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Abstract

The propagation kernel for time dependent radiative transfer is represented by a Feynman Path Integral (FPI).
The FPI is approximately evaluated in the spatial-Fourier domain. Spatial diffusion is exhibited in the kernel when
the approximations lead to a gaussian dependence on the Fourier domain wave vector. The approximations provide
an explicit expression for the diffusion matrix. They also provide an asymptotic criterion for the self-consistency
of the diffusion approximation. The criterion is weakly violated in the limit of large numbers of scattering lengths.
Additional expansion of higher-order terms may resolve whether this weak violation is significant.
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1. Introduction

Simulations and imagery of smoke, water, clouds, and other natural phenomena are routinely generated in the
computer graphics industry. The imagery is generated primarily from a single scattering approximation, although it
can deviate from that for artistic purposes. Multiple scattering is very desirable, but the existing algorithms in use are
very ad hoc, not visually good, not sufficiently flexible, and inefficient in the workflow. The algorithm in this paper is
the basis for a new software tool addressing all of those limitations (although still with artistic deviations added to it).
It has the benefit of beginning with a strong scientific footing in the radiative transfer equation, then is approximated
only as much as necessary for the computer graphics application. Also, the algorithm is very flexible for added artistic
deviations, and works very well in visual effects production. In this approach, the algorithm should ideally achieve
both quasi-ballistic and diffusive regimes of transport behavior, and transition gracefully between the two.

The relationship between radiative transfer and its approximation by diffusion has been of intense interest and
application for quite some time. In an extensive review by Davis and Marshak [1], the known methods to relate
diffusion and radiative transfer are sorted into two categories. One is a constitutive approach, using Fick’s Law to
relate the scalar flux to vector flux; the other, including asymptotics, is an approximation of radiative transfer in the
limit of many scattering events. Both approaches address the extreme of completely diffuse transport, but do not
provide a description of how the multiple scattering transitions into diffusion. It would also be very useful to have
a framework or model that characterizes the transition from the extreme of near-ballistic behavior to the diffusive
regime in scattering media.

In this paper the relationship is analyzed in a new way. The radiative transfer problem is formulated in terms of
a Feynman Path Integral (FPI), which then serves as the starting point for approximations leading to both angular
smoothing and spatial diffusion. Radiative transfer has previously been evaluated in terms of FPIs and variations of it
[2, 3, 4, 5], for applications in ocean optics [6], medical imaging [7], and computer graphics [8, 9]. Each application
approximated the FPI in accordance with the application’s needs, for example using the the small angle approximation
for ocean and tissue optics. But none of them systematically attempt approximations which could potentially be valid
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in a broad range of applications including diffusive and non-diffusive settings. The approximations in the present
paper are less restrictive than those of previous works, and apply across a broader range of problems. In particular,
the approximation process used here produces an asymptotic relation for the self-consistency of the procedure.

The approximation is in three steps. The first is an approximation of the functional integral over “momentum,”
which is defined here as the Fourier conjugate of the increment in direction due to scattering. The result is achieved
via a standard stationary phase procedure. The second is approximation of the functional integral over paths through
the scattering medium via a steepest descents procedure. These first two steps produce explicit results which are not
limited to a diffusive regime. The third and final approximation seeks a simplification that exhibits spatial diffusion.
This simplification is the source of the asymptotic relation criterion for diffusion.

The remainder of this paper is organized as follows. In Section 2 the FPI for radiative transfer is examined
in preparation for applying approximations. Section 3 discusses the energy conservation property of the radiative
transfer propagation kernel, and how that property is preserved in the approximation process. The stationary phase
and steepest descents approximations are carried out in Section 4. Spatial diffusion is exhibited in Section 5 after
the asymptotic relation is defined and applied to the approximated kernel. The diffusion result is examined for self-
consistency with the asymptotic relation as well. Speculation about further research into the mechanism for diffusion
is contained in Section 6. Conclusions are presented and discussed in Section 7.

For completeness, the particular version of the FPI used in this paper is derived in Appendix A using the same
character of argument used in standard derivations of the FPI in quantum mechanics [10].

Finally, it should be noted that all of the calculations and results for this approximation of the FPI for radiative
transfer are shown for the special case of a medium that is uniform with infinite extent. By slightly rephrasing the
FPI, a medium with arbitrary spatial variability can be handled. One of the biggest changes in the outcome is that
the number of scattering lengths plays a much more important role in sorting out various paths that contribute to the
stationary phase and steepest descents approximations. This topic will be the subject of future publications.

2. Feynman Path Integral Representation

The Feynman Path Integral (FPI) representation applies to the propagation kernel for time dependent radiative
transfer. The radiance distribution L satisfies the equations{

∂

∂s
+ n̂ · ∇ + c

}
L(s, x, n̂) = b

∫
dΩ(n̂′) P(n̂, n̂′)L(s, x, n̂′) + S (s, x, n̂), (1)

L(0, x, n̂) = 0, (2)

where c and b are the total and scattering extinction coefficients respectively, a = c − b is the absorption coefficient,
P is the normalized phase function, and S is a light source. The time s is in units of length after scaling by the light
velocity. In terms of a propagation kernel, the explicit integral form of (1) is

L(s, x, n̂) =

∫ s

0
ds′

∫
d3x′

∫
dΩ(n̂′) G(s − s′, x, n̂; x′, n̂′)S (s′, x′, n̂′) (3)

where the kernel G satisfies the initial value problem{
∂

∂s
+ n̂ · ∇ + c

}
G(s, x, n̂; x′, n̂′) = b

∫
dΩ(n̂′′) P(n̂, n̂′′)G(s, x, n̂′′; x′, n̂′) (4)

G(0, x, n̂; x′, n̂) = δ(x − x′)δ(n̂ − n̂′). (5)

This integro-differential formulation of the radiative transfer problem also applies to steady-state problems, which
can be viewed as a long-time limit of the time-dependent problem. A common application is that the source is always
on and time-independent. Taking the long time limit, s → ∞, the time-independent radiance can be expressed with
this propagation kernel as

L(x, n̂) =

∫
d3x′

∫
dΩ(n̂′) K(x, n̂; x′, n̂′)S (x′, n̂′) (6)
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where

K(x, n̂; x′, n̂′) =

∫ ∞

0
ds G(s, x, n̂; x′, n̂′). (7)

The propagation kernel G has an exact formal expression in terms of a Feynman Path Integral. This expression
is derived in the appendix. The path integral explicitly examines every possible path of length s from the “starting
point” x′ and “starting direction” n̂′, which ends at the point x and direction n̂. Each path is characterized by its unit
tangent vector β̂(s′) at each point 0 ≤ s′ ≤ s along the path. Because each path starts at x′ and ends at x, the FPI must
only include paths which satisfy

x − x′ =

∫ s

0
ds′ β̂(s′). (8)

Each path contributes a weight factor W in the FPI. The weight is related to how much scattering occurs along the
path. The amount of scatter depends on the curvature of the path, κ(s′), where

dβ̂(s′)/ds′ = κ(s′)N̂(s′), (9)

and N̂ is the normal to the path in the sense of Frenet-Serret curves. Using the curvature in this way is a choice of
convenience to simplify notation. It is not meant to imply that the paths have smooth tangents, and the FPI obtained
below does not require them. The scattering weight also depends on the phase function and scattering coefficient. The
FPI derivation in the appendix introduces a “momentum” variable p(s′) at each point of the path, which is integrated
over all possible momentum configurations. The weight is explicitly expressed as the functional integral1

W(s, κ) =

∫
[dp] exp

{
i
∫ s

0
ds′p(s′) · N̂(s′)κ(s′)

}
× exp

{∫ s

0
ds′ b

(
Z̃(|p(s′)|) − 1

)}
(10)

in which the phase function has been converted to its pseudo-Fourier transform via the relationship

P(n̂, n̂′) =

∫
d3 p

(2π)3 Z̃(|p|) exp
(
ip · (n̂ − n̂′)

)
. (11)

Using the weights W and the restrictions on the path, the full FPI for the kernel is

G(s, x, n̂; x′, n̂′) = e−as
∫

[dβ̂] W(s, κ) δ
(
x − x′ −

∫ s

0
ds′ β̂(s′)

)
× δ(β̂(0) − n̂′)δ(β̂(s) − n̂) (12)

where a = c − b is the absorption coefficient.
For the integral over paths, the hard constraint in (8) is difficult to enforce in an approximation scheme. Instead,

we can also express the kernel in terms of a spatial Fourier transform

G(s, x, n̂; x′, n̂′) =

∫
d3k

(2π)3 G̃(s,k, n̂, n̂′) exp
(
ik · (x − x′)

)
(13)

and the Fourier amplitude has the FPI

G̃(s,k, n̂, n̂′) = e−as
∫

[dβ̂] W(s, κ) exp
(
−i

∫ s

0
ds′k · β̂(s′)

)
× δ(β̂(0) − n̂′)δ(β̂(s) − n̂). (14)

In this form the enforcement of the constraint in (8) is relegated to the Fourier integral over the spatial wavevector k.
However, approximations carried out in Section 4.3 relax enforcement of (8).

1Throughout this paper, [d·] denotes a differential element defined with respect to a natural measure; see Appendix A.
3



3. Normalization via Energy Conservation

In evaluating approximate expressions for G̃, energy conservation serves as a useful normalization criterion. In
particular, there is the specific property∫

d3x
∫

dΩ(n̂) G(s, x, n̂; x′, n̂′) ≡
∫

dΩ(n̂) G̃(s, 0, n̂, n̂′) = exp(−as). (15)

This conservation property will be enforced in the approximations below as a form of normalization of the final
expressions emerging from the approximation process. This normalization replaces evaluation of the normalization
of the functional integrals.

4. Approximate Evaluation

The attack for generating an approximate expression for G̃ has two major steps:

1. An approximation (via stationary phase) for the weight W for any path. This is accomplished in Section 4.1.
2. An approximation (via steepest descents) of the functional integral over paths β̂. This is accomplished in

Section 4.2.

To make this process concrete, the phase function is fixed as a unit-normalized gaussian shape:

P(n̂, n̂′) =
2Np

(2πµ)3/2 exp
(

n̂ · n̂′ − 1
µ

)
(16)

where the cosine of the scattering angle Θ, n̂ · n̂′, varies between +1 and −1, and Np is the normalization constant

Np =

√
πµ/2

1 − exp(−2/µ)
. (17)

The parameter µ > 0 can be viewed as the mean square width of the peak of the phase function since, in the limit of
Θ � 1, we have n̂ · n̂′ − 1 ≈ −Θ2/2. This also makes clear the gaussian nature of the phase function. Apart from this
small-µ limit, which is familiar to the small-angle approximation, the large-µ limit leads to

P(n̂, n̂′) ≈
1

4π

(
1 +

n̂ · n̂′

µ

)
, (18)

which is the familiar form in photon diffusion theory. Generally speaking, the asymmetry factor of the adopted phase
function is

〈n̂ · n̂′〉 = coth(1/µ) − µ. (19)

For µ � 1, this yields 〈n̂ · n̂′〉 ≈ 1/3µ hence only a small deviation from isotropic scattering, which will promote the
diffusive transport.

With the choice of phase function in (16)–(17), we have

Z̃(|p|) = Np exp
(
−µ|p|2/2

)
. (20)

Much of the approximation process carried out in the sections below can be done with more complex phase functions,
for example, phase functions composed of a mix of gaussian phase functions.
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Figure 1: R as a function of η.

4.1. Stationary Phase Evaluation of the Weight W
The stationary phase approximation is motivated by writing the functional integral for W using a complex “action”

A:
W(s, κ) =

∫
[dp] exp {−A(p)} (21)

with

A(p) =

∫ s

0
ds′

{
−ip(s′) · N̂(s′)κ(s′) − b

(
Z̃(|p(s′)|) − 1

)}
. (22)

Extremizing this functional requires that p be rotated to the imaginary axis [11]. Using the gaussian phase function
above, the stationary point is

p0 = iN̂
κ

bµNp
R (23)

where R satisfies the implicit equation
R = exp(−η2R2) (24)

where

η2 =
κ2

2µb2N2
p
. (25)

The quantity R(η) varies in the range (0, 1] and is monotonic in η, which itself depends only on the scattering coefficient
b and the phase function parameter µ; it is plotted in Fig. 1. With this stationary point, the exponential is

A(p0) =

∫ s

0
ds′ b

{
1 + Np

(
2η2(s′)R(s′) − 1/R(s′)

)}
(26)
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This stationary point minimizes A, and the stationary value is real.
Note that this minimization is analogous to the semiclassical approximation in quantum mechanics, where the

parameter ~ is assumed to be small to drive the approximation process. The analogous parameter in this situation is
1/b, and the approximation is driven by assuming b is large in some sense.

For a full leading order stationary phase approximation, the next step would be to calculate the quadratic expansion
around the stationary point and evaluate the functional integral for that expansion. A more useful approach in this case
is to keep only the stationary value, and leave the remaining factor to be fixed by the energy conservation normalization
discussed in Section 3. Consequently, the result of our stationary phase evaluation is

W(s, κ) = W0 exp(−A(p0)) (27)

and the value of W0 will be fixed (in Section 4.3) by enforcing energy conservation.

4.2. Steepest Descents Evaluation of the Kernel

After the stationary phase evaluation of W(s, κ), the FPI for the kernel is

G̃(s,k, n̂, n̂′) = e−asW0

∫
[dβ̂] exp

(
−A(p0) − i

∫ s

0
ds′k · β̂(s′)

)
× δ(β̂(0) − n̂′)δ(β̂(s) − n̂). (28)

To find the extremum path, β̂0(s′), of the functional integral over paths β̂, we can look at the variational derivative
of A with respect to β̂. All of the dependence on β̂ comes through the dependence on κ2(s′) in η and R, so the
variational derivative is

δA
δβ̂(s′)

=
δA

δκ2(s′)
dκ2(s′)
dβ̂(s′)

. (29)

In this situation, minimizing A is the same as minimizing κ2 with respect to β̂. The steepest descents procedure selects
the smoothest, least curved path that satisfies the boundary conditions. For an explicit solution of this minimization,
the path tangents can be decomposed into a spherical representation using the orthogonal coordinate system {n̂′, t̂, r̂},
with

t̂ =
n̂′ × n̂
|n̂′ × n̂|

r̂ =
n̂′ × t̂
|n̂′ × t̂|

from which β̂(s′) has the form

β̂(s′) = cos(g(s′))
[
n̂′ cos( f (s′)) + r̂ sin( f (s′))

]
+ sin(g(s′))t̂. (30)

To satisfy the boundary conditions, the otherwise-arbitrary functions f and g must have the boundary conditions

g(0) = 2πn

g(s) = 2πm

f (0) = 2πl

f (s) = Θ + 2πk

where k, l,m, n are integers, and we recall that Θ = cos−1(n̂·n̂′). The functions which minimize curvature are g0(s′) = 0
and f0(s′) = Θs′/s. In addition, this path has constant curvature κ0 = Θ/s, which means that η, and therefore R, are
also constant for this path, and

A0 = bs
{
1 + Np

(
2η2

0(s′)R0(s′) − 1/R0(s′)
)}

(31)
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with

η2
0 =

Θ2

2µ(bs)2N2
p
, (32)

R0 = exp(−η2
0R2

0). (33)

Having established the minimizing path β̂0, fluctuations around that path come from setting f = f0 + δ f and
g = δg, and expanding the exponential integrand up to quadratic in δ f and δg. The expansion of A has only quadratic
terms, but linear and quadratic terms come from

∫
k · β̂. However, there are no terms proportional to δ f δg, so the

functional integrals over δ f and δg are separable. Each of those separated functional integrals has the form

I(J,M) =

∫
[dρ] δ(ρ(0)) δ(ρ(s))

× exp
{
−i

∫ s

0
ds′

(
k · J(s′)

)
ρ(s′)

}
× exp

{
−

1
2

∫ s

0
ds′ ρ(s′) ∆−1

Mk ρ(s′)
}
, (34)

where M is a different parameter for each of the two integrals, as shown below, and the differential operator ∆−1
Mk is

∆−1
Mk =

(
−

R0

µbNp

d2

ds′2
−

R0

µbNp
M2 − ik · β̂0(s′)

)
(35)

the kernel is

G̃(s,k, n̂, n̂′) ≈ e−as W(s, κ0) exp
(
−i

∫ s

0
ds′ k · β̂0(s′)

)
× I(β̂0, 0) I(t̂, κ0/

√
2) (36)

Formally, the functional integral I(J,M) has the evaluation

I(J,M) = exp
{
−

1
2

∫ s

0
ds′

∫ s

0
ds′′ (k · J(s′)) ∆Mk(s′, s′′) (k · J(s′′))

}
× (Det∆Mk)1/2 (37)

This expression for the kernel has a complex dependence on the spatial wavevector k because of the Green’s function
∆Mk. For details the reader is referred to Appendix B.

4.3. Normalization
Using the energy conservation property of the kernel on the expression in (36), a normalization condition for W0

is generated. Setting k = 0 and integrating over the unit sphere, the normalization is

W0 =

( ∫
dΩ(n̂) (Det∆00)1/2 exp(−A0) (Det∆(κ0/

√
2)0)1/2

)−1

. (38)

Note that the Green’s functions ∆M0 have relatively simple expressions:

∆M0(s′, s′′) =
µbNp

R0

sin(Ms<) sin(M(s − s>))
M sin(Ms)

, (39)

where s> = max(s′, s′′) and s< = min(s′, s′′). So do their determinants:

Det∆M0 =
R0M

µbNp sin(Ms)
. (40)
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5. Spatial Diffusion

The approximation for G̃ arrived at in (36) is more complex than a simple spatial diffusion. Spatial diffusion would
be recognized if the result were gaussian in the wavevector k, with the gaussian width being the diffusion parameter.
Indeed the quantities I in (37) are superficially gaussian in character, except that both the gaussian coefficient and the
determinant depend on k also.

However we can ask whether there is an asymptotic regime under which this approximation for G̃ does become
gaussian, and hence spatially diffusive. In this section we develop the criterion for such a regime, and evaluate its
self-consistency. First, the asymptotic regime is established, and after analyzing the spatial diffusion produced in that
regime we establish the nature of its consistency.

To arrive at a gaussian dependence in G̃ on k, we must perform perturbation expansions in k on ∆Mk. This
produces the criterion for the asymptotic regime. There must be an asymptotic relation between the differential term
of ∆Mk and the one proportional to k. The term in (35) proportional to k is asymptotically small if

|k| �
R0

µbs2Np
. (41)

Rearranging terms, this relation is also
|k|
b
�

R0

µ(bs)2Np
. (42)

This asymptotic condition says that this perturbation process is consistent if the smallest length scale, `, of the light
field satisfies

` b �
µNp(bs)2

R0
. (43)

Using this statement of the criteria for a spatially diffusive asymptotic region, we construct explicitly the diffusive
form of G̃. This provides an explicit value for the diffusion matrix, which in turn provides the smallest scale of the
diffusive light field. Finally, the scale feeds back into the asymptotic regime criteria to evaluate its self-consistency.

The quantities I(J,M) are already gaussian with just the lowest term of the expansion, ∆M0, applied in the expo-
nential. So these quantities become

I(J,M) ≈ exp
{
−

1
2

∫ s

0
ds′

∫ s

0
ds′′ (k · J(s′)) ∆M0(s′, s′′) (k · J(s′′))

}
× (Det∆Mk)1/2. (44)

However, a longer expansion is necessary for the determinant factor. Using identities relating determinant and traces
of operators, the determinant can be exactly rearranged as

(Det∆Mk)1/2 = (Det∆M0)1/2 (Det(1 − i∆M0k · β̂0)−1/2

= (Det∆M0)1/2 exp
(
−

1
2

Tr ln(1 − i∆M0k · β̂0)
)
. (45)

By applying the asymptotic criteria, the trace term can be Taylor expanded in the natural logarithm up to quadratic
order in k, giving

(Det∆Mk)1/2 ≈ (Det∆M0)1/2 exp
(
−i

1
2

Tr(∆M0k · β̂0)
)

× exp
(
−

1
2

Tr
(
∆M0k · β̂0 ∆M0k · β̂0

))
. (46)

Now all factors and terms in the exponential factor in the expression for G̃ are up to 2nd-order (i.e., gaussian) in
k. Assembling them, G̃ has the form

G̃(s,k, n̂, n̂′) ≈ e−as G0(s,Θ) exp
(
−k · X(s) −

1
2

k · B(s) · k
)

(47)
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where X and B are discussed below, and

G0(s,Θ) =
exp(−A0(s)) (Det∆00)1/2 (Det∆(κ0/

√
2)0)1/2∫

dΩ(n̂) exp(−A0(s)) (Det∆00)1/2 (Det∆(κ0/
√

2)0)1/2
. (48)

5.1. Scatter Delay X
Just by the boundary conditions on the paths through the volume, the steepest descents path β̂0 is curved, and the

length of the path is s. The endpoint of this path is

x′ +

∫ s

0
ds′ β̂0(s′). (49)

This path has the same form as the “classical paths” in Perelman’s photon migration framework [4]. However, the
path integral approximation here contains additional deviations arising from scattering, so that the endpoint is

x′ + X(s) (50)

where

X(s) =

∫ s

0
ds′ β̂0(s′)

(
1 +

1
2

(
∆00(s′, s′) + ∆(κ0/

√
2)0(s′, s′)

))
. (51)

We can evaluate these integrals with the help of (39). Letting

ξ =
µNp(µ)

R0
bs, (52)

we arrive at
X = Xnn̂ + Xrr̂ (53)

with

Xn(s) = s
sin Θ

Θ

(
1 +

ξ

Θ2

(
1 −

Θ
√

2
cot

(
Θ
√

2

)))
, (54)

Xr(s) = s
cos Θ − 1

Θ

(
1 −

ξ

Θ2

(
1 −

Θ
√

2
cot

(
Θ
√

2

)))
. (55)

One way to think of this delay is to visualize what happens when laser pulses propagate through a turbid medium.
The sharp pulse shape is altered and a tail develops of photons that have been delayed by scattering. This shifts the
mean center of the profile backward from the original peak. The exiting profile of the pulse is asymmetric, with the
front of the profile looking like the original pulse. In the asymptotic regime applied here, there is insufficient spatial
detail to accurately model the original pulse shape (unless the original pulse was a gaussian, otherwise higher orders
in k would be needed), and only the delay and broadening of the pulse are obtained.

5.2. Asymmetric Diffusion Matrix

The gaussian portion of G̃ is not characterized by a single broadening width, but instead by a broadening matrix,
B. This matrix is

B(s) =

∫ s

0
dt

∫ s

0
dt′

(
β̂0(t)β̂0(t′) ρ(t, t′) + t̂t̂ ∆00(t, t′)

)
(56)

and
ρ(t, t′) = ∆00(t, t′) +

1
2

(∆00(t, t′)∆00(t′, t) + ∆(κ0/
√

2)0(t, t′)∆(κ0/
√

2)0(t′, t)) (57)

This matrix is asymmetric with respect to the major axes. In particular, the direction perpendicular to the plane of
the curved steepest descents path, t̂, has only a single scattering order in it and is due to just the leading order of the
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steepest descents approximation, while the plane of the path also has a quadratic term due to the scattering in paths
near the steepest descents path. These nearby paths contribute to the determinant factors.

Using the form of the steepest descents path, this matrix evaluates to

B(s) = Bnn(s) n̂′n̂′ + Bnr(s) (n̂′r̂ + r̂n̂′) + Brr(s) r̂r̂ + Btt(s)t̂t̂ (58)

with

Btt =
ξs2

12
,

Bi j =
ξs2

24Θ6 Qi j(s) (i j = nn, nr, rr),

Qnn = ξ bnn + 12Θ4 − 6Θ3 sin(2Θ) − 96Θ2 sin4
(
Θ

2

)
,

Qnr = ξ bnr − 12Θ3 sin2(Θ) − 24Θ2 sin(Θ)(cos(Θ) − 1),
Qrr = ξ brr + 12Θ4 + 6Θ3 sin(2Θ) − 24Θ2 sin2 Θ,

bnn = 2Θ4 + 6
√

2Θ3 cot
(

Θ
√

2

)
+

3
4

Θ2 csc2
(

Θ
√

2

) ((
6 − 22 cos

(√
2Θ

))
cos2 Θ

+ 3 cos(2Θ) + 2
(
11 sin2 Θ + 9

)
cos

(√
2Θ

)
− 28

√
2 sin Θ sin

(√
2Θ

)
cos Θ − 5

)
+ 48 sin2 Θ − 30Θ cos Θ sin Θ,

bnr = −3Θ2 sin Θ csc2
(

Θ
√

2

) (
7
√

2 sin Θ sin
(√

2Θ
)

+ cos Θ
(
11 cos

(√
2Θ

)
− 3

)
− 8

)
− 30Θ sin2 Θ − 48 sin Θ(cos Θ − 1),

brr = 2Θ4 + 6
√

2Θ3 cot
(

Θ
√

2

)
+ 192 sin4

(
Θ

2

)
+ 30Θ sin Θ cos Θ

+
3
4

Θ2 csc2
(

Θ
√

2

) (
11 + 3 cos(2Θ) + cos2 Θ

(
6 − 22 cos(

√
2Θ)

)
+ cos(

√
2Θ)

(
22 sin2 Θ − 62

)
+ cos Θ

(
64 − 28

√
2 sin Θ sin(

√
2Θ)

))
.

This matrix has three real eigenvalues. One of them is Btt, and the other two are the eigenvalues of the 2×2 symmetric
matrix constructed from Bnn, Bnr and Brr. These two eigenvalues, labelled B+ and B−, straddle Btt in value, as can be
seen in Fig. 2. The three eigenvalues are effectively diffusion coefficients for the spatial diffusion process. They also
act as the measures of the spatial content of the light field.

5.3. Asymptotic Consistency
The consistency of the diffusion approximation that converts (36) to the gaussian form in (47) is based on the

expectation that the spatial scales generated by the light field satisfy the asymptotic criterion in (43). Now that the
diffusion scales have been calculated from the approximation, we can return to the criteria and verify or refute the
consistency.

To proceed, the largest eigenvalue
√
B+ is chosen as the spatial scale of interest. Since these are asymptotic

requirements, we take ` ∼
√
B+ but not worry about exact numerical factors.

We examine consistency under two extremes of very small amount of scattering (bs → 0) and large amounts of
scattering (bs → ∞). In the small amount of scattering regime, ` ∼ s

√
ξ, and the second asymptotic criterion is the

balance (
µNp

R0

)1/2

(bs)3/2 �
µNp

R0
(bs)2, (59)

which is a correct relationship as bs→ 0. In the opposite regime of large amounts of scattering, ` ∼ sξ, the balance is

µNp

R0
(bs)2 �

µNp

R0
(bs)2, (60)
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which is not a correct asymptotic relationship for bs → ∞. However, this is a “weak” violation in the sense that
the balance is not reversed in direction. The two sides are similar in magnitude in the limit of large amounts of
scattering. This is an indication that the expansion in small |k| may require more terms in order to form a leading
order approximation. It also indicates that the criterion in (43) is probably insufficient to fully understanding the
asymptotic expansion in the limit of large scattering lengths.

6. Does Spatial Diffusion Appear in the New FPI Approach?

The traditional definition of spatial diffusion for radiative transfer is that, in the limit of long times (hence many
scattering events), irradiance F (angularly integrated L) satisfies

∂F
∂s
∝ ∇2F, (61)

where the proportionality constant, D, is the (coefficient of) diffusivity. An analysis of the present approximation
shows that the behavior achieved here is

1
s2

∂F
∂s
∝ ∇2F. (62)

To look at the long-time behavior of the irradiance, the Fourier integral of the spatial domain can be evaluated to
produce the kernel:

G(s, x, n̂; x′, n̂′) ∝ det (B(s))−1/2 exp
(
−

1
2

(
x − x′ − X(s)

)
· B−1(s) ·

(
x − x′ − X(s)

))
, (63)

which has temporal and spatial derivatives:

∂

∂s
G(s, x, n̂; x′, n̂′) = R(s) G(s, x, n̂; x′, n̂′), (64)

∇2G(s, x, n̂; x′, n̂′) = −S (s) G(s, x, n̂; x′, n̂′), (65)

with

S (s) = trace(B−1(s)) −
(
x − x′ − X(s)

)
· B−2(s) ·

(
x − x′ − X(s)

)
, (66)

R(s) =
1
2
∂

∂s

(
trace(B(s)) +

(
x − x′ − X(s)

)
· B−1(s) ·

(
x − x′ − X(s)

))
. (67)

The quantities R(s) and S (s) are plotted in Fig. 3 as a function of s, for multiple scattering angles Θ. These plots
assume that s � |x − x′|, which allows us to ignore x − x′ as being small. In the long time limit, both quantities
become independent of angle. Consequently, at long times the irradiance F satisfies

∂

∂s
F(s) = R(s) F(s) (68)

∇2F(s) = −S (s) F(s) (69)

However, S/R is not a constant at long times, but more like S (s) ∼ R(s)/s2. Consequently, this approximation does
not exhibit typical diffusion at long times.

As we see it, the current approximation is not a complete leading order solution, in the sense that there are multiple
extremum paths. In (30), the unit vector was expressed in terms of two functions g(s′) and f (s′) which had to satisfy
boundary conditions and be extremal paths. There is a set of extremal paths

fm(s′) = (2πm + Θ)s′/s (70)

and for the remainder of the paper we used the simplest one m = 0. But, in general, all integers m qualify as extremal
paths. For these paths the integer m counts the number and orientation of loops in the path in the plane of n̂′-r̂. If we
include these paths in the approximation, then the full expression for the kernel will look like

G(s, x, n̂, x′, n̂′) ∝
∞∑

m=−∞

Gm(s, x, n̂, x′, n̂′), (71)
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where Gm is the approximation based on only the extremum path fm. For relatively short times s, these additional
paths should contribute relatively little, because a path with loops has more curvature and scattering attenuation than
one that has no loops. But at long times the situation may be different. For the currently calculated m = 0 behavior,
the factor Θ/s coming from f is small at long times. But for fm, the factor at long times is 2πm/s, and since m is
summed over, there are values of m for which this is O(1) or larger. It is entirely possible that, as the time grows,
extremum paths with more and more loops become important as a mechanism for spreading energy throughout the
volume. This could enhance the spatial spreading and bring R(s) up in magnitude closer to S (s), which would be
more like the traditional diffusive regime. Further work addressing the role of looping extremum paths is needed.

At least two other approaches to approximating the FPI [7, 5] have produced diffusion in the traditional sense of
(61). However, the approximation used by Perelman et al. [7] did not include an analysis of the extremum path around
which to conduct the approximation, and so their approximation was effectively a small-angle approximation applied
to a larger problem for which it may not be valid. Indeed, an extremely large numbers of small-angle scatterings
is required to literally turn the light around and back to the illuminated boundary at large distances from the point
source. In contrast, Miller [5] overlooks the phase function and directional effects altogether almost from the onset.
Consequently, low-order Taylor expansions of the kernel naturally lead to spatially gaussian forms. It is notable
that neither of these approaches yields the classic expression for the diffusivity constant [1, and references therein],
D =

(
(1 − 〈n̂ · n̂′〉)b + a

)−1; rather it is taken, as needed, from the literature.

7. Conclusions

The Feynman Path Integral representation of the radiative transfer propagation kernel provides a framework for
a systematic approximation process using standard approximation methods such as stationary phase and steepest de-
scents. Applying these approximations produced an explicit expression for the spatial diffusion coefficient, and an
asymptotic criterion for self-consistency of the approximation. The criterion is supported for small numbers of scat-
tering lengths, but for large scattering lengths the situation is more complicated. The asymptotic criterion is “weakly”
violated, i.e., it is not strongly supported, but also is not contradicted. One possibility is that further expansion of this
approximation to higher orders may reveal better or additional asymptotic criteria.

The approximation process used here has a side effect of including some paths that should not be. By expanding
the kernel in an expansion in small |k|, the hard constraint in (8) is converted into a smoothed version of itself, allowing
paths that are longer and shorter than s to be counted. This smearing effect on the kernel may be the source of the
weak violation of the asymptotic criterion. A valuable future effort would focus on quantifying this error and finding
a better approximation of the kernel that does not suffer from this smearing.
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A. The Feynman Path Integral Representation of the Kernel

A basic property of the Green’s function is that it can be decomposed into the application of two Green’s functions.
Physically, this says that the propagation of light over an interval of time s can be decomposed into propagation over
two successive time intervals s0 and s1, with s = s0 + s1. Mathematically this is the convolution of the Green’s
functions over the two time intervals:

G(s, x, n̂, x′, n̂′) =

∫
d3x1 dΩ(n̂1) G(s1, x, n̂, x1, n̂1) G(s − s0, x1, n̂1, x′, n̂′). (72)

We can continue this decomposition and divide the total time interval into many subintervals. The full Green’s function
is a succession of convolutions of Green’s functions for the N subintervals:

G(s, x, n̂, x′, n̂′) =

∫ N−1∏
i=1

d3xi dΩ(n̂i)
N∏

i=1

G(∆, xi, n̂i, xi−1, n̂i−1) (73)
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where ∆ is the amount of time in each subinterval (s = N∆), (x0, n̂0) = (x′, n̂′) and (xN , n̂N) = (x, n̂). This decompo-
sition is exact for any N. No approximations have been applied at this stage.

To obtain the path integral, we will seek to subdivide the interval into infinitely many infinitismal subintervals,
i.e., take the limit N → ∞, ∆ → 0 such that s remains fixed. In that limit, ∆ is very small, so we can express the
Green’s function in each subinterval as a single scattering result:

G(∆, xi, n̂i, xi−1, n̂i−1) = e−c∆δ (xi − xi−1 − n̂i∆)

× [δ (n̂i − n̂i−1) + b∆P(n̂i, n̂i−1)] . (74)

To be able to take the limit ∆→ 0 with N → ∞, we will need a way of representing the second factor, containing
the angular dependence, in a different way. We can accomplish this using Fourier transforms. When the phase function
P(n̂, n̂′) depends only on the inner product n̂ · n̂′, then it can be expanded in Fourier modes as

P(n̂, n̂′) =

∫
d3 p

(2π)3 Z̃(|p|) exp
(
ip · (n̂ − n̂′)

)
. (75)

This is not a true Fourier transform because the inverse transform does not exist. However, this pseudo-Fourier
transform is all that is needed to proceed. Many phase functions in nature fulfill (75), including ocean water, tissues,
atmosphere, and many types of clouds. For the situations that do not allow this specialization, Ref. [2] provides a
generalization of this procedure.

In the regime b∆ � 1, the angular factor becomes

δ (n̂i − n̂i−1) + b∆P(n̂i, n̂i−1) =

∫
d3 p

(2π)3 exp (ip · (n̂i − n̂i−1))

× exp
(
b∆Z̃(p)

)
+ O

(
∆2

)
. (76)

This expression allows us to put together all of the subintervals and group the factors in a fairly compact way:

G(s, x, n̂, x′, n̂′) = e−cs
∫ N−1∏

i=1

dΩ(n̂i)
d3 pi

(2π)3 exp

i N∑
i=1

pi · (n̂i − n̂i−1)


× exp

 N∑
i=1

b∆Z̃(pi)


×

∫ N−1∏
i=1

d3xi

N∏
i=1

δ (xi − xi−1 − n̂i∆) . (77)

At this stage the spatial integrals can be evaluated exactly because they are a nested sequence of delta functions. They
evaluate to ∫ N−1∏

i=1

d3xi

N∏
i=1

δ (xi − xi−1 − n̂i∆) = δ

xN − x0 −

N∑
i=1

n̂i ∆

 . (78)

This sequence of substitutions and decompositions leaves us in good condition to take the continuum limit ∆→ 0,
N → ∞. In this limit, the sums in the various terms become integrals. If we identify the continuous unit vector valued
function β̂(s′) with the direction vectors by β̂(s′ = i∆) = n̂i, then the spatial delta function becomes in the continuum
limit:

δ

xN − x0 −

N∑
i=1

n̂i ∆

 → δ

(
x − x′ −

∫ s

0
β̂(s′) ds′

)
. (79)

Similarly, the factor containing the Fourier modes Z̃ of the phase function becomes an integral in the limit

N∑
i=1

b∆Z̃(pi) →
∫ s

0
bZ̃(p(s′))ds′. (80)
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The last factor to convert to the continuum limit is the sum of the Fourier phase terms. By multiplying and dividing
simultaneously by ∆, we can recognize that

n̂i − n̂i−1

∆

is a finite difference version of a derivative. So, in the continuum limit, it becomes dβ̂(s′)/ds′ and the factor is

i
N−1∑
i=1

pi · (n̂i − n̂i−1) = i
N−1∑
i=1

pi ·
(n̂i − n̂i−1)

∆
∆ → i

∫ s

0
p(s′) ·

dβ̂(s′)
ds′

ds′. (81)

Assembling all of these results for limits, the final path integral expression for the Green’s function is

G(s, x, n̂, x′, n̂′) = e−cs
∫

[dβ̂][dp] δ
(
β̂(0) − n̂′

)
δ
(
β̂(s) − n̂

)
× δ

(
x − x′ −

∫ s

0
β̂(s′)ds′

)
× exp

(∫ s

0
ds′

(
ip(s′) ·

dβ̂(s′)
ds′

+ bZ̃(p(s′))
))
. (82)

We have also inserted delta function factors δ
(
β̂(0) − n̂′

)
δ
(
β̂(s) − n̂

)
in order to explicitly enforce the “boundary

conditions” imposed earlier that the direction of the path propagation has fixed values at the beginning and end of
the path. Also, the integration measure [dβ̂][dp] is the “continuum limit” of the discrete multidimensional measure∏

i dΩ(β̂i)d3 pi/(2π)3.

B. Derivation of the Approximate Feynman Integral Evaluation

The steps involved are an application of approximation methods that are used to derive the WKB approximation in
quantum mechanics from the path integral representation of the propagator, and also applied in quantum field theory
in the area on non-perturbative loop expansions. This procedure is also related to the methods for approximating
ordinary integrals that are known as Laplace’s Method, Stationary Phase, and Steepest Descents.

The goal is to complete an approximate evaluation of the path integral in (26). The steps are:

1. Find the function that extremizes the exponential in (26) such that the boundary conditions in the delta functions
are satisfied. This function is the (28) with the arguments f (s′) = f0(s′) = Θs′/s and g(s′) = g0(s′) = 0.

2. Express the integration function β̂(s′) in terms of the extremizing function and a fluctuation around that solution.
Hence we use f (s′) = f0(s′) + δ f (s′) and g(s′) = δg(s′), where δ f and δg are the fluctuations.

3. Taylor expand the exponential of (26) in the fluctuations, including all orders up to quadratic in δ f and δg. The
expansion of A(p0) has no terms linear in the fluctuations, since we are expanding about the extremal function.
It does have quadratic terms, and looks like

bNp

∫ s

0
ds′ ( 2η2R − 1/R ) = bsNp ( 2η2

0R0 − 1/R0 )

+
1

2µbNp

∫ s

0
ds′ δ f (s′)

(
−R0

d2

ds′2

)
δ f (s′)

+
1

2µbNp

∫ s

0
ds′ δg(s′)

(
−R0

d2

ds′2
− R0

Θ2

2s2

)
δg(s′) (83)

So the expansion of A(p0) has only quadratic terms that are separated, i.e., there is no term proportional to
δ f δg. A similar expansion of the term ∫ s

0
ds′ k · β̂(s′)
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produces ∫ s

0
ds′ k · β̂(s′) =

∫ s

0
ds′ k · β̂0(s′)

+

∫ s

0
ds′

(
k ·

dβ̂(s′)
d f

∣∣∣∣∣∣
0

)
δ f (s′)

+

∫ s

0
ds′

(
k ·

dβ̂(s′)
dg

∣∣∣∣∣∣
0

)
δg(s′)

+
1
2

∫ s

0
ds′

(
k ·

d2β̂(s′)
d f 2

∣∣∣∣∣∣
0

)
(δ f (s′))2

+
1
2

∫ s

0
ds′

(
k ·

d2β̂(s′)
dg2

∣∣∣∣∣∣
0

)
(δg(s′))2

+

∫ s

0
ds′

(
k ·

d2β̂(s′)
dgd f

∣∣∣∣∣∣
0

)
δg(s′) δ f (s′) (84)

Evaluating each of the derivatives at the extremum,

dβ̂(s′)
d f

∣∣∣∣∣∣
0

= −n̂′ sin(Θs′/s) + r̂ cos(Θs′/s) (85)

dβ̂(s′)
dg

∣∣∣∣∣∣
0

= t̂ (86)

d2β̂(s′)
d f 2

∣∣∣∣∣∣
0

= −β̂0(s′) (87)

d2β̂(s′)
dg2

∣∣∣∣∣∣
0

= −β̂0(s′) (88)

d2β̂(s′)
dgd f

∣∣∣∣∣∣
0

= 0 (89)

So this term has a linear dependence on δ f and δg, but it just so happens that the coefficient for the cross term
δ f δg is zero. Assembling all of these into the Taylor expansion of the exponential in (26) leaves

A(p0) + i
∫ s

0
ds′ k · β̂(s′) ≈ i

∫ s

0
ds′

(
k ·

dβ̂(s′)
d f

∣∣∣∣∣∣
0

)
δ f (s′)

+
1
2

∫ s

0
ds′ δ f (s′)

(
−

R0

µbNp

d2

ds′2
− ik · β̂0(s′)

)
δ f (s′)

+ i
∫ s

0
ds′

(
k · t̂

)
δg(s′)

+
1
2

∫ s

0
ds′ δg(s′)

(
−

R0

µbNp

d2

ds′2
−

R0

µbNp

Θ2

2s2 − ik · β̂0(s′)
)
δg(s′) (90)

4. Evaluate the functional integrals over the fluctuation functions δ f and δg. These functional integrals over δ f
and the one over δg can be carried out independently of each of other because the integrand separates into the
product of two functionals, one depending only on δ f and the other only on δg. Each one has the form

I(J,M) =

∫
[dρ] δ(ρ(0)) δ(ρ(s))

× exp
{
−i

∫ s

0
ds′

(
k · J(s′)

)
ρ(s′)

}
× exp

{
−

1
2

∫ s

0
ds′ ρ(s′) ∆−1

Mk ρ(s′)
}

(91)
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where, for the δ f functional integral M = 0 and for the δg functional M = Θ/(s
√

2). Equation (34) is the
assemblage of all of these steps.

5. Since I is a gaussian functional integral, it can be evaluated exactly, and that evaluation leads to (35).
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