
Deforming Geometric Volumes
Kinematics, Dynamics, Constraints, and Collisions

Jerry Tessendorf
Cinesite Digital Studios

February 12, 2002

Contents

1 Applications 3

2 Geometric Description of Volumes 5
Tangent Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Christoffel Connection . . . . . . . . . . . . . . . . . . . . . . . . . 6
Covariant Differentiation. . . . . . . . . . . . . . . . . . . . . . . . 7
Solving Simple Covariant Differential Equations I: Solution Along a Path7
Solving Simple Covariant Differential Equations II: Iterative Full Vol-
ume Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Jacobi Method . . . . . . . . . . . . . . . . . . . . . . . . . 9
Successive Over Relaxation (SOR) Method . . . . . . . . . . 10
Conjugate Gradient (CG) Method . . . . . . . . . . . . . . . . 11

3 Geometric Reconstruction of Deformations 12
The Displacement Vector Representation of Deformation. . . . . . . 13
Conserving Volume – The Lie Group SL(3). . . . . . . . . . . . . . . 13
The Connection Representation of Deformation. . . . . . . . . . . . 15
Relationship Between the Representations: Connection from Displace-
ment Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Relationship Between the Representations: Displacement Vector from
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Volume Conservation Revisited. . . . . . . . . . . . . . . . . . . . . 17
Relationship to Continuum Mechanics. . . . . . . . . . . . . . . . . 18

4 Deformation Dynamics 19
Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Body Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Flex Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Twist Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Volume Conservation Issues. . . . . . . . . . . . . . . . . . . . . . 21

1



Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Computational Scheme. . . . . . . . . . . . . . . . . . . . . . . . . 23

Geometric State . . . . . . . . . . . . . . . . . . . . . . . . 23
Computation Steps . . . . . . . . . . . . . . . . . . . . . . . 24

5 Collisions 25
Gauss Linking Number. . . . . . . . . . . . . . . . . . . . . . . . . 25
Numerical Evaluation of GLN . . . . . . . . . . . . . . . . . . . . . 26
GLN Collision Networks . . . . . . . . . . . . . . . . . . . . . . . . 28
Deformation from Collisions. . . . . . . . . . . . . . . . . . . . . . 33

2



1 Applications

These notes are intended as an outline of some geometric techniques that may be appli-
cable to modeling and dynamics problems that include volumetric objects. Of particu-
lar interest are objects consisting of an enclosed volume, with the volume undergoing
deformations while subjected to external forces, collisions, and boundary constraints
that combine to reshape the volume dynamically. That description covers a very broad
range of applications, and the techniques discussed here should hopefully be applicable
to that breadth. In fact, we can expect that this deformable geometry approach can be
applied to problems of modeling and simulating the motion of muscles, tissues, cloth,
certain kinds of fluid (i.e. viscous fluids such as lava, slime, mud, goo, and under some
conditions, water), softbodied organic objects, and possibly others not yet thought of.

There is a lot of effort being spent on simulating the dynamics of cloth, soft bodies,
muscles, and lots of other phenomena where the object of interest is flexible and has an
extended structure. In computer graphics, the universally adopted approach is a con-
strained particle dynamics[4, 9]. In this approach, the object is replaced by a cloud of
particles which dynamically evolve using standard particle dynamics computations. In
order to preserve the original object characteristics during the dynamics, constraining
forces are added to the external forces that the particles are subjected to[5]. These con-
straining forces make the particles “aware” of the other nearby particles and encourage
them to maintain reasonable locality with each other. The mathematical techniques
used to add the constraint forces are traditional procedures formalized long ago in
classical mechanics[6], and are known to be robust and produce well-defined results.
However, numerical implementation of these methods with many particles in an object
induces many technical difficulties:

1. The effect of the constraint forces is to couple the particles via a large matrix
description. ForN particles, the matrix isN ×N , and manipulating this matrix
(computing its elements, taking inverses) can be difficult, time consuming, and
sensitive to numerical precision.

2. The coupling requires modeling the constraint force in explicit detail. While
some people view this as modeling the detailed fiber properties in a cloth, that
is not the appropriate interpretation. The object in question may be some imag-
ined material with properties totally alien to a cloth description. It seems like
overkill to requirea microscopic description of the material in order to compute
the macroscopic behavior. A microscopic description would be appropriate as a
way to specialize the macroscopic behavior for more subtle characteristics.

3. For incompressible objects, volume conservation is hard to implement in terms
of constraining forces. The numerical implementation frequently must simply
apply a pass in which the particle positions are adjusted ad hoc in order to keep
the volume and/or surface area of the material constant.

4. The induced dynamics with constraints is hard to accurately compute numeri-
cally. The equations of motion tend to be stiff and sensitive to instabilities. There
has been effort to suppress instabilities via implicit methods[10], with success.
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Suppressing the instabilities via implicit methods has the added benefit of reduc-
ing the computational time by allowing larger time steps, and can also reduce the
number of particles needed to complete a simulation to a desired accuracy.

Despite these technical difficulties, the theoretical machinery behind the particle-based
approach is relatively easy to formulate and understand. This comes in handy when it
is necessary to modify the algorithms in order to improve performance or handle some
special case.

In constrast, the deformable geometry approach presented below has a very formidable
theoretical machinery underlying it. To understand its workings, the reader needs a
background in modern differential geometry, Lie Groups, and a little bit of differential
equation solving. This background is not frequently found in computer graphics, so
there is a bit of a barrier to understanding the techniques. To help in this, there is a
recommended reading list for background material[1, 2, 3].

There are some significant benefits to the geometric approach however:

1. A geometric description relates much more directly to the type of object that the
user is interested in than a particle description. There are no longer issues of how
many particles to use, where to place them on the geometry, how to weight them,
etc.

2. The method completely eliminates constraining forces needed to hold the geom-
etry together. The geometric description assumes the role of keeping the object
self-connected. This reduces the complexity of the dynamics problem.

3. No longer needing constraining forces, there is no longer a need to provide a
microscoping description of the material that composes the object.

4. Volume conservation is easily and elegantly enforced within the geometric scheme.
We derive below a general criterion for conserving volume, which can be uni-
versally applied at many stages of the computation. This criterion is independent
of the object size or shape, the external forces and boundary conditions placed
on it. For a broad class of dynamical problems, the criterion is transformed into
direct constraints on the dynamics of the underlying geometry. In contrast to the
particle dynamics approach, in which volume conservation is not a well-defined
process, here it appears at a deep fundamental level.

5. The dynamics of the geometry does not introduce large matrices with difficult
and time consuming manipulations.

6. The dynamics is stable, theoretically and numerically. This is partly because the
lack of constraining forces simplifies the dynamics and eliminates large matri-
ces. But it is also because the geometric description naturally “diagonalizes” the
coupled motion of the extended object, reducing the equations of motion down
to just those for the true degrees of freedom that must be computed.

So, while the mathematical machinery needed to understand deformable geometry is
relatively involved, the numerical implementation of this approach is, in fact, consider-
ably simpler than that for the particle-based approach, and more directly relates to the
practical problem and solution sought by the user.
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The approach we take in the following sections begins with an introduction to the
geometric description of the volume. The concepts of tangent space, metric tensor,
Connection, and holonomies are introduced. This introduction includes a description
of how to solve some types of differential equations involving covariant derivatives, a
handy tool later on. In section 3 we use these geometric tools to construct two alterna-
tive descriptions of how geometry is deformed, along with procedures for computing
either one of these descriptions from the other. Along the way, we find the criterion for
volume conservation comes neatly out of these representations.

With a solid method of describing deformations geometrically, we turn to the dy-
namical problem and extract from Newton’s equation dynamical equations for the un-
derlying geometric behavior - specifically for the Connection. Here we see another
strength of this approach, because the dynamical equations are related just to the actu-
ally degrees of freedom that are available, and are shown explicitly to be stable.

The last section is devoted to a discussion of collisions between our deformable
object and other objects. The other objects may be deformable or not. In keeping with
the geometric philosophy, we introduce a remarkable quantity – theGauss Linking
Number– as a collision detector between extended objects.

2 Geometric Description of Volumes

A volume is modeled as a collection of points in space which have a linkage two each
other. One way of establishing a linkage is to set up a nearest neighbor network, so that
each point has a list of adjacent points in the volume. The network should be thought
of as fixed for all time, even when the volume is deformed. Under deformation, the
concept of the nearest neighbor list becomes a little muddled, because the collection of
nearest points in a deformed geometry may be substantially different from the collec-
tion in the original ”undeformed” state. Nevertheless we want to maintain that linkage
as an underlying pillar keeping the description of the deformed geometry simple and
compact.

So we imagine that the volume spans a (discrete or continuous) collection of points
labelledx(~u), with ”material coordinates”~u = (u1, u2, u3). The material coordinates
are analogous to theu, v coordinates of a NURBS surface: no matter how much the
NURBS surface is stretched and distorted, theu, v coordinates act like a spot on the
surface that rides along with the distortion. The collection of knots build a grid pattern
across the surface which rides on the surface but is not broken by the deformations.
This grid pattern serves also to connect points on the surface and maintain the surface
topology. From this grid pattern some geometrically useful quantities can be calcu-
lated, in particular, the tangent plane derivatives, embedded metric tensor, and others.

Material coordinates of the volume serve the same purpose as theu, v coordinates
of a nurbs surface. Points in the volume may move in space relative to one another,
while their material coordinates ride along with the deformations and maintain their
connectedness relationship to each other. However, we do not require that the material
coordinates form a grid of a particular topology. It is enough that they allow us to com-
pute quantities called the tangent space basis vectors and the Christoffel connection.

This section presents a model of volumetric geometry, sets down some definitions
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and conventions, and sets the stage for further discussion of deformation of the geom-
etry. Some suggested reading material on this topic might include references [1], [2],
and [3].

Tangent Space

Just as a nurbs surface has a tangent plane at each point of the surface, so too a volume
has a three dimensional tangent space at each point of the volume. The tangent space
is described by three vectors

xa(~u) ≡ ∂x(~u)
∂ua

(a = 1, 2, 3) . (1)

These three tangent vectors form a basis: any vector in the tangent space can be de-
composed into a sum of these three with suitable coefficients. This is an extremely
important property for constructing the entire geometric deformation program in this
paper. However, thexa are not orthogonal to each other, and they are not normalized
to unity. Because of this, we must introduce the metric tensor,

gab(~u) = xa(~u) · xb(~u) (2)

which will also be very important in this paper. The definition of the metric tensor,
which is a3 × 3 matrix, also brings up two additional definitions of use later: the
inverse metric tensor

gab ≡
(
g−1

)
ab

(3)

such that
3∑
c=1

gac(~u) gcb(~u) = δab (4)

(with δab just the usual old-fashion Kronecker delta). Using the inverse metric, dual
space vectors are built as

xa(~u) ≡
∑
b

gab(~u) xb(~u) . (5)

Of what use is a dual vector? Well, applying these definitions, we see that the dual
vectors ”orthonormalize” the basis of the tangent space, i.e.

xa(~u) · xb(~u) = δab . (6)

Christoffel Connection

The last geometric quantity of value in this scheme is the Connection, and in particular
the Christoffel ConnectionΓabc(~u), which is related to the Riemannian curvature of the
volume, and given by the expression

∂2x(~u)
∂ua ∂ub

≡ xab(~u) ≡
∑
c

Γcab(~u) xc(~u) (7)
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This expression simply says that any vector at the material coordinate~u can be spanned
by the basis vectorsxa in the tangent space, with suitable labels for the coefficients.
Making use of dual vectors, we can compute the connection directly as

Γcba(~u) = xc(~u) · xba(~u) . (8)

Covariant Differentiation

The connection plays a critical role in the geometric description of volumes. For ex-
ample, suppose we have a vectorf(~u) in the tangent space at the point~u. In complete
generality, we can expand it as

f(~u) =
∑
b

f b(~u) xb(~u) (9)

Suppose now we wish to see howf changes as we move in the volume. The material
derivative is

∂f(~u)
∂ua

=
∑
b

{
∂f b(~u)
∂ua

xb(~u) + f b(~u) xab(~u)
}

=
∑
b

{
∂f b(~u)
∂ua

+
∑
c

fc(~u) Γbca(~u)

}
xb

=
∑
b

f b;a(~u) xb(~u) (10)

The notation

f b;a(~u) ≡ ∂f b(~u)
∂ua

+
∑
c

fc(~u) Γbca(~u) (11)

is called thecovariant derivativeof the coefficientsf b.

Solving Simple Covariant Differential Equations I: Solution Along a Path

We will encounter covariant derivatives in the form of differential equations. This
section presents the concepts needed to solve some simple covariant differential equa-
tions. The concepts involve solving the equations along pre-defined paths through the
material coordinates.

We begin the introduction of these concepts by picking a basic but very useful
example problem. Suppose you are faced with solving the differential equation

f b;a(~u) = Gba(~u) , (12)

whereGba is some prescribed driving term, and the Christoffel ConnectionΓabc(~u) is
known.

The key to solving this differential equation is to solve it along a path through the
volume. So we chose some convenient path of the form~u = ~γ(λ), with λ being the
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path variable running fromλ0 and the start of the path andλ1 at the end of the path.
Evaluating equation 12 along that path, and noting that

df b(~γ(λ))
dλ

=
∑
a

dγa(λ)
dλ

∂f b(~γ(λ))
∂γa

(13)

equation 12 becomes

df b(~γ(λ))
dλ

+
∑
c

(∑
a

Γbac(~γ(λ))
dγa(λ)
dλ

)
fc(~γ(λ)) =

∑
a

Gba(~γ(λ))
dγa(λ)
dλ

(14)
To simplify the look of this, we can define the quantities:

Abc(~γ(λ)) ≡
∑
a

Γbac(~γ(λ))
dγa(λ)
dλ

(15)

Gb(~γ(λ)) ≡
∑
a

Gba(~γ(λ))
dγa(λ)
dλ

(16)

which reduces the nasty appearance a bit to

df b(~γ(λ))
dλ

+
∑
c

Abc(~γ(λ)) fc(~γ(λ)) = Gb(~γ(λ)) (17)

This last equation has an exact solution in terms of the ordered-exponential integral
of the matrixA with membersAab = Aab. This ordered exponential is called the
holonomy, and has the form:

Hb
a(λ, λ0) ≡

(
exp

(
−
∫ λ

λ0

dλ′ A(~γ(λ′))

))
+ ba

(18)

Using the holonomy, the exact solution of equation 12 is

f b(~γ(λ)) =
∑
a

Hb
a(λ, λ0) fa(~γ(λ0)) +

∫ λ

λ0

dλ′
∑
a

Hb
a(λ, λ′)Ga(~γ(λ′)) (19)

The holonomy is an important object in many physical sciences that employ geo-
metric techniques. As with those fields, we will find its use crucial again and again
in the results we obtain below. Fundamentally, the holonomy is the tool by which the
Connection is used to actually connect two points within the geometry, and transfer
information between them. But while the Connection is a locally defined quantity,
the holonomy is defined relative to a path specified through the volume. This is not a
weakness, because any path may be used, and because it provides a rigorous mathe-
matical framework on which to design a numerical implementation, which ultimately
would employ paths of some kind through the volume in order to integrate quantities
of interest.
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Solving Simple Covariant Differential Equations II: Iterative Full Volume Solution

This method of solving the covariant differential equation along a path is quite general
and elegant, but some questions arise in its practical implementation:

• By what criteria do we choose paths? Should one path be used which connects
all of the points from one starting point, or many paths eminating from multiple
points?

• If there are many paths, how do we treat path intersections?

• How do we lay out paths to respect boundary conditions and/or constraints on
the geometry?

• By what criteria do we answer these questions?

These questions do not imply that covariant integration along paths is incorrect, but
the approach is simply so general that it does not deal with some practical questions of
implementation.

One way around these questions is to find an alternate method of integrating the
covariant differential equation over the whole volume without imposing the construc-
tion of paths. The method discussed below is just such an alternative. In a sense, it gets
around the problem by systematically integrating alongeverypossible path in short
segments. It accomplishes this, and handles constrained points, by rephrasing the inte-
gration problem from a “push” of data from one point to another to a “gather” of data
into a point from nearby points. The “gather” outlook on the solution also requires the
addition of an iterative solver – somewhat analogous to a solver for Poisson’s equation
– whose convergence properties will need to be verified carefully. In this section we
discuss each of these three methods in the context of our geometric problem. However,
what is known about the convergence behavior of these methods comes from research
on discrete Poisson equations, so we should expect some deviation from those results
in this problem. Also, we simplify considerably the Congjugate Gradient method for
the specifics of the problem at hand.

These “pull”-based iterative methods also have the advantage that it is trivially
easy to impose boundary conditions or constraints at individual vertices. If a vertex is
constrained by the application to be at a fixed position, that is accomplished by simply
not updating its value in the iterative process. If the constraint is more of a collision-
style one – e.g. the vertex may not be located beyond a wall or outside of a domain –
then the vertex position is updated in the iterations, but between iterations its position
is corrected if necessary to satisfy the constraint.

Jacobi Method

We begin with equation 19, which we cast into a solution for small steps inλ:

f b(~γ(λ+ ∆λ)) =
∑
a

Hb
a(λ+ ∆λ, λ) fa(~γ(λ)) + ∆λ Gb(~γ(λ)) (20)
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This solution is a kind of “push” technique: given the value off andG at the vertex
at~γ(λ), we push those values to the vertex at~γ(λ + ∆λ) and compute the value off
there.

Now let us reorganize this into a “pull” philosophy. Suppose we wish to compute
the value off at the vertex~γ, given knowledge off at neighboring vertices. For a
vertex at~γ + δ~γ, the contribution is∑

a

Hb
a(~γ,~γ + δ~γ)

[
fa(~γ + δ~γ)− δGb(~γ, δ~γ)

]
(21)

where the holonomy and driving term now look like:

Hb
a(~γ,~γ + δ~γ) = ( exp (δA(~γ, δ~γ)) )ba (22)

δAbc(~γ, δ~γ) =
∑
a

Γbac(~γ) δγa (23)

δGb(~γ, δ~γ) =
∑
a

Gba(~γ)δγa (24)

This is the contribution of one of the neighbors. For the complete set of neighbors, the
solution comes from summing over all of the neighbors

f b(~γ) =
∑
δγ

{∑
a

Hb
a(~γ,~γ + δ~γ)

[
fa(~γ + δ~γ)− δGb(~γ, δ~γ)

]}
(25)

The computation of this sum does not by itself solve the covariant differential equa-
tion, because some of the values off inside the sum are based on old data and do not
reflect the impact of deformations. This situation is similar to variaus approaches for
solving Poisson’s equation, such as the Jacobi, SOR, and Conjugate Gradient methods.
This full solution is obtained iteratively: (1) Evaluation equation 25 over the entire
volume, then iterate and do it again using the results from that iteration.

Of the various methods of implementing iteration, the simplest is the Jacobi method.
In this method, them− th iteration is computed from iterationm− 1 as

f bm(~γ) =
∑
δγ

{∑
a

Hb
a(~γ,~γ + δ~γ)

[
fam−1(~γ + δ~γ)− δGb(~γ, δ~γ)

]}
(26)

For our discuss below we want to refer to this particular expression, so we label the
Jacobi solution by[f bm(~γ)]J . Two copies off are maintained at each vertex: the pre-
vious one and the new one being computed. Although this is the simplest algorithm, it
is also the slowest: ForN vertices in the volume, the number of iterations that must be
performed is proportional toN2. This can be a very slow iteration process.

Successive Over Relaxation (SOR) Method

To begin introducing the method of Successive Over Relaxation (SOR), note that we
could keep only one copy off if we update it in place, so that in one iteration the values

10



from the neighbor vertices are either from the previous iteration, or from the present
iteration if available. In that case we might write the iteration as

f bm(~γ) =
∑
δγ

{∑
a

Hb
a(~γ,~γ + δ~γ)

[
falatest(m)(~γ + δ~γ)− δGb(~γ, δ~γ)

]}
(27)

wherelatest(m) meansm − 1 unless a value is available from them − th iteration.
This approach does in fact improve convergence speed of the iterations. However, it
can be improved more. Note that this version of the algorithm can be re-written as the
Jacobi version in equation 26 plus a correction term

f bm(~γ) = [f bm(~γ)]J +
∑
δγ

ebm(~γ, δ~γ) (28)

where the correction is

ebm(~γ, δ~γ) =
∑
a

Hb
a(~γ,~γ + δ~γ)

(
falatest(m)(~γ + δ~γ)− fam−1(~γ + δ~γ)

)
(29)

The key to SOR is to modify how the correction term applies in equation 28. Note that
if we apply a gain coefficientw to the correction term, i.e. as

w
∑
δγ

ebm(~γ, δ~γ) (30)

Then the gainw = 0 reclaims the original Jacobi method whilew = 1 gives the
updates usinglatest(m). The SOR method is to increase the value of the gain higher,
to a value between 1 and 2. In this range, depending on the initial distribution, vertex
grid layout, and other factors, convergence can be faster than forw ≤ 1, and in fact
the number of iterations needed to achieve convergence becomes proportional toN ,
the number of points in the grid. This is much faster than just the Jacobi method alone.
However, we have no particular criteria for how to choose the value of the gainw.

Conjugate Gradient (CG) Method

The CG method adds logic to the SOR method that automatically chooses the “best”
gain value for the problem. Suppose we have chosen a value forw by some criteria,
and denote that “precursor” value asw−. Using it, we generate the next iteration at all
vertices, and denote the solutionf bm−:

f bm−(~γ) = [f bm(~γ)]J + w−
∑
δγ

ebm(~γ, δ~γ) (31)

We can ask whether there is a better value forw that causes faster convergence. By
faster convergence, we mean that the function

Ξ2 ≡
∑
γ

∑
b

(
f bm−(~γ)− f bm−1(~γ)

)2
(32)
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is a small as possible. Allowingw to vary from its initial guessw−, minimizing Ξ2

gives a new estimate for the gain:

w+ = −
∑
γ

∑
b

(
[f bm(~γ)]J − f bm−1(~γ)

) ∑
δγ e

b
m(~γ, δ~γ)∑

γ

∑
b

(∑
δγ e

b
m(~γ, δ~γ)

)2 (33)

With this new gain estimate, we can calculate a new value for eachf bm(~γ) that is more
accurate:

f bm+(~γ) = [f bm(~γ)]J + w+

∑
δγ

ebm(~γ, δ~γ) (34)

Effectively, this procedure turns the gain factorw into an iterated quantity also.
Overall, the CG method is accomplished with the following set of steps.

1. Using the valuewm−1 from the previous step, computef bm−(~γ), the Jacobian
estimate[f bm(~γ)]J , and the error correction

∑
δγ e

b
m(~γ, δ~γ) as in equation 31 at

each vertex.

2. Compute the new gain factorwm from equation 33.

3. Compute the improved interated solutionf bm+ using the new gain factor in equa-
tion 34.

3 Geometric Reconstruction of Deformations

In this section we look at two separate ways of describing the deformation of a vol-
umetic shape. Both techniques assume that the topology of the volume does not change,
but both allow the shape to stretch, squash, and distort in almost unlimited ways. The
topological restriction primarily means that chunks of material are not separated from
or joined into the volume.

One of the representations describes the deformation in terms of a displacement
vector at each material point. This is useful for evaluating the effects of several types
of dynamics, as well as collisions and some constraints. But for motion involving true
distortions of the volume, this representation is very difficult to manipulate, because of
the constraints of the topology. The other representation is complementary, in that it
computes directly the dynamical evolution of the Connection at all material points in
the volume due to twisting, stretching, distorting forces. The combination of both into
one comprehensive description provides great power and flexibility in computing the
complete dynamical problem in the presence of collisions and other constraints.

The remainder of this section is devoted to quantifying these two representations,
showing how they are related and can be made to work together, and showing how
together they provide a convenient method of exactly constraining the geometry to
conserve the volume of the material, regardless of the forces, boundary conditions, and
constraints.
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The Displacement Vector Representation of Deformation

This representation is a very straightforward method. It simply says that when a piece
of geometry is deformed, the points it occupies is space are translated various amounts.
If the ”undeformed” position for the material point~u isx(~u), and the deformed position
is X(~u), the deformation is defined to beδx(~u) by

X(~u) = x(~u) + δx(~u) (35)

This appears to be nothing more than a definition, which could make it difficult to
use this to any practical end. But the second part of this representation comes from
remembering that the tangent vectors span the 3d space, so be can write

δx(~u) =
∑
a

εa(~u) xa(~u) (36)

The practical task now in this representation is manipulating the deformation coeffi-
cientsεa(~u).

At this stage we can evaluate some of the relationships between the deformed and
undeformed states of the geometry. One important quantity is the deformed tangent
space. Taking the derivative ofX(~u), and using equations 10 and 11, we obtain

Xa(~u) =
∑
b

(
δba + εb;a(~u)

)
xb(~u) (37)

The deformed metric tensor is then related to the undeformed metric tensor by a trans-
formation:

Xa(~u) ·Xb(~u) = gab(~u) =
∑
cd

M c
a(~u) gcd(~u) Md

b (~u) , (38)

with the transformation matrixM defined as

M b
a(~u) ≡ δba + εb;a(~u) . (39)

This expression will reappear later when we discuss volume conservation with the
deformations. However, its appearance in this representation already portends the im-
portance of the Connection in the deformation problem. In this case, it appears in the
covariant derivativeεb;a(~u). So the second representation below focuses more directly
on the Connection as the basic descriptor of deformation.

Conserving Volume – The Lie Group SL(3)

Before proceeding to the second representation in terms of the Connection, it is worth-
while here to present an important consequence of the Displacement Vector repre-
sentation. For many applications, it is very important to conserve the volume of the
geometry under deformations. Further, it is important to conserve more than just the
total volume; small portions of the volume should also conserve their volume in de-
formations. This is true for a wide range of materials such as tissue, water, cloth, and
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many others. So volume conservation must be applied at the local scale of a geometry.
The Displacement Vector representation provides a very natural way of characterizing
the impact of a deformation on the volume at the local level.

The key to describing the volume is the metric tensor introduced earlier. Suppose a
region of the material coordinates that forms a volume is labeledR. This region need
not be the entire geometric object – it can be any ”chunk” of that geometry. The volume
of that region is

V =
∫
R

d3u
√
g(~u) (40)

whereg is the determinant of the metric tensor defined in equation 2. Upon deforma-
tion, the new volume follows from the new metric tensor:

V =
∫
R

d3u
√
g(~u) (41)

The condition for conserving the volume under deformation is just the requirement that
V = V . Since the regionR is any region in the volume, the only way to guarantee
conservation is for the determinant of the metric to be unaffected by the deformation,
i.e. g(~u) = g(~u). This is a very general, strong, and restrictive statement about how de-
formations can function. But in the Displacement Vector representation, this restriction
becomes a remarkably simple condition.

In the Displacement Vector representation, we can evaluate the determinant of the
deformed metric in a very simple way. To see it, we introduce some matrix nota-
tion. Define the metric tensor matrixg with componentsgab = gab. The matrixg
is similarly defined in terms of the deformed metric tensor. Also define the matrix
Mab = Ma

b . Then the relationship in equation 38 between the metric and deformed
metric has the form

g = M · g ·MT (42)

With this form, it is easy to see that the determinant of the deformed metric is easily
evaluated as

g = g
(
det(M)2

)
(43)

From this we have the elegant result that volume is conserved under deformation as
long asdet M = ±1. A value of−1 is not a good choice, since it causes the geometry
to be inverted, and so will not appear to be a continous evolution of the structure. So,
the condition we have for the conservation of volume under deformation is

det M = 1 (44)

This result for guaranteed volume conservation is a very useful and remarkable
result for several reasons:

1. The condition depends only on the deformation quantityεb;a(~u), and is indepen-
dent of the actual values of the metric before and after deformation. It does have
a dependence on the original geometry via the Connection term in the covariant
derivative.
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2. As we will see shortly, the volume conservation condition restricts most of the
degrees of freedom inεb;a(~u). In general, this quantity has nine independent
degrees of freedom, but volume conservation collapses that number down to
only three.

The Connection Representation of Deformation

The second representation looks directly at the underlying geometric description of
the volume. Here the Connection is the paramount means of controling/describing the
action. So any deformation of the geometry will change the Connection in some way.
So we define a deformation as that change of the Connection:

Γ
a

bc(~u) = Γabc(~u) + δΓabc(~u) (45)

HereΓ
a

bc(~u) is the new Connection after the deformationδΓabc(~u) is applied to the old
ConnectionΓabc(~u).

This representation has the very nice advantage that much of the dynamics of vol-
umes is naturally expressed as dynamical equations for the Connection (see section 4),
so it is natural to compute directly changes inΓabc(~u) due to applied forces.

There are however two potential drawbacks to using the Connection representation
directly:

1. The Connection representation does not lend itself to intuitive explanation of
what a deformation has done to the geometry.

2. It is very difficult to force volume conservation directly in terms of the Con-
nection alone, especially compared to the very clean results of equation 44. In
principle, there are 24 degrees of freedom in the Connection (3 × 3 × 3 − 3 )
because the Connection serves many uses in the geometry. This makes isolating
the three degrees of freedom that must be frozen to insure volume conservation
is a non-trivial task. (Although in our context of deformations we obtain exact
requirements on the deformation of the Connection that insure volume conser-
vation in section 3.)

Fortunately, we actually have the freedom to use both of these representations, and
in particular we can mix their usage together. So for tasks involving dynamics, the Con-
nection representation will frequently be the best choice, while in issues of constraints,
boundary conditions, and volume conservation, the Displacement Vector representa-
tion will be preferred. But in order to work in a mixed representation environment, we
need to understand the precise relationship between the two, especially how to start in
one representation and end up in the other. This is the subject of the next two subsec-
tions.

Relationship Between the Representations: Connection from Displacement Vector

We have already almost generated the complete process of computing the deformed
connection from the displacement vector. A few more steps will lead us there.
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Since the Connection is defined in terms of the derivative of the tangent space
vectors, we start with equation 37, written with the current notation:

Xa(~u) =
∑
c

M c
a(~u) xc(~u) . (46)

The second derivative with respect to a material coordinate is

∂Xa(~u)
∂ub

≡ Xab(~u) =
∑
c

M c
a;b(~u) xc(~u) (47)

with the covariant derivative ofM having the explicit form

M c
a;b(~u) =

∂M c
a(~u)
∂ub

+
∑
d

Γcbd(~u) Md
a (~u) . (48)

Now, according to equation 8, the deformed Connection is given by

Γ
a

bc(~u) = Xa(~u) ·Xbc(~u) . (49)

The dual vectorXa comes from equation 46 as

Xa(~u) =
∑
c

Qac (~u) xc(~u) , (50)

with theQac forming the matrix inverse ofM :

M ·Q = 1 ↔
∑
b

M b
a Q

c
b = δca (51)

Assembling all of this the deformed Connection is

Γ
c

ab(~u) =
∑
d

Qcd(~u) Md
a;b(~u) (52)

So in order to compute the Connection from the displacement vector, two deriva-
tives (in covariant form) must be taken ofεb. In the discussion later, we will see that we
can always do this as long as the initial data isC2, with good initial numerical values
of these derivatives.

Relationship Between the Representations: Displacement Vector from Connection

Now we want to work in the opposite direction, assuming we have obtained the de-
formed valueΓ

a

bc at all points~u of the material, and we wish to derive the correspond-
ing displacement vector. We begin this approach with the spot at which we left the
previous one: equation 52, which we now write slightly differently:

M c
a;b(~u)−

∑
d

Γ
d

ab(~u) M c
d(~u) = 0 (53)
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This equation can be solved using the integration along paths approach used in
section 2. We also bring in more matrix notation to make the solution somewhat clearer
to understand. So, picking a path~u = ~γ(λ) through the volume, we multiply equation
53 by d~γ(λ)

dλ to obtain

dM c
a(~γ(λ))
dλ

+
∑
b

Acb(~γ(λ)) M b
a(~γ(λ))−

∑
b

A
b

a(~γ(λ)) M c
b (~γ(λ)) = 0 (54)

andA is associated with the deformed Connection

A
a

b =
∑
c

Γ
a

bc

dγc(λ)
dλ

(55)

Using the matrix notation previously introduced, this equation has the more compact
and transparent form

dM
dλ

+ A ·M−M ·A (56)

which in turn has the general solution

M(λ) = H(λ, λ0) ·M(λ0) ·H(λ0, λ) . (57)

This solution uses the holonomy introduced earlier, with the matrix notationHa
b =

Hab.
From this expression forM, the solution for the deformation componentsεa fol-

lows directly. Again introducing some abbreviated notation, the set of theεa is a vector
~ε which satisfies the differential equation

d~ε(λ)
dλ

+ A(λ) · ~ε(λ) = (M(λ)− 1) · d~γ(λ)
dλ

. (58)

which has the general solution

~ε(λ) = H(λ, λ0) · ~ε(λ0) +
∫ λ

λ0

dλ′ H(λ, λ′) · (M(λ′)− 1) · d~γ(λ′)
dλ′

(59)

Equations 57 and 59 are the complete solution to computing points on the deformed
geometry, once the deformationδΓabc is known. As discussed in the section on inte-
gration of covariant differential equations, an alternative approach to the solution for
~ε is the use of the SOR or CG iterative methods. Numerically, these techniques are
probably superior to layout a set of paths and integrating.

Volume Conservation Revisited

In the previous section a discussion of volume conserving deformation concluded that
the requirement of constant volume – both locally and globally – over the entire volume
is satisfied if and only if the quantityM is a member of the Lie GroupSL(3). In light
of the solutions forM and~ε just obtained, it is worthwhile investigating the solution
for methods to assure volume conservation.
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The place to begin is to combine the volume conservation condition of equation 44
with the solution forM in equation 57, to obtain

1 = det M(λ)
= det M(λ0) det H(λ, λ0) det H(λ0, λ)
= det M(λ0) det

(
H(λ, λ0) ·H(λ0, λ)

)
(60)

Since we want the volume conserved everywhere,det M(λ0) = 1 as well, and the
volume conservation condition reduced to the requirement that the matrixH(λ, λ0) ·
H(λ0, λ) is also a member ofSL(3). However, because of the relationshipΓ

a

bc =
Γabc + δΓabc, there is the relationshipA = A + δA, and ultimately the result

H(λ, λ0) ·H(λ0, λ) =

(
exp

(∫ λ

λ0

dλ′ δA(λ′)

))
+

(61)

which is independent of the original undeformed Connection. In addition, volume
conservation now requires thatexp(

∫
δA) is a member ofSL(3).

The sections on dynamics and constraints will continue this discussion of volume
conservation, touching on aspects that are peculiar to those specific situations.

Relationship to Continuum Mechanics

There is an alternative analytical scheme for computing the affects of deformations in
the form of Continuum Mechanics [7]. In continuum mechanics, the deformations are
described in terms of theelastic strain tensorτab(~u), which is related to the covariant
derivative of the deformation

τab(~u) ≡ 1
2
(
εa;b(~u) + εb;a(~u)

)
. (62)

Forces that cause deformation in continuum mechanics are modelled in terms of their
behavior on the elastic strain tensor. These force models introduce coefficients such
as thebulk modulus, shear modulus, andmodulus of rigidity. These quantities need
not arise in our description because volume is conserved in the formulation. Suppose,
for example, that we did not impose volume conservation via equation 44, then the
geometry would flop, strech, shrink, etc purely in response to external forces. Some
degree of volume conservation can be restored in this situation by invoking elastic
strain forces, involving pressure and bulk modulus. These do not rigorously guarantee
volume conservation, but can be made to conserve volume over some averaging region
and period of time. If at some point we wish to allow the volume to not be conserved,
it will be useful to bring back these moduli in order to describe the forces that give rise
to volume nonconservation.

One quantity defined in continuum mechanics that could prove useful is the pres-
sure, defined as

p(~u) = −1
3

∑
a

εa;a(~u) (63)

This could prove useful in monitoring the magnitude of deformations.
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4 Deformation Dynamics

This section looks at the dynamical evolution of a volumetric geometry that is subjected
to external forces. We consider both conservative and frictional forces. Constraints and
collisions are not treated here, but in section 5 collisions are introduced and handled.

Equations of Motion

The equations of motion we will handle here are relatively simple: Newton’s equation

ẍ(t) = F [x(t)] (64)

This equation applies to each pointx of the volume, and in particular to the set of points
we will use for our computations. Typical particle-based approaches use a collection of
particles placed throughout the volume to describe the shape of the volume. External
forces would tear the volume apart ordinarily, so the additional constraining forces must
be added in order to preserve the underlying connectedness of the volume[5]. Here, the
external forceF does not include constraining forces between points in the volume,
because we have connectedness already built in from the geometric description.

We have excluded here the case of damping forces – forces involvingẋ for several
reasons:

1. Damping forces are frequently needed simply to handle numerical instabilities,
which is a particularly important problem in particle based deformations tech-
niques. Here the underlying geometric description reduces the stability issues
considerably, as will be seen below.

2. Dampling is undesired because it is more efficiently accomplished at a later stage
of the problem, rather than in the formulation of the approach. The result may
be unphysical, but this is movie-making not science.

3. If you really need damping at this stage, we can start equation 64 with the force
of the formF [x(t), ẋ(t)] and generate a line of calculations similar to the one
below.

From Newton’s equation, we will derive in the sections below a set of other equa-
tions that describe the motion of the geometry. As we will see, these equations devide
naturally into describing three types of motion, which we labelbody, flex, and twist
motions. Body motion is just the motion of the center of mass. The center of mass
assumes a special role in this approach, partly because its location within the volume
changes from moment to moment, but also because we will use it as the point which
is defined to have no deformation. All deformations are then constructed relative to
that position. With this separation of the motion into three types, the update to the
deformation over time becomes

x(~u, t+ δt) = x(~u, t) + δx(~u, t)
= x(~u, t) + δxBody(t) + δxFlex(~u, t) + δxTwist(~u, t) (65)

19



Body Dynamics

Body dynamics is the motion of the center of mass due to a force applied throughout the
entire geometry. This does not include torques applied to the geometry. The position
of the body point,xBody is defined as the center of mass:

xBody(t) =
1
V

∫
d3u x(~u, t) (66)

and undergoes motion due to the volume averaged force

ẍBody(t) =
1
V

∫
d3u F [x(~u, t)]

= FBody [xBody(t)] (67)

This equation is just the usual dynamics of a single particle. Solve it by the usual
techniques.

Flex Dynamics

Flex dynamics includes two types of motion: rigid body rotations and scaling (stretch-
ing). We can derive the force for this by Taylor series expansion of the external force
around the Body dynamics force, keeping only the first, linear term. The general result
looks like:

ẍFlex(~u, t) = R(t) · (xFlex(~u, t)− xBody(t)) (68)

The matrixR describes the rotation and stretching that can happen due to the external
forces, and is a function of time only. This is a linear dynamics problem, for which
there are many numerical and analytical techniques that can be applied.

Twist Dynamics

Twist dynamics is all the other motion caused by the external force that is not handled
by the Body and Flex dynamics terms. Since we are dealing with dynamics that change
the shape of the geometry, and we are describing the shape of the geometry in terms of
the ConnectionΓcab, this subsection is aimed at generating dynamical equations for the
Connection, which is now a function of time as well as material coordinates.

To begin the derivation of the dynamical equations for the Connection, we can take
a derivative of Newton’s equation 64:

ẍa(~u, t) = xa · ∇x F [x(~u, t)] (69)

This equation details how the local coordinate system of the geometry changes in
time. The equation will be very useful, however it is not the final dynamical equation
we seek because the Connection is not involved. Once more, we take another deriva-
tive, to obtain:

ẍab(~u, t) = xab · ∇x F [x(~u, t)]
+ (xa xb) : ∇x∇x F [x(~u, t)] (70)
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The dynamics of the Connection is embedded in this equation, because of the fact that
the Connection is related toxab. Further evaluation will simplify the dynamics from
this also. Recalling the relationship in equation 8, we can expand the left hand side of
equation 70 as

ẍab(~u, t) =
∑
c

(
Γ̈cab(~u, t)xc(~u, t) + 2Γ̇cab(~u, t)ẋc(~u, t) + Γcab(~u, t)ẍc(~u, t)

)
(71)

Recalling equation 69, the last term in this sum becomes∑
c

Γcab(~u, t)ẍc(~u, t) =
∑
c

Γcab(~u, t) xc · ∇x F [x(~u, t)]

= xab · ∇x F [x(~u, t)] (72)

So, by combining equations 70, 71, and 72, we arrive at the dynamical equations∑
c

(
Γ̈cab(~u, t)xc(~u, t) + 2Γ̇cab(~u, t)ẋc(~u, t)

)
= (xa xb) : ∇x∇x F [x(~u, t)] (73)

Taking the inner product of this equation with the dual vectorxd, we arrive at the
equations for the Connection dynamics

Γ̈dab(~u, t)+2
∑
c

Γ̇cab(~u, t) ẋc(~u, t)·xd(~u, t) = {(xa xb) : ∇x∇x F [x(~u, t)]}·xd(~u, t)

(74)
We now see from this result why we chose at the beginning to separate out the

Body and Flex dynamics from this Twist dynamics. The forces that give rise to Body
and Flex motion do not appear in the Twist force, because of the two gradients on the
force that appear in equation 74. Also, we see how the geometric description provides
its own effective damping behavior in the second term on the left hand side. In fact,
there is an analytical solution we can apply to this. Defining the matrixW by

(W)ab (~u, t) = 2ẋb(~u, t) · xa(~u, t) (75)

equation 74 can be integrated once to produce an equation forΓ̇. Here we will do that
for a short timeδt, to give

δΓcab(~u, t+ δt) = δt Γ̇cab(~u, t+ δt)

=
∑
d

(exp {−δt W(~u, t)})cd δΓ
d
ab(~u, t)

+ (δt)2 {(xa(~u, t) xb(~u, t)) : ∇x∇x F [x(~u, t)]} · xc(~u, t)(76)

This last result is essentially the full solution to the dynamics problem for uncon-
strained motion in response to external forces.

Volume Conservation Issues

At this juncture we have two conditions on the Connection as it deforms in response
to forces: the volume conservation constraint represented equivalently by equations??
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and 44, and the dynamical equations of motion in equation 74. How do we merge the
two so that the dynamics will always conserve volume?

Lets start with an iterative approach. SupposeδΓdab(~u, t) is antisymmetric (and
therefore conserves volume). To what extent does equation 76 leaveδΓdab(~u, t + δt)
antisymmetric as well?

As far as the first term on the right hand side of equation 76, it is worthwhile noting
that W is antisymmetric. This is becausexa · xb = δba, so ẋa · xb = −xa · ẋb.
So, in a recurring theme throughout these notes,exp(−δtW) is anSO(3) matrix.
However, the product of anSO(3) matrix and an antisymmetric matrix in general is
notantisymmetric.

The second term on the right hand side is antisymmetric or not depending on the
nature of the external force used in the dynamics. So in general we can’t count on
antisymmetry.

Overall, it appears that volume conservation requires that we explicity antisym-
metrize the results of the dynamics in equation 76. From this point on we will des-
ignate this antisymmetric part ofδΓcab as(δΓcab)

−. There is an ambiguity of how we
go about doing this however. We could generate(δΓcab(~u, t))

−, feed that into equation
76, and antisymmetrize(δΓcab(~u, t + δt))−, or use the full outcome forδΓcab(~u, t) in
equation 76 and antisymmetrize the result from that. The results of the two approaches
are different. At the moment, there does not appear to be a consistent guideline for
choosing one over the other. But the issue is more complex, because volume conser-
vation must take into account the affects Body and Flex motions. Body motions will
not violate volume conservation, but Flex motion in general will. In the next section,
applying collision constraints will also raise issues for volume conservation. While it
might seem of little value to antisymmetrize the Twist motion at this stage when there
are more steps needed to conserve volume, it is a good idea to apply antisymmetrization
here regardless of what other manipulations to the volume do. If not, volume-changing
Twist motions could interact in a nonlinear way with other effects to produce unrea-
sonable behaviors, even though the overall motion conserves volume. So for now, the
choice we will make is to antisymmetrize the twist motion, as well as taking addi-
tional steps later to conserve volume after other forces/collisions/constraints have been
applied.

Stability

Before launching into a discussion of numerical implementation steps, we can first
examine the stability properties of the dynamics solution contained in equation 76. We
assume that there are no boundaries or collision considerations here. The simplest way
to look at stability is to imagine that some external force has driven the geometry into
some appropriate motion, and then at timet0 the force is instantaneously turned off.
The volume is then in a “weightless” environment undergoing some residual motion
left over from the now gone force. In the case of Body and Flex motion, the geometry is
left translating at a constant velocity and rigidly rotating at a constant angular velocity.
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For the Twist motion, the equations of motion are now

δΓcab(~u, t+ δt) =
∑
d

(exp {−δt W(~u, t)})cd δΓ
d
ab(~u, t) (77)

for t > t0. SinceW is antisymmetric,exp(−δt W) is just a rotation of the change in
the connection. In particular, its magnitude is conserved:∑

c

(δΓcab(~u, t+ δt))2 =
∑
c

(δΓcab(~u, t))
2 (78)

So the twist motion is just a continual cycling through what could be a complex series
of shape changes, for example like the very organic blobby motion of a glob of fluid
suspended in zero gravity. But the solution is intrinsically stable over time. A useful
test of any numerical implementation would be to produce this behavior over a long
sequence of time steps.

Computational Scheme

Here we discuss some aspects of a computational scheme to implement the deformation
dynamics discussed in this section. We focus mostly on the chain of steps needed in
the computation, and not at all on the architecture of the software. We assume there are
no collisions with other objects. Collisions will be discussed in the next section (5).

As we have found in this section, the dynamics is handled reasonably well by an
explicit finite difference scheme, generating a new state for the geometric system at
time t+ δt from the state at timet. Our goals here are to

1. Identify the elements of the geometric state,

2. Step through the computations required to update the state.

Geometric State

The elements of the geometric state include the following items at each material coor-
dinate:

1. The value~u of the material coordinate.

2. The positionx(~u) of the the point in space.

3. The tangent space basis{xa(~u), a = 1, 2, 3}

4. The metric tensorgab(~u) and its inversegab(~u).

5. The dual basis{xa(~u), a = 1, 2, 3}, (xa =
∑
b g

abxb).

6. The ConnectionΓabc(~u).

7. The Connection changeδΓabc(~u) from the last time step (after antisymmetriza-
tion).
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8. The basis derivativėxa(~u) from the previous time step.

This is the full list of items needed to handle the dynamics of the volume. The list
has some repetitive information. For example, item 5 can be computed from items 3
and 4. However, we include it explicitly to highlight the fact that it will be needed.

Computation Steps

The set of steps listed here ignore the issue of collisions with over objects. Collisions
are treated in the next section, at which point this list will be altered appropriately.

1. Compute the deformations due to the Flex and Body dynamics.

(a) Initialize the deformation and new basis:

X = x + δxFlex + δxBody (79)

Xa = xa +
∂

∂ua
δxFlex (80)

(b) Test for volume nonconservation at each material coordinate by comparing
the old and new values of the determinant of the metric.

(c) Where volume has not been conserved:

i. ComputeM at that point.

ii. ProjectM to just itsSL(3) component (more on that later).

iii. Using neighboring material coordinates as a very short path, compute
a new value forεa at this material coordinate.

iv. ReplaceX with the new value, relabelx(~u)→ X(~u).

(d) Recompute the remaining elements of the geometric state:xa, gab, Γcab,
etc.

2. Compute deformations due to Twist dynamics

(a) Update the Connection changesδΓabc(~u) at all material coordinates~u.

i. ComputeW(~u) and exponentiate it forexp(δt W).
ii. Compute the external force(δt)2 {(xa xb) : ∇x∇x F} · xc

iii. UpdateδΓcab using equation 76, and antisymmetrize it.

(b) Establish a collection of interlinked paths throughout the volume.

(c) Choose a path that connects a reference point to the point of interest.

(d) As the path is traversed, useΓ and Γ = Γ + δΓ to compute a running
evaluation ofH, H, M, andεa at each material coordinate along the path
using equations 57 and 59.

(e) Compute the new basis vectors and metric, usingM at each material coor-
dinate and equation 46.

(f) Update the remaining members of the geometric state.
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In step 1(c)ii, Flex dynamics sometimes produces a matrixM that is not an element
of SL(3). In this situation, we need to project the matrix to anSL(3) member in order
to conserve volume. We can accomplish that through the simple step of rescaling the
elements ofM. Supposedet(M) 6= 1, then the rescaling

M→M/det(M)1/3 (81)

gives the matrix a unit determinant as needed. However, for large deformations this
scaling can greatly distort the solution. The alternative approach that is better behaved
is to rescale the deformation components directly, i.e. introduce a scaling factorf and
the transformation

M→ 1 + f(M− 1) (82)

and fixed the value off by the determinant constraint. Although superficially the
polynomial equation forf is cubic, one of the solutions is triviallyf = 0. Excluding
that one, the polynomial equations for the remain roots is quadratic. If we denote the
two roots asf±, the best one to choose is the one with the minimum absolute value.

5 Collisions

The last major problem to deal with is collisions between deformable geometric vol-
umes and other volumes and/or boundaries. This problem and its solutions are divided
into three steps:

1. Detecting a collision between two extended objects,

2. Correcting the positions of the boundary vertices in accordance with the collision
conditions,

3. Recomputing the shape of the geometry, keeping volume conservation enforced.

The typical approach to collision detection for cloth dynamics is based on the un-
derlying particle description used: test individual particles for collision events[8]. Our
description in terms of geometry would be best served by a geometrically-oriented ap-
proach to collision detection and adjustment. There is in fact just such a technique,
based on a quantity called theGauss Linking Number(GLN). Since the GLN figures
prominently in this technique, we begin by introducing it, discuss how it is useful in
collision detection, and how to efficiently compute it. That is followed by a discussion
on GLN networks, which are collections of closed curves on the surface of the volume
which act as the measurement sensors for detecting and isolating a collision. We finish
this section with a discussion of how to use the collision detection/isolation to correct
respond to the collision and recompute the shape of the deformable geometry while
still conserving volume.

Gauss Linking Number

We introduce here a very interesting and unique quantity called the Gauss Linking
Number (GLN) [2]. This quantity is related to the topological characteristics of closed
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loop curves in space. More specifically, it is equal to the number of times two curves
link to each other. For two closedC1 loops, characterized by the functions~γi(t), i =
1, 2 with 0 ≤ t ≤ 1 and~γi(0) = ~γi(1) in space, the Gauss Linking Number can be
computed from the integral

GLN(~γ1, ~γ2) =
1

4π

∫ 1

0

dt1

∫ 1

0

dt2

(
d~γ1(t1)
dt1

× d~γ1(t2)
dt2

)
· (~γ1(t1)− ~γ2(t2))
|~γ1(t1)− ~γ2(t2)|3

(83)
Incredibly, this quantity is completely independent of the shapes of the two curves, and
is an integer, equal to the number of times the two curves link. So if the two curves~γ1

and~γ2 can be separated from each other by any continuous deformation of their shapes,
thenGLN = 0. If they are linked together once like two chain links, thenGLN = 1,
and so on for more complex linkages. So, despite the fact thatGLN is evaluated from
an integral expression, in principle it can act as a boolean test for whether two curves
are linked.

The utility of the Gauss Linking number comes from picking one of the curves to
lie on one surface geometry, while the other curve lies on some other surface geometry.
If the two surfaces do not intersect within the area enclosed by the two curves, then
GLN = 0. But if the two surfaces intersect to the extent that the curves cross each
other, then computingGLN will detect that intersection. To be able to localize the
intersection on the surface, a network of curves on each surface can be layed out, and
localization happens by examining the collection of curves on each surface that link
according to the value ofGLN .

Numerical Evaluation of GLN

The utility of the Gauss Linking Number to collision detection depends on being able
to evaluate the integrals in equation 83 rapidly. Here we make an attempt to reduce the
complexity of the effort and achieve a fast evaluation.

The numerical evaluation of this quantity is suprisingly easy for piecewise linear
curves. If we take the two curves to be composed of linear segments, so that

~γ1(s) = ~γk1 +
s− sk

sk+1 − sk
(~γk+1

1 − ~γk1 ) sk ≤ s ≤ sk+1 k = 0, . . . N (84)

~γ2(r) = ~γk2 +
r − rk

rk+1 − rk
(~γk+1

2 − ~γk2 ) rk ≤ r ≤ rk+1 k = 0, . . .M (85)

(86)

and because these are closed loops, we have thatsN+1 = s0, ~γN+1
1 = ~γ0

1 , rM+1 = r0,
and~γM+1

2 = ~γ0
2 . With this form, the Gauss Linking Number is

GLN(~γ1, ~γ2) =
1

4π

N∑
k=0

M∑
`=0

{(
~γk+1

1 − ~γk1
)
×
(
~γ`+1

2 − ~γ`2
)}
·
(
~γk1 − ~γ`2

)
Gk` , (87)

with the coefficients

Gk` =
∫ 1

0

ds

∫ 1

0

dr
∣∣~γk1 − ~γ`2 + s(~γk+1

1 − ~γk1 ) + r(~γ`+1
2 − ~γ`2)

∣∣−3
(88)
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Once again, we are very fortunate that at least one of the integrals in this expression
can be evaluated exactly [11]using the formula:∫ 1

0

dt
(
a+ bt+ ct2

)−3/2
=

2(2c+ b)
4ac− b2

1√
a+ b+ c

− 2b
4ac− b2

1√
a

(89)

The remaining integral can be evaluated by brute force without any serious prob-
lems. In fact, code which accomplishes its evaluation, can be written in a Maya plugin
calledGaussLinkingNumber as:

double
GaussLinkingNumber::gln_segmented_compute( MFnNurbsCurve& curve1 ,

MFnNurbsCurve& curve2 )
{
//===============================================================
// Segment evaluation method - divide into multiple straight
// line segments and evaluate integral exactly on one curve
// and numerically on the other.
//===============================================================
double p1sampling = 50, p2sampling = 50;
double gln = 0;
double p1start = 0, p1end = 0;
double p2start = 0, p2end = 0;
curve1.getKnotDomain(p1start, p1end);
curve2.getKnotDomain(p2start, p2end);
double dp1 = tolerance * (p1end - p1start) / p1sampling;
double dp2 = tolerance * (p2end - p2start) / p2sampling;
MPoint v1minus, v1plus;
MPoint v2minus, v2plus;
MVector dv12mm, dv11pm, dv22pm;
curve1.getPointAtParam ( p1start, v1minus, MSpace::kWorld );
curve2.getPointAtParam ( p2start, v2minus, MSpace::kWorld );
for(double p1=p1start+dp1; p1 <= p1end; p1 += dp1) //Loop over first
{ // curve segment

curve1.getPointAtParam ( p1, v1plus, MSpace::kWorld ); //
dv11pm = v1plus - v1minus; //
for(double p2=p2start+dp2; p2 <= p2end; p2 += dp2) //Loop over second
{ // curve segment

curve2.getPointAtParam ( p2, v2plus, MSpace::kWorld ); //
dv22pm = v2plus - v2minus; //
dv12mm = v1minus - v2minus; //
double c = dv22pm * dv22pm; //
double ds = 0.02 * tolerance; //
double accum = 0; //
for(double s = 0; s <= 1; s += ds) //Evaluate integral
{ // for G_{kl}

MVector va = dv12mm + s * dv11pm; //
double a = va * va; //
double b = -2.0 * va * dv22pm; //
accum += ((2*c+b)/sqrt(a+b+c)-b/sqrt(a))*2/(4*a*c-b*b);//

} //
accum *= ds; //accum = G_{kl}
gln += dv12mm * ( dv11pm ˆ dv22pm ) * accum; //Increment GLN
v2minus = v2plus; //
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}
v1minus = v1plus;

}
gln /= (4.0 * 3.14159265);
return gln;
}

The result is sensitive to the sample spacing in the integral, as illustrated by the ex-
ample in figures 1 through 4. Figure 1 shows the two curves used in the computations,
at their initial and final positions in an animation. During 100 frames, one of the curves
remains fixed while the second moves closer, intersecting the other at frame 68. Nei-
ther curve rotates or changes shape during the animation. The minimum distance, or
distance of closest approach, between the two curves is plotted as a function of frame
number in figure 2. After intersection at frame 68, the two curves remain linked even
as the closest approach distance increases.

The parametertolerance is used to control the sampling quality of both the
curves and the numerical integral evaluation. With a default value of 1, larger values
of tolerance correspond to coarser sampling, and small values are finer sampling.

For this example, when the sampling is low (e.g.tolerance ∼ 10), the value
of GLN does not immediately snap from 0 to 1 when intersection occurs (see figure
3). There is a precursor rise in its value its value as the two curves come closer to
each other, and a lag in reaching the full value after the curves interlink. Well after
interlinking, there is still considerable fluctuation in the value ofGLN . Qualitatively,
this happens because low sampling in the integral is not able to resolve the shape of the
curves adequately. This could be useful in the collision detection problem as a way to
adaptively evaluateGLN depending on how great the risk of collision is. For example,
if a coarse evaluation ofGLN yields a very low value forGLN , then a collision is
unlikely and we move on. If the coarse evaluation yields a value significantly above
0, then it may be necessary for a slower, more careful evaluation to make the call
for or against collision. This approach lets us use fast approximate evaluations, while
still being able to do more thorough evaluations if the answer was not sufficiently
compelling. For smaller values of thetolerance (≤ 1), the computedGLN behaves
very much like the step function expected of the exact situation. These results forGLN
are also plotted in figure 4 as a function of the separation distance of the two curves.

GLN Collision Networks

TheGLN has value as a collision detector because it has a discrete integer-valued
function regardless of the shape of the two curves in the integral: it responds only to
the condition of whether the two curves are linked. When we try to go further, and
isolate the location of the collision, this topological-invariant property ofGLN proves
to be a double-edged sword. It is always possible to take a curve on the surface of a
volume, and redraw it across the surface in almost unlimited ways without changing
the value of theGLN . So when theGLN is not zero, we know that there is a collision
between two objects, but we have very little information about where on the surface
of either object the collision occurs. This subsection outlines a process for building
networks of surface curves, for which the evaluation ofGLN for each curve localizes
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(a)

(b)

Figure 1: Two curves used in the example Gauss Linking Number calculations. (a)
Positions at frame 1, well separated from each other; (b) Positions at frame 100, fully
linked.
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the collision on the surface. We begin by defining aGLN networkas a collection of
closed curves on the surface of a volume. The curves typically will overlap each other
and redundantly cover areas of interest of the surface of the volume that may be subject
to collision. The closed curves are labeled~γi, i = 1, . . . N . The interior of each curve,
denotedInterior(~γi), is the set of points on the surface of the volume that are inside
the curve and are vertices of the curve. We suppose that a similar network of closed
curves has been built for the object with which our volume is possibly colliding, and
denote those curves by~γB . The goal of the collision networks is to find the set of points
R on the surface of the volume that are presently intersecting with the collision object.
Initializing this setR = �, we iterate over all curves on both surfaces, updatingR for
each curve pair(~γB , ~γi) using the following tests and procedures:

GLN(~γB , ~γi) ≥ 1 −→ R := R ∪ Interior(~γi) (90)

GLN(~γB , ~γi) = 0 −→ R := R−R ∩ Interior(~γi) (91)

The points contained in the setR after this process have collided with the collision
geometry, and must be repositioned to no longer collide. Repositioning depends on
the type of surface interaction that is dictated by the types of the materials the two
objects are conceptually composed of. If one or both of the objects are sticky, then
repositioning should place the points exactly on the surface of the collision object.
Perfectly elastic collisions would position the boundary points according to normal
reflection formulae. The logic behind repositioning is the same as for collision of
particles with objects[9].

Clearly, the set of points found inR depends are the layout of the collision net-
works. It is possible for the network to be very coarse and either miss a collision, or
include more points in the collision setR than actually are involved. And if there are
gaps in the coverage of the surface by the network, points actually involved with a
collision may be overlooked. But the approach is very general: any number of closed
curves can be used, distributed on the surface of the volume in any way desired, includ-
ing multiple overlapping regions. So in principle the resolution of the set of collision
pointsR can be very good if the strategy for laying out the collision network fits well
with the problem. Success or failure depends entirely on this strategy of picking the
network member curves.

Deformation from Collisions

• Use the newly positioned collision points as the reference points for integration
of the holonomiesH and the matrixM.

• Recompute Connection changeδΓ and antisymmetrize it.
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