
Current as of May 21, 2002

Efficiently Rendering Gobs and Gobs of Particles

Jerry Tessendorf∗

Cinesite Digital Studios

Figure 1: Cloud-like distribution with 1,167,396,675 particles, rendered using volumetric self-shadowing and the other
techniques described in the text.

Abstract

Particles systems play a very strong role in entertainment computer
graphics because of their versatility and easy connection to natural
phenomena. Some applications would benefit from the simulation
and visualization of millions to billions (106 to 109) of particles as
a single system. A direct attempt to model and render such large
numbers of particles with commercial off the shelf graphics tools
presents a difficult challenge because they are not designed to effi-
ciently handle this extreme problem. By specializing the rendering
algorithms to the unique conditions specific to this problem, soft-
ware has been developed and deployed which is able to render un-
limited numbers of particles in very low amounts of RAM. This
approach also generates volumetric lighting and opacity, including
self-shadowing, making the particle renderer an efficient volume
renderer. The algorithms combine several channels of alpha and
depth data with techniques to transform the hiding and shadow map
problems to a compositing operation. There are similarities to the
“Deep Shadow Map” concept[1] of Lokovic and Veach, but we rely
on a statistical rationale to reduce the data load even further. When
augmented with a semi-procedural method of generating particle

∗Cinesite Digital Studios, 1017 N. Las Palmas Ave., Los Angeles, CA
90038, email: jerry@cinesite.com

data from guide particles and “emission algorithms”, complex vi-
sulizations can be generated with little or no disk space and very
little RAM. Several examples are provided, including one which
exceeds109 particles in the image.

1 Introduction

A great many natural phenomena of interest in computer graphics
have a physical description in terms of particles and their interac-
tions. Even fluid dynamics, which is a description of the motion
of a continuum material, is derivable physically and theoretically
from the bulk behavior of a great many very tiny particles[6, 2, 3].
The branches of physics called Statistical and Condensed Matter
Physics explain large scale systemss in terms of underlying discrete
quantities and interactions. This is reflected in computer graphics
by the popular and successful techniques of using dynamic particle
systems to model, animate, and/or render stars, rainfall, spray[4],
hair, cloth[5], fire[7], smoke, “energy beams”, and many more ef-
fects that may not on first blush have a particle nature. Usually
however, rendering of particles is augmented with sprites, blobs,
and textures in order to fill out fine detail that is not explicitly mod-
eled with particles.

In this paper we present our system for modeling, animating,
and rendering very large numbers of particles. What is meant by
“very large” is that there should be no limit to the number of par-

Current as of May 21, 2002

ticles rendered. In practice, we have achieved film-quality high
resolution renders of as many as109 particles in a single frame
using very modest computing resources, with the ability to render
even larger numbers bounded only by the limit of cpu time allotted
for the render. The intent is to render very large numbers of sub-
resolution particles which model both fine detail and bulk structural
properties, in effect building a macroscopic object from its micro-
scopic bits. For example, the image below the title of this paper
contains 290 million particles and exhibits volume-rendering-style
self-shadowing of the distribution of the particles, while requiring
only 22 MB of RAM to hold the image data, shadow maps, parti-
cles and code in the rendering process. The render time of 43 hours
on a Xeon 900 MHz processor includes the time needed to generate
the shadow maps, which is nearly 50% of the total render time.

At the heart of our system is a custom-made particle renderer
which efficiently renders anti-aliased, motion-blurred spherical par-
ticles with surface shading. The particles are modeled at render
time as true spheres, not points, which occlude each other. To
handle occlusion of one particle by another, Lokovic and Veach
introduced the concept ofdeep shadow maps[1], in which the al-
pha channel is generalized into a curve of alpha as a function of
depth. We have adopted instead a statistically-oriented approach of
computing several channels of the statistical properties of alpha and
depth. By computing these statistics on the fly during the render, we
can construct an effective spatio/statistical model of particle density
which controls volumetric opacity as a statistical function of depth.
Using this process to create shadow maps for lights, rendered im-
ages exhibit realistic volumetric self-shadowing behavior.

In order to render large numbers of particles, we have developed
a mechanism to efficiently feed particles to the renderer. Storage
of 109 particles in RAM or on disk is technically feasible but lim-
its practical applications. The alternative we have chosen in this
system combinesguide particles, which are animated traditionally,
with child particleswhich are spawned procedurally from the guide
particles. The guide particles feed controling parameters to the pro-
cedural algorithm for spawning children, so that arbitrarily fine de-
tail can be built into the distribution of particles while generating
them in large quantities. We have implemented the proceduralism
in particle emission shadersto flexibly design the procedure while
fully coupling the guide particle attributes with algorithms and child
particles.

2 Rendering Spherical Particles

Even though we think of the particles as very small spheres, in fact
smaller than the camera can resolve, it is still important to accu-
rately compute the contribution each sphere can make to the image.
Without such an accurate calculation, errors can appear in a moving
scene as shimmering or aliasing artifacts, and even in still images
as unexpected holes in the density of the image. So the first step in
rendering many small particles is to accomplish an accurate render
of individual spheres. As a side benefit, the renderer performs well
when a sphere becomes resolvable as well.

An examination of figure 2 shows clearly that the image plane
silhouette of a 3D sphere is not always a circular disk, and is also
not an ellipse. The image plane silhouette is a quadratic function of
position on the image plane, and the shape is more accurately de-
scribed as a slice through a 3D ellipsoid. In this section, an implicit
formula is given for the silhouette shape. The key quantities that
control the shape are the position of the center of the sphere in the
image plane, and the ratio of the sphere radius to its distance from
the camera.

This analysis gives us three important algorithms for rendering
large quantities of spherical particles:

1. an algorithm for testing whether an image plane point is inside

Figure 2: Image of a sphere demonstrating that the silhouette of a
sphere is not circular or elliptical in general.

the sphere silhouette or not.

2. an algorithm for computing the point on the disk edge that lies
on the line between an inside point and an outside point.

3. an algorithm for mapping a point on the image plane inside
the disk to the two corresponding points on the 3D sphere.

The first two results provide a method for doing clipping in the
image plane, and the third one allows us to track back to points on
the sphere from the image plane, without doing an explicit ray trace.
Inspiration for these algorithms comes from the basic properties of
ray-sphere interaction described in reference [8].

In the special case that the sphere is aligned on the axis of the
camera view direction, the image plane shape is a circular disk,
with radiusε0/

√
1− ε20, where the dimensionless variableε0

ε0 =
R

|~rS −~rC |
, (1)

is less than one. Here,R is the radius of the 3D sphere,~rS is the
3D position of the sphere, and~rC is the 3D position of the camera.

2.1 Imaging a Sphere

The basic imaging equation maps points~r in 3D space to points~x
on the image plane. Using the camera position~rC and the camera
pointing direction̂n, the imaging equation for the perfect camera is

~x =
~r−~rC

n̂ · (~r−~rC)
− n̂ (2)

It is easy to verify that, although~x is written as a point in 3D space,
the set of such points, generated as~r varies through the 3D space in
front of the camera, all lie on a plane that hasn̂ as its normal. Also,
the units of~x are in dimensionless “tangent” units.

The points on the surface of the sphere have the representation

~rS +Rφ̂ , (3)

where the unit vector̂φ points in all directions. The imaging equa-
tion for the points on the surface is now

~x(φ̂) =
~rS −~rC +Rφ̂

n̂ · (~rS −~rC +Rφ̂)
− n̂ (4)

Current as of May 21, 2002

This is not a 1:1 mapping, but some additional effort below yields
an explicit equation for the silhouette and the 3 algorithms of inter-
est.

2.2 Mapping a Sphere to the Image Plane

The points~x(φ̂) inside the sphere footprint in the image plane have
the form~x(φ̂) = ~xS + δ~x(φ̂), with

δ~x(φ̂) = ε
M · φ̂

1 + εn̂ · φ̂
(5)

and ε = R/n̂ · (~r0 − ~rC) < 1. The matrixM is a projection
operator

M = 1− r̂n̂

r̂ · n̂ (6)

with r̂ = (~r0 −~rC)/|~r0 −~rC |.

2.3 Mapping from the Image Plane Disk to the
Sphere

With a little more manipulation, equation 5 provides an algorithm
for mapping a pointδ~x on the image plane back to the two corre-
sponding points on the 3D sphere. That algorithm is constructed
in this section. Some properties of the algorithm will serve in the
other algorithms of interest.

To find points on the sphere, we must findφ̂ for any image plane
point δ~x. The explicit expression for̂φ is

φ̂ = g (δ~x + ~z)− 1

ε
~z (7)

with

~z =
r̂

r̂ · n̂ . (8)

There are two solutions forg, corresponding to the two points on the
sphere that are intersected by a ray from the camera. The solutions
are

g± =
~z · (δ~x + ~z)±

{
(~z · (δ~x + ~z))2 −

(
z2 − ε2

)
|δ~x + ~z|2

}1/2

ε |δ~x + ~z|2
(9)

2.4 The Silhouette as a Slice of a 3D Ellipsoid

Note that forg to exist as a real number, the quantity inside the
square root in equation 9 must be positive. Points in the image
plane which have a negative value for the radical do not map to the
3D sphere. So the silhouette of the disk is the collection of points
which make the radical zero. Setting it to zero and rearranging
terms a little, we can write the equation for the silhouette as

ξ(δ~x) ≡ (δ~x + ~z) ·Q · (δ~x + ~z) = 0 , (10)

with the matrixQ being

Q = 1− ~z~z

z2 − ε2 (11)

Because~z and Q are functions only of̂r and n̂, ξ(δ~x) is a
quadratic function ofδ~x that corresponds to a 3D ellipsoid cen-
tered in 3D space at−~z. Since the vectorsδ~x always lie in the
image plane, the silhouette is the shape obtained by slicing the 3D
ellipsoid with a plane co-located and co-oriented with the image
plane.

δα, δz

Figure 3: Outline of a sphere projected onto the image plane.

2.5 Testing for Inside/Outside Status

The algorithm to test for whether a point in the image plane in inside
the disk or not is based on the sign of the function in equation 10.
Writing this quantity as

T (δ~x) = |δ~x + ~z|2 − |~z · (δ~x + ~z)|2

z2 − ε2 (12)

the test for inside/outside conditions is

T (δ~x) > 0 Outside

T (δ~x) ≤ 0 Inside

2.6 Intersection of a Line and the Silhouette

We consider the following problem, related to clipping polygons
with the disk: Suppose the image plane pointδ~x0 lies in the disk
(T (δ~x0) tested negative), andδ~x1 lies outside the disk. What is the
point along the line segment between these two points that lies on
the edge of the disk?

To solve this, the points on the line segment are parameterized as
δ~x(t) = δ~x0 +tδ2~x, with δ2~x = δ~x1−δ~x0. The points on the line
segment are the collection for which0 ≤ t ≤ 1. Anything outside
that range is not in the line segment. Putting this expression for
δ~x(t) into ξ, the result is a quadratic equation fort. Becauseδ~x0 is
inside the disk, we know that one of the solutions of this quadratic
equation is position and one is negative. We only need the positive
solution.

2.7 Alpha and Depth

Using the three algorithms built in this section, the silhouette of the
sphere in the image plane can be evaluated to compute the fraction
δα the sphere occupies in each pixel, as well as the average distance
δz of the sphere from the image plane for the portion of the sphere
in each pixel. Figure 3 illustrates the situation. Picking a pixel that
includes the boundary of the sphere silhouette, the calculation of the
occupied area requires identifying the verticesvi. The number of
vertices depends on the details of the intersection of the pixel with
the silhouette, and can be between two and eight. The locations of
the vertices are computed using the algorithm of section 2.6.

In some simple situations, the fractionδα can be analytically
computed, e.g. when the sphere lies entirely inside one pixel, or
completely occupies a pixel. In more complex conditions, it is ade-
quate to tesselate the silhouette within a pixel and compute the area
from the tesselation.

Current as of May 21, 2002

3 Large Numbers of Particles

In this section we extend the ability to accurately render a single
sphere into a procedure for rendering large (in fact unlimited) num-
bers of particles. The goal is to render the particles with as little
RAM as possible. Typically the particles will be small in size, and
frequently unresolvable. Fine structural detail and bulk object shape
in an image arises from the cumulative affect of many tiny particles.

One approach to rendering large numbers of unresolved particles
is to treat them as if they are point-like. In that case the image of
each particle is a point spread function presumably related to the
camera optics or some other criteria. But while they are tiny, we
do not want to assume that the particles are point-like for several
reasons: (1) the volumetric nature of a cloud of particles requires
some description of the tiny but not zero size of the particles; (2)
as a particle approaches the camera in an animation, its size may
become resolvable.

The approach we adopt here combines sphere rendering algo-
rithms with a statistically-motivated scheme to track the distribu-
tion of alpha and depth. Updating the alpha and depth channels
appropriately for each new particle, the procedure keeps in mem-
ory only one sphere at a time, without sorting the spheres or ex-
plicitly knowing the location of the spheres relative to each other.
This transforms the rendering of spherical particles to a constant
memory-size problem, with the heap size dominated by the storage
of the image plane data.

The tradeoff for the memory efficiency of this algorithm is that
the conditions underlying the statistical motivation are sometimes
invalid. In this case, the rendered image structure can depend on
the order in which particles are rendered. While we have seen such
order-dependence in some scenes, it appears that in many applica-
tions this does not harm image quality.

3.1 Rendering and Statistics

Concentrating on a particular pixel, theN small particles that are
imaged in that pixel (each particle either is wholly contained or
overlaps with the pixel of interest) are characterized by three quan-
tities: the fractionδαk (k = 1, . . . , N) of the pixel that the particle
occupies (irrespective of possible occlusions by other particles), the
distanceδzk of the relevant portion of the particle from the camera,
and the intensityδik that the particle may contribute to the pixel.

In a “deterministic” world, in which complete information is
know for all of the particles at any time, the approach to render-
ing these particles might be

1. For each particle, compute the fraction of the pixel that con-
tains thevisible portion of the particleδαVk , taking into ac-
count occulsion by all other particles. Of course,δαVk ≤ δαk,
and the calculation ofδαVk is much more complex and time
consuming that the calculation ofδαk andδzk.

2. Compute the intensity and alpha for the pixel as

i =

N∑
k=1

δik δα
V
k (13)

α =

N∑
k=1

δαVk (14)

The depth dataδzk does not explicitly enter this computation, but it
is implicitly used in the process of sorting the particles to determine
each one’s visible area.

In the statistical rendering approach, we accept some loss of im-
age precision because the visible alphasδαVk are not computed.

Instead, using only the per-particle values, a ”best estimate” of
the contribution of each particle is made. The process is itera-
tive. To perform the iteration, we augment the set(α, i) with it-
erative estimates of the mean distancez and the mean square dis-
tancez2. Initial values for these quantities in a pixel are set as
i0 = α0 = z0 = z20 = 0, with the subscript0 denoting the
value before particles are rendered. The iterative procedure updates
the pixel data when there is a statistically reasonable chance that
a particle is visible relative to the other particles that have been
rendered up to that point. AfterN particles have been rendered,
the average distance to the collection of particles in the pixel is
zN + (1 − αN)zmax and the statistical thickness of the collection
of particles is2

√
z2N − (zN)2. The distancezmax is the far-plane

cutoff distance for the render.
SupposeN particles have been rendered in this scheme, gener-

ating pixel dataαN , zN , iN , andz2N . ParticleN + 1 has data
δαN+1, δzN+1, andδiN+1. The first step is to determine whether
at least some fraction of this particle is visible to the pixel. The
decision is a two-step tree:

1. IsαN < 1? If so, then there is some chance that the particle
can be seen in the portion of the pixel’s area that has not been
filled, and the pixel data should be updated with the particle’s
data. IfαN = 1, then the second test is employed.

2. SinceαN = 1, is δzN+1 ≤ zN? If yes, then the particle is
located closer to the camera than at least some of the particles
that have contributed to the pixel data. In this case, the pixel
data should be updated with the particle data. IfδzN+1 > zN ,
the particle is located behind most of the visible particles in
the pixel, and the pixel data is not updated.

For updating the pixel data, the particle data is weighted by its rel-
ative size in the image plane:

iN+1 = iN (1− δαN+1) + δiN+1 δαN+1 (15)

αN+1 = αN (1− δαN+1) + δαN+1 (16)

zN+1 = zN (1− δαN+1) + δzN+1 δαN+1 (17)

z2N+1 = z2N (1− δαN+1) + (δzN+1)2 δαN+1 (18)

This iterative procedure clearly does not generate an accurate im-
age of many types of objects for many rendering problems. How-
ever, there are two extremes of circumstance in which it works very
well. First, the statistical case of many small particles, for which
this scheme was designed. Suppose there is a large collection of
particles which contribute to the rendered radiance in a pixel, the
particles all being small compared to the size of a pixel. Also, with
a large collection of particles, their positions can be thought of them
as random. For two small particles with pixel areasδα1 andδα2

randomly located in the pixel, the most likely amount of area parti-
cle 1 will contribute is(1−δα2)δα1. This expression combines the
area of particle 1,δα1, with the probability that particle 2 does not
hide particle 1. Second, the case of large particles that occupy sev-
eral pixels. For a pixel fully occupied by the sphere,δαN+1 = 1,
and the update steps 15 – 18 are the correct steps for replacing all
previous information with that of the sphere.

The conditions under which this scheme does not work is the
middle ground between those two: when a particle size is compa-
rable to the size of the pixel. In this case, it is important to isolate
which parts of a pixel the particle occupies in addition to the area
fraction it occupies. This failure is easy to detect during render-
ing and looks qualitatively like aliasing. Once detected, it can be
corrected using traditional antialiasing methods, for example pixel
supersampling can reduce the error to an acceptable level.

Figure 4 shows an example rendering of over 470 million parti-
cles. For this simple case, the particles are flat shaded and there is

Current as of May 21, 2002

Figure 4: An image rendered using 473,750,116 particles. The
algorithm for particle emission (see section 5 is a random walk with
partial coherence in the random step. Rendered in approximately 64
hours on an MIPS R12000 195MHz, this 1024x778 image, required
less than 30 MB of RAM.

no lighting. Each particle inherited the color of the guide particle it
was spawned from (see section 5). The individual particles occupy
an area of approximately 1% of the pixel area, depending on their
distance from the camera. Coherent structure and fine detail are
built up from the procedural details of emitting such a huge number
of particles.

4 Statistical Thickness and Shadow
Maps

As with any other rendered object, the visual appearance of a group
of particles is strongly affected by the lighting and shadowing of
the particles. For large numbers of particles distributed in some
volume, shadowing must include the self-shadowing of some parti-
cles (partially) occluding others, which normally is attributed in a
volume renderer to variations in density within the medium[9, 10].
Volumetric lighting and shadowing can be achieved with large num-
bers of particles, using the alpha and depth channels introduced in
the previous section. However the amount of memory/disk space
needed for this particle approach is dramatically less than that
needed for both traditional volumetric rendering and deep shadow
maps. In this section we demonstrate an algorithm for this, and il-
lustrate it with a case in which fine detail is achieved in the presence
of volumetric shadows, but with very little RAM used in the render.

As with more traditional techniques, shadowing here is accom-
plished by generation of a shadow map associated with each light
that casts a shadow. Whereas traditional shadow maps consist of
a depth map for the distance from the light objects in the scene,
we use here the average alphaα, average distancez, and mean
squared distancez2 from the light to the particles, computed as de-
scribed in the previous section, for a camera that is co-located with
the light. The light intensity at any distanceZ from the light is
L = Lfull t(Z) + Lshadow (1 − t(Z)), whereLfull is the full in-
tensity of the light,Lshadow is the intensity of the light when fully

shadowed, andt(Z) is the transmissivity of the volumetric medium:

t(Z) =

{
1 Z < z − zrms
Z−z+zrms

2zrms
(1− α) z − zrms ≤ Z ≤ z + zrms

(1− α) Z > z + zrms
(19)

Herezrms =
√
z2− z2 is the root mean square thickness of the

volume of particles, from the point of view of the light.
Figure 4 illustrates the visual impact of this style of volumetric

shadowing. In the top image the particles are all equally lit by a
light which is located behind and above the collection of particles.
The bottom image is the identical render, with the self-shadowing
algorithm in equation 19 applied. The sense of bulk, depth, and
thickness is much more pronounced with self-shadowing. There
is detail in the shadowing that reflects the detail in the distribution
of particles. The additional computational requirement to achieve
this lighting is to render a three channel image of the particle distri-
bution from the location of the light, the three channels beingα, z,
andz2. The size of the image plane needed to accomplish this qual-
ity is smaller than typically needed for shadowing byα alone be-
cause the additional channels provide more information. The deep
shadow map technique enjoys a similar benefit. The images in fig-
ure 4, which were rendered at2048 × 1556, used a shadow map
plane of1024 × 1024, with total RAM requirements of about 160
MB to hold image data, particle data, shadow data, and executable
(no image plane tiling was used).

5 Particle Emission

The effort of rendering109 particles can be complicated by hard-
ware issues as well as rendering software design. The position and
color of 109 particles would occupy about 15 GB of disk space or
more, and disk access times could dominate total rendering time.
The alternative we have chosen is to implement a shader-like lan-
guage for building particle emission algorithms to generate parti-
cles at render time. This approach is based on “guide particles”,
which are a smaller set of particles whose behavior is animated and
controled with traditional techniques. The attributes of each guide
particle are combined with a particle emission procedural algorithm
to drive the generation of many additional “child” particles at ren-
der time.

This combination of explicit modeling and proceduralism is very
flexible. For example, the particles rendered in figure 4 are entirely
procedural - only one guide particle was used to identify the loca-
tion and orientation of the bulk particles. Figure 5 demonstrates
another mixture of explicit particle modeling coupled with proce-
dural particle emission. The 99 guide particles were modeled with
variety of colors and emitting from a common source. Each image
contains 10 million particles total, with the child particles follow-
ing correlated random walks away from the guide particles. Varying
the correlation coefficient from a small value (less correlated) to a
value that approaches 1 (highly correlated) increases the structural
organization of the collection of particles. As can be seen in figure
5, lower correlation coefficients produce particle distributions that
appear to be cloud-like or nebula-like in appearance, while very
high correlations produce string-like structures. Figure 6 demon-
strates random walks on very long paths, while varying the correla-
tion along the length of the path. Over109 particles were rendered
in this image, which required approximately 60 MB of RAM to
render. Both string-like and nebula-like structures are present.

Figure 7 illustrates another procedural method for generating
particles. In this image, 5 million particles were generated on a
simulated water surface, propagated in time under the influence of
gravity, then rendered with motion blur. Particle generation and
propagation occured on the fly during rendering. For locations ran-
domly picked on the surface, an algorithm incorporating the local

Current as of May 21, 2002

wave action was used to determine if a particle should be emitted.
As is visible on the foreground wave, this procedure is capable of
resolving emission from individual small waves riding on a larger
wave.

6 Conclusions

We have shown in this paper that large numbers of particles can be
efficiently rendered on modest hardware. The ability to accomplish
renders with realistic lighting and shading opens several avenues of
graphics applications, including fluid and volumetric visualization.
Particle rendering in this fashion appears to be more efficient than
traditional voxel-based ray marching methods for volume render-
ing, while delivering greater detail in the final imagery, especially
in the detail of the self-shadowing. Our particular method of using
the first two statistical moments of depth is a model of the distri-
bution of particles along the line of sight, and certainly it does not
represent the exact distribution. Enhancements to this statistical
approach, such as computing higher order statistics of depth and
alpha, may yield better results for some applications.

References

[1] Tom Lokovic and Eric Veach, “Deep Shadow Maps”, ACM
Siggraph Proceddings, 2000.

[2] Nick Foster and Dimitris Metaxas, “Modeling the Motion of
a Hot, Turbulent Gas,” Computer Graphics Proceedings, An-
nual Conference Series, 1997.

[3] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen, “Visual
Simulation of Smoke,” Computer Graphics, ACM Siggraph
Proceedings, 2001.

[4] Kevin H. Martin, “Building a Better Borg,”Cinefex, 76, 1999.

[5] David E. Breen, Donald H. House, and Michael J. Wozny,
“Predicting the Drape of Woven Cloth Using Interacting Par-
ticles,” ACM Siggraph Proceedings, 1994.

[6] A Pumir, M. Chertkov, and B. Shraiman, “La-
grangian Tetrads: Geometry and Dynamics” Pro-
gram on Physics of Hydrodynamic Turbulence (Jan
31 - Jun 30, 2000), Institute for Theoretical Physics,
http://online.itp.ucsb.edu/online/hydrot c00/pumir

[7] F. Battaglia, K. McGrattan, R Rehm, and H. Baum, “Simulat-
ing Fire Whirls,” National Institute of Standards and Technol-
ogy, NISTIR 6341, July 1999.

[8] Jeff Hultquist, “Intersection of a Ray with a Sphere,”Graph-
ics Gems, ed. Andrew S. Glassner, Academic Press, 1990.

[9] David S. Ebert, “Procedural Modeling of Gases,”Textur-
ing and Modeling, A Procedural Approach, Academic Press,
1994.

[10] “Volumetrics in Jig”, http://www.steamboat-
software.com/Support/VolumeObjects

Figure 5: Top: An image rendered using over 4 million particles, with motion blur used to create extended structures. The particles are
backlit, but without self-shadowing. Bottom: the same situation with self-shadowing.

Current as of May 21, 2002

(a) (b) (c)

Figure 6: Correlated random walks with various correlations. (a) Correlation is 0.99; (b) 0.999; (c) 0.9999. Each image contains 10 million
particles.

Figure 7: High resolution rendering of particles following random walks. In this image each guide particle was the starting point of a random
walk for which the correlation of steps increased from near zero at the start of the walk to 1 at the end of the walk. There are 99 guide
particles, and each walk is 10,300,000 particles long, for a total of 1,019,700,000 particles rendered in the image.

Figure 8: Simple use of large numbers of particles to create an environmentally rich effect. Particles are emitted from a cg water surface and
propagate through space under the influence of gravity. Approximately 5 million particles were simulated for this image, although some of
them have fallen below the water surface interface. While the number of particles is not extremely large, all of the particles were generated at
render time, one at at time.

	Introduction
	Rendering Spherical Particles
	Imaging a Sphere
	Mapping a Sphere to the Image Plane
	Mapping from the Image Plane Disk to the Sphere
	The Silhouette as a Slice of a 3D Ellipsoid
	Testing for Inside/Outside Status
	Intersection of a Line and the Silhouette
	Alpha and Depth

	Large Numbers of Particles
	Rendering and Statistics

	Statistical Thickness and Shadow Maps
	Particle Emission
	Conclusions

