for time step ∆t requires 2M advections. This composition
rule accelerates long-time advection logarithmically.

How much error is induced by the M advections, called “folds” here, carried
out this way? The error for a single short time step is 2−pM O(T p), so for the M
advections the error accumulates to M2−pM O(T p). Compared to evaluating all
2M advections, this error is a factor of M2−M smaller. In addition, the number
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of regridding events is M for this method, as opposed to 2M previously, so losses
due to regridding are reduced as well.

This logarithmic speedup is universally applicable to all advection schemes
that are built in terms of characteristic maps.

4 Exact Solution for the Characteristic Map

The exact solution of equation 6 for the CM is an explicit form that depends
on the velocity field, the gradient of the velocity field, and the CM at previous
times. Derivation starts with constructing the gradient of the CM, ∇X. From
equation 6, it satisfies the evolution equation

∂∇X(x, t)

∂t
+ (u(x) · ∇) ∇X(x, t) + (∇u(x)) · ∇X(x, t) = 0 (19)

The middle term in this equation induces advection by the velocity field. If this
advection term were negligible compared to the other two terms, the gradient
has a clear behavior:

∇X(x, t) ≈ exp (−t ∇u(x)) (20)

Similarly, if the term proportional to the gradient of the velocity were negligible
compared to the others, the result is advection of the initial gradient field, which
is the identity matrix:

∇X(x, t) ≈ ∇X(X(x, t), 0) ≈ 1 (21)

In all other situations, where all three terms balance each other, the solution is:

∇X(x, t) = exp

(
−
∫ t

0

dt′ ∇u (X(x, t− t′))
)

+

(22)

where the notation ( )+ means that the integral exponential is arranged as an
ordered exponential. The definition of an order exponential involves dividing
the time interval (0, t) into N segments with time step ∆t = t/N , and arranging
them with smallest value of t′ on the right most side:

exp

(
−
∫ t

0

dt′ ∇u (X(x, t− t′))
)

+

≈ exp (−∆t ∇u (x))

× exp (−∆t ∇u (X(x,∆t)))

× . . .

× exp (−∆t ∇u (X(x, t−∆t)))

The limit N → ∞ with N∆t = t is the exact solution for ∇X in terms of the
gradient of the velocity field and the advection field X.
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Figure 1: Value of det(∇X) under a rigid rotation, for Semi-Lagrangian and
Modified MacCormack solvers. The angular speed is |~ω| = 1.

This exact expression for the gradient shows several properties. The map
gradient is an important quantity for advecting material because its determinant
is a factor in equation 5. The determinant for the above expression is

det (∇X) = exp

(
−
∫ t

0

dt′ ∇ · u(X(x, t− t′))
)

(23)

Two properties come from this expression: (1) For all types of flows, the deter-
minant is positive definite, and the CM is an invertible map; (2) Incompressible
flows have a determinant of one.

However, many advection solvers do not enforce this result. An example is
shown in figure 1, showing the value of the determinant as a function of the time
for the rigid rotation flow. Rigid rotations have an incompressible velocity field
u(x) = x × ~ω, where ~ω is the angular velocity of the rotation. The deviation
from 1 is an error that scales in the same way as the asymptotic error analysis
for small time steps, but grows much larger at long times. Although Modified
MacCormack has better asymptotic error, at long times it has much larger error
than Semi-Lagrangian. In figure 2 the logarithmic evaluation from section 3 has
been applied to the solvers with 8 folds, i.e. M = 8. The deviation of the
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Figure 2: Value of det(∇X) under a rigid rotation, for Semi-Lagrangian and
Modified MacCormack solvers and 8 logarithmic folds. Modified MacCormack
is not visible in the plot because it deviates from 1 by less than 10−5 over this
interval. The angular speed is |~ω| = 1.

determinant from 1 has been reduced by two orders of magnitude for Semi-
Lagrangian, and by seven orders of magnitude for Modified MacCormack, even
for very long times.

Returning to solving the CM advection equation 6, the exact expression for
∇X in equation 22 converts the equation to:

∂X(x, t)

∂t
= −u(x) · exp

(
−
∫ t

0

dt′ ∇u (X(x, t− t′))
)

+

(24)

This integrates over time to

X(x, t) = x − u(x) ·
∫ t

0

dt′ exp

(
−
∫ t′

0

dt′′ ∇u (X(x, t′ − t′′))

)
+

(25)

Equation 25 is the exact solution for the CM. It is an explicit solution in that
the CM appearing on the right hand side is for earlier times. This is also a
starting point for constructing a new numerical advection scheme in section 6
below.
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5 Analytic Solution: Constant Gradient, Rigid
Rotation

There is one special case in which the CM can be calculated explicity and
exactly: a constant gradient of the velocity field. When ∇u is a constant
matrix, the ordering of the exponential reduced to ordinary exponentiation,
and the time integrals in 25 can be evaluated completely:∫ t

0

dt′ exp

(
−
∫ t′

0

dt′′ ∇u

)
=

∫ t

0

dt′ exp (−t′ ∇u) ≡ t sinch (t∇u) (26)

If the velocity gradient is an invertible matrix, then

sinch(A) = (A)
−1
(

1− e−A
)

(27)

When it is not invertible, the definition of sinch follows from the Taylor expan-
sion

sinch(A) =

∞∑
n=0

(−A)n

(n+ 1)!
(28)

One important example of a constant gradient is rigid body rotation. The
velocity field is

u(x) = x× ~ω (29)

where ~ω is the vorticity of the flow. In this case, the gradient matrix is

(∇u)ij =
∑
k

εijk ωk (30)

and εijk is the Levi-Civita symbol. With this choice of velocity field, the evalu-
ation of the sinch has an simple analytic form, and the full result is a rotation
transformation:

X(x, t) = x cos(tω) + ω̂(ω̂ · x)(1− cos(tω)) − (ω̂ × x) sin(tω) (31)

with ω = |~ω| and ω̂ = ~ω/ω. This special exact case provides a concrete illustra-
tion of the advection solution 25. It is a useful test of solver accuracy, and can
also be used as a check of numerical implementations of equation 25 in section
6.

6 Numerical Implementation of the Exact Solu-
tion

There are two alternate approaches for implmenting an advection algorithm
based on the exact solution 25. One of them is to create a short-time version that
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is iterated to arbitrary time using logarithmic acceleration. A good candidate
for a short-time version follows from the solution for constant gradient:

XGS(x,∆t) = x − u(x) ·∆t sinch(∆t∇u(x)) (32)

Note that (a) this short-time advection is exact for any length of time if the
gradient is constant, and (2) if the gradient is constant, and XGS is used in
an iteration, the result is still the exact solution. For any time step T , a short
time step can be built by selecting a desired number of folds M and setting
∆t = T/2M . The logarithmic iteration approach of section 3 would build up
the full solver.

A second approach is to divide the time interval into N segments to evaluate
the integral in 25. The result is algorithm 1. This second approach also enjoys

Algorithm 1 Gradient Stretch Characteristic Map

procedure GradientStretchCharacteristicMap(u(x), T , N)
∆t← T/N
XGS ← x
M← 0
Q← ∆t sinch (∆t ∇u(x))
for i← 0, i < N do

M←M + Q
XGS ← x− u(x) ·M
Q← Q · exp (−∆t ∇u(XGS))
i←i + 1

end for
return XGS

end procedure

the property that if the gradient is constant, the result is exact, regardless of
the choice of N . Note that the choice N = 1 reduces algorithm 1 to equation
32.

A third algorithm follows from combining these two. A fold value M and
time divisionN can be used to evaluate algorithm 1 with arguments (u, T/2M , N),
then iterate that map through M folds.

Despite the assembly of this algorithm from the exact CM, and the robust-
ness of the algorithm for rigid rotations, it has very limited utility for many
practical advection scenarios. Accurate computation of the sinch(A) function
and matrix exponentiation is time consuming. The appendix gives some sug-
gestions based on the effort to produce accurate error analyses in section 7. In
comparison, it is much faster to use the CM form of other algorithms, for ex-
ample Semi-Lagrangian, BFECC, Modified MacCormack, or others, along with
the logarithmic iteration process to improve accuracy.
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Test Velocity Field Domain Ni ×Nj ×Nk GS M , N

Rigid Rotation
π

314
x× ~ω

~ω = (0, 1, 0)
(−100,−100,−100) × (100, 100, 100) 20 × 20 × 20 0, 256

Shear

(sin2(πx) sin(2πy),
− sin2(πy) sin(2πx),

(1 − r/R)2)

r = ((x− 0.5)2 + (y − 0.5)2)1/2

R = 0.5

(0, 0, 0) × (1, 1, 1) 20 × 20 × 20 11, 20

LeVeque Twist
(2 sin2(πx) sin(πy) sin(2πz),
− sin2(πy) sin(πz) sin(2πx),
− sin2(πz) sin(πx) sin(2πy))

(0, 0, 0) × (1, 1, 1) 100 × 100 × 100 11, 20

Table 1: Velocity fields and calculation domains for the error statistics.

7 Solver Error

One of the standard tests of advection schemes is advection of shapes in a
chosen flow, usually reversing the flow after a time and advecting backward for
an equal amount of time. The shape is compared before and after advection to
assess the accuracy of the advection scheme. These tests, applied to the Semi-
Lagrangian, BFECC, Modified MacCormack, and Gradient Stretch algorithms
for three different flows listed in table 1, illustrate their relative qualitative
performance.

The gradient stretch advection algorithm also provides a reference for es-
timating the error of other algorithms. Choosing a large value for the fold
parameter M for logarithmic iteration, and a large value for the time division
parameter N , the value of XGS can be taken as “ground truth” for comparison
with other solvers. An error field defined as

E(x) ≡ Xsolver(x) − XGS(x) (33)

is the source of spatially-sampled error statistics for the mean error

〈E〉 ≡ 1

Ni Nj Nk

∑
ijk

E(xijk) (34)

and the rms error

σE ≡

 1

Ni Nj Nk

∑
ijk

(E(xijk)− 〈E〉)2


1/2

(35)

using a grid of points xijk from a relevant rectangular domain, as listed in table
1 for each test case. The GS solver parameters M and N were chosen for each
case to make sure that the statistics are accurate.

7.1 Rigid Rotation

For rigid rotations, the gradient stretch solver is exact and completely preserves
the shape without loss, even for M = 0 and N = 1. The visual test case [2]
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consists of a sphere with a notch removed from it rotating around a point outside
the sphere, as shown in figure 3.

For the error statistics, the value of N was 256 in order to insure the accuracy
of the matrix sinch and exponentiation operations even for large timesteps.
Figure 4 shows the rms error σE for the three solvers as functions of timestep.
Through the entire four decades of time step, the error is the power-law predicted
by asymptotic analysis: O(∆t2) for Semi-Lagrangian and O(∆t3) for BFECC
and Modified MacCormack.

7.2 Shear

Visually, BFECC, Modified MacCormack, and Gradient Stretch produce essen-
tially identical results for the shear test [4], with a small amount of distortion of
the sphere after the advections, and Semi-Lagrangian distortion is substantially
greater, as seen in figure 5. For the visual test, the simplest form of gradient
stretch was used, i.e. N = 1, M = 0 corresponding to equation 32.

Figure 6 displays the rms error for the solvers. Quantitatively the asymptotic
error holds for BFECC and Modified MacCormack over the range of time scales
tested. But near ∆t ∼ 1 the Semi-Lagangian error transitions from O(∆t2) to
O(∆t) at large time steps, with overall lower error.

7.3 LeVeque Twist

As with the rigid rotation and shear tests, Semi-Lagrangian advection produces
noticeably larger errors than the other solvers for the LeVeque Twist [4] test,
visually demonstrated in figure 7. At small time steps the rms errors exhibit the
asymptotic behavior. Near ∆t ∼ 1 all three solvers deviate to an error O(∆t),
in figure 8.

8 Conclusion

The Characteristic Map has been employed systematically in this note as a tool
for creating practical, stable, efficient, and accurate advection schemes. The
use of a logarithmic folding of advections accelerates the creation of long time
step schemes from short time step ones, with much less error. A new “gradient
stretch” advection scheme has been derived from the exact expression for the
Characteristic Map, although this scheme is computationally heavy due to the
need to evaluate matrix-valued exponentials and sinch functions. However, the
gradient stretch algorithm enjoys accuracy benefits not shared by other advec-
tion schemes, such as being the exact solution in the case of rigid rotation, and
highly accurate computation of the determinant of the gradient of the map,
with consequent elimination of numerically-induced volume loss or gain.

In the shear and LeVeque Twist test cases, the behavior of the rms error un-
derwent a transition at large time steps. In the shear test, the Semi-Lagrangian
scheme transitioned from the short time behavior of O(∆t2) to O(∆t), and in
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(a) (b)

(c) (d)

Figure 3: Notched sphere prior to rotation (a); after 360◦ rotation by Semi-
Lagrangian advection (b); BFECC (c); and Modifed MacCormack (d). The
time step is 6.28 and there were 100 advections.
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Figure 4: The rms error σE for the three solvers Semi-Lagrangian, BFECC, and
Modified MacCormack, as a function of time step, for the Rigid Rotation case.
The CM XGS was calculated using M = 0 and N = 256.
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(a)

(b)

(c)

(d)

Figure 5: Sphere prior to shear (left) and with maximum shear (center), and
returned to original position (right). (a) Semi-Lagrangian; (b) BFECC; (c)
Modifed MacCormack; and (d) Gradient Stretch with N = 1. The time step
was 3/150 and there were 150 advections. The Gradient Stretch case (d) used
N = 1 and M = 0.
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Figure 6: The rms error σE for the three solvers Semi-Lagrangian, BFECC, and
Modified MacCormack, as a function of time step, for the Shear case. The CM
XGS was calculated using M = 11 and N = 20.
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(a)

(b)

(c)

(d)

Figure 7: Sphere prior to advection (left) and with maximum advection (center),
and returned to original position (right). (a) Semi-Lagrangian; (b) BFECC; (c)
Modifed MacCormack; and (d) Gradient Stretch with N = 6. The time step
was 30/150 and there were 15 advections. Each solver used M = 4 folds.
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Figure 8: The rms error σE for the three solvers Semi-Lagrangian, BFECC, and
Modified MacCormack, as a function of time step, for the LeVeque Twist case.
The CM XGS was calculated using M = 11 and N = 20.
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the LeVeque Twist test all three schemes made a transition from their respective
short time error to nearly identitical O(∆t) behavior.

In the interest of motivating future investigation, here is a speculation on the
source of this transition. The ordered exponential term can have a wide range
of behaviors depending on the magnitude and specifics of its argument. In the
case of the rigid rotation, the ordered exponential reduced to a purely oscillatory
behavior. When there is a very large argument, i.e. large gradient or large time
step or both, strong oscillations in magnitude and phase would be very difficult
to reproduce via an advection scheme with an asymptotic error O(∆tp) with
p relatively small. In such a situation, the oscillations could dominate an rms
error measure such the one used here. Thinking of the ordered exponential as
a rapidly fluctuating random variable, the error measure associated with the
variance calculation would generate the O(∆t) behavior seen in some of the
results for the shear and LeVeque Twist cases.

Appendix: Matrix Exponential and Sinch

Matrix exponentiation has a relatively simple implementation in terms of a
truncation of the Taylor series

eA =

∞∑
n=0

An

n!
(36)

to include only the first N powers of A, and is depicted in algorithm 2. For many

Algorithm 2 Matrix exponential via Taylor expansion

procedure Exp(A, N)
E← 1
M← A
for i← 1, i ≤ N do

E← E + M
M←M ∗A/(i+ 1)
i←i + 1

end for
return E

end procedure

choices of A, this approach produces reasonable accuracy for truncations N ∼
50. Cases in which the exponential is oscillatory can require many more terms,
N ∼ 200 or more, to insure good reproduction of the phase and amplitude. A
good strategy for reducing this load is to take advantage of the multiplicative
property of the exponential

eA =
(
eA/`

)`
(37)
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This relationship is similar to the one for logarithmic acceleration of advection
in section 3, and can be exploited similarly in algorithm 3. This algorithm gives

Algorithm 3 Fast matrix exponential via Taylor expansion

procedure FastExp(A, N , M)
E← Exp(A/2M , N)
for i← 0, i < M do

E← E ∗E
i←i + 1

end for
return E

end procedure

accurate results even for relatively small values of N ∼ 30, M ∼ 10 unless A
has elements with very large magnitude.

For the sinch function, there is a simple expression in terms of the exponential
when A is invertible:

sinch(A) = A−1
(

1 − e−A
)

(38)

When A is not invertible, there is no choice but to use a relatively time con-
suming truncation of the Taylor expansion

sinch(A) =

∞∑
n=0

(−A)n

(n+ 1)!
(39)

as implemented in algorithm 4. In practice, the Taylor expansion truncation

Algorithm 4 Matrix sinch via Taylor expansion

procedure Sinch(A, N)
E← 1
M← −A/2
for i← 1, i ≤ N do

E← E + M
M←M ∗ (−A)/(i+ 2)
i←i + 1

end for
return E

end procedure

must be very large, i.e. N ∼ 200, to produce reasonable accuracy over the
range of cases in this note.
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