
Interactive Water Surfaces
Jerry Tessendorf – Rhythm and Hues Studios
jerryt@rhythm.com

Water Surfaces in Games

Realistic computer generated ocean surfaces have been used routinely in film features
since 1996, in such titles as Waterworld, Titanic, Fifth Element, Perfect Storm, X2
XMen United, Finding Nemo, and many more. For the most part the algorithms
underlying these productions apply Fast Fourier Transforms (FFT) to carefully
crafted random noise that evolves over time as a frequency-dependent phase shift
[Tessendorf02]. Those same algorithms have found their way into game code
[Jensen01, Arete03] without significant modification, producing beautiful ocean
surfaces that evolve at 30+ frames per second on unexceptional hardware.

What the FFT algorithms do not give, however, is interactivity between objects and
the water surface. It would be difficult, for example, to have characters wade through
a stream and generate a disturbance that depends directly on the motion that the
player controls. A jet ski thrashing about in the water would not generate turbulent
waves. Waves in a bathtub cannot bounce back and forth using FFT based simulation.
And in general, it is not possible in the FFT approach to place an arbitrary object in
the water and have it interact in a realistic way with the surface without substantial
loss of frame rate. For practical purposes, wave surfaces are restricted in the ways that
the height data can be modified within a frame and between frames.

This chapter provides a new method, which has been dubbed iWave, for computing
water surface wave propagation that overcomes this limitation. The three scenarios
for the stream, jet ski, and bathtub are handled well with iWave. Objects with any
shape can be present on the water surface and generate waves. Waves that approach
an object reflect off of it realistically. The entire iWave algorithm amounts to a two-
dimensional convolution and some masking operations – both suitable for hardware
acceleration. Even without hardware assistance, a software-only implementation is
capable of simulating a 128x128 water surface height grid at over 30 fps on GHz
processors. Larger grids will of course slow the frame rate down, and smaller grids
will speed it up – the speed is directly proportional to the number of grid points. And
because the method avoids FFTs, it is highly manipulative and suitable for a wide
range of possible applications.

Linear Waves

Lets begin with a quick reminder of the equations of motion for water surfaces waves.
An excellent resource for details on the fluid dynamics is [Kinsman84]. The
equations that are appropriate here are called the “linearized Bernoulli’s equation.”
The form of this equation we use here has a very strange operator that will be
explained to some degree. The equation is [Tessendorf02]

),,(
),,(),,(2

2

2

tyxhg
t

tyxh

t

tyxh
—--=

∂

∂
+

∂

∂
a (1)

In this equation),,(tyxh is the height of the water surface with respect to the mean
height at the horizontal position),(yx at time t . The first term on the left is the
vertical acceleration of the wave. The second term on the left side, with the constant
a , is a velocity damping term, not normally a part of the surface wave equation, but
which is useful sometimes to help suppress numerical instabilities that can arise. The
term on the right side comes from a combination of mass conservation and the
gravitational restoring force. The operator

2

2

2

2
2

yx ∂

∂
-

∂

∂
-≡—-

is a mass conservation operator, and we will refer to it as a vertical derivative of the
surface. Its effect is to conserve the total water mass being displaced. When the
height of the surface rises in one location, it carries with it a mass of water. In order to
conserve mass, there is a region of the surface nearby where the height drops,
displacing downward the same amount of water that is displaced upward in the first
location.

The next section describes how to evaluate the right hand side of (1) by expressing it
as a convolution. Throughout the rest of this chapter the height is computed on a
regular grid, as shown in Figure 1. The horizontal position),(yx becomes the grid

location),(ji at positions D= ixi and D= jy j , with the grid spacing D the same in

both directions. The indices run Ni ,...,1= and Mj ,...,1= .

Vertical Derivative Operator

Like any linear operator acting on a function, the vertical derivative can be
implemented as a convolution on the function it is applied to. In this section we build
up this convolution, applied to height data on a regular grid. We also determine the
best size of the convolution and compute the tap weights.

As a convolution, the vertical derivative operates on the height grid as

ÂÂ
-=-=

++=—-
P

Pl

P

Pk

ljkihlkGjih),(),(),(2 (2)

The convolution kernel is square, with dimensions () ()1212 +¥+ PP , and can be
precomputed and stored in a lookup table prior to start of the simulation. The choice
of the kernel size P affects both the speed and the visual quality of the simulation.

The choice 6=P is the smallest value that gives clearly water-like motion. This issue
is examined more below.

Figure 1. Layout of the grid for computing wave height.

Figure 2 shows the kernel elements ()0,kG as a function of k. The two dashed
vertical lines are at the spots k = 6 and k = -6. You can see from the plot that at larger
values of k, the kernel is pretty much zero, and including values of k outside the
dashed lines will not contribute much to the convolution. If we stop the convolution
at smaller values, say k=5 and k=-5, evaluating the convolution is faster, but we will
miss some small contribution from the k=6, k=-6 terms. Experience shows that you
can get really good looking waves keeping the terms out to 6, but if you are pressed
for computation time, stopping the convolution short of that can work also, just not be
as visually realistic. Terminating the kernel at a value 6<k sacrifices significant

amounts of oscillation. This analysis is why the choice 6=P is recommended as the
best compromise for reasonable wave-like simulation.

Computing the kernel values and storing them in a lookup table is a relatively
straightforward process. The first step is to compute a single number that will scale
the kernel so that the center value is one. The number is

()Â -=
n

nn qqG 22
0 exp s

For this sum, qnqn D= with 001.0=Dq being a good choice for accuracy, and

10000,,1 K=n . The factor s makes the sum converge to a reasonable number, and
the choice 1=s works well. With this number in hand, the kernel values are

() () () 00
22 exp, GrqJqqlkG

n
nnnÂ -= s

with the parameter 22 lkr += . The computation time for the kernel elements is
relatively small, and all of the cost is an initialization – once the elements are
computed they are fixed during the simulation.

Figure 2. The vertical derivative kernel in cross section. Between the two dashed lines
is the P=6 region.

One remaining item needed to compute the convolution kernel elements is a formula
for the Bessel function ()xJ 0 . This is included in the C standard math library as j0. If

you do not have accesses to this, a very convenient approximate fit for this function is
provided in [Abramowitz72]. Although the formula there is a fitted parametric form,
it is accurate to within single precision needs, and works well for the purposes of this
simulation.

When you perform the convolution at each time step, there are opportunities to
optimize its speed, both for particular hardware configurations and in software.
Software optimizations follow because of two symmetries in the convolution kernel:
The kernel is rotation symmetric, i.e. () ()klGlkG ,, = , and the kernel is reflection

symmetric about both axes, i.e. () () () ()lkGlkGlkGlkG ,,,, -=-=--= . Without
applying any symmetries, evaluating the convolution in equation (2) directly requires

()212 +P multiplications and additions. Applying these symmetries, the convolution

can be rewritten as (using the fact that () 10,0 =G by construction)

() ()ÂÂ
+==

+-+-++--++++
P

kl

P

k

ljkihljkihljkihljkihlkGjih
10

),(),(),(),(),(,

In this form, there are still ()212 +P additions, but only () 21 PP + multiplications.

Hardware optimizations of the convolution are possible for because this kind of
convolution can be cast in a form suitable for a SIMD pipeline, so graphics cards and
DSPs can execute this convolution efficiently.

Wave Propagation

Now that we are able to evaluate the vertical derivative on the height grid, the
propagation of the surface can be computed over time. It is simplest to use an explicit
scheme for time stepping. Although implicit methods can be more accurate and
stable, they are also slower. Since we are solving a linear equation in this chapter, an
explicit approach is fast and stable when the friction term is used and time step sizes
can be what is needed for the display frame rate. In practice, the friction can be kept
very low, although for game purposes it may be preferable to have the waves
dissipate when they are no longer driven by sources.

To construct the explicit solution, the time derivatives in equation (1) must be written
as finite differences. The second derivative term can be built as a symmetric
difference, and the dissipative friction term as a forward difference. Rearranging the
results terms, and assuming a time step tD , the height grid at the next time step is

() () ()

ÂÂ
-=-=

++
D+

D
-

D+
D--

D+

D-
=D+

P

Pl

P

Pk

tljkihlkG
t

tg
t

ttjih
t

t
tjihttjih

),,(),(
1

1

1
,,

1

2
,,,,

2

a

aa
a

(3)

In terms of data structures, this algorithm for propagation can be run with three copies
of the heightfield grid. For this discussion, the grids are taken to be float arrays
height, vertical_derivative, and previous_height. During the
simulation, the array height always holds the new height grid,
previous_height holds the height grid from the previous time step, and
vertical_derivative holds the vertical derivative of the height grid from the
previous time step. Before simulation begins, they should all been initialized to zero
for each element. The pseudo-code to accomplish the propagation is

float height[N*M];

float vertical_derivative[N*M];
float previous_height[N*M];

// ... initialize to zero ...

// ... begin loop over frames ...

// --- This is the propagation code ---
// Convolve height with the kernel
// and put it into vertical_derivative
Convolve(height, vertical_derivative);

float temp;
for(int k=0;k<N*M;k++)
{
 temp = height[k];
 height[k] = height[k]*(2.0-
 alpha*dt)/(1.0+alpha*dt)
 - previous_height[k]/(1.0+alpha*dt)
 - vertical_derivative[k]
 *g*dt*dt/(1.0+alpha*dt);
 previous_height[k] = temp;
}
// --- end propagation code ---

// ... end loop over frames ...

The quantities in vertical_derivative and previous_height could be
useful for embellishing the visual look of the waves. For example, a large value in
vertical_derivative indicates strong gravitational attraction of the waves
back to the mean position. Comparing the value in previous_height with that in
height at the location of strong vertical_derivative can determine roughly
whether the wave is at a peak or a trough. If it is at a peak, a foam texture could be
used in that area. This is not a concrete algorithm grounded in physics or
oceanography, but just a speculation about how peaks of the waves might be found.
The point of this is simply that the two additional grids vertical_derivative
and previous_height could have some additional benefit in the simulation and
rendering of the wave height field beyond just the propagation steps.

Interacting Obstructions and Sources

Up to this point we have built a method to propagate waves in a water surface
simulation. While the propagation involves a relatively fast convolution, everything
we have discussed could have been accomplished just as efficiently (possibly more
efficiently) with a FFT approach such as the ones mentioned in the introduction. The

real power of this convolution method is the ease with which some additional 2D
processing can generate highly realistic interactions between objects in the water, and
can pump disturbances into the water surface.

The fact that we can get away with 2D processing to produce interactivity is, in some
ways, a miracle. Normally in a fluid dynamic simulation the fluid velocity on and
near a boundary is reset according to the type of boundary condition and requires
understanding of geometric information about the boundary such as its outward
normal. Here we get away with effectively none of that analysis, which is critical to
the speed of this approach.

Sources

One way of creating motion in the fluid is to have sources of displacement. A source
is represented as a 2D grid ()jis , the same size and dimensions as the height grid.
The source grid should have zero values where ever no additional motion is desired.
At locations in which the waves are being “poked” and/or “pulled”, the value of the
source grid can be position or negative. Then, just prior to propagation step in
equation 3, the height grid is updated () ()jisjih ,, =+ . Since the source is an energy
input per frame, it should change over the course of the simulation, unless a constant
build up of energy is really what is wanted. An impulse source generates a ripple.

Obstructions

Obstructions are shockingly easy to implement in this scheme. An additional grid for
obstructions is filled with float values, primarily with two extreme values. This grid
acts as a mask delineating where obstructions are present. At each grid point, if there
is no obstruction present, then the value of the obstruction grid at that point is 1.0. If a
grid point is occupied by an obstruction, then the obstruction grid value is 0.0. At grid
points on the border around an obstruction, the value of the obstruction grid is some
intermediate value between 0.0 and 1.0. The intermediate region acts as an anti-
aliasing of the edge of the obstruction.

Given this obstruction mask, the obstruction’s influence is computed simply by
multiplying the height grid by the obstruction mask, so that the wave height is forced
to zero in the presence of the obstruction, and left unchanged in areas outside the
obstruction. Amazingly, that is all that must be done to properly account for objects
on the water surface! This simple step causes waves that propagate to the obstruction
to reflect correctly off of it. It also produces refraction of waves that pass through a
narrow slit channel in an obstruction. And it permits the obstruction to have any
shape at all, animating in any way that the user wants it to.

Combining the source and obstruction, the pseudo-code for the application of these is:

float source[N*M], obstruction[N*M];
// ... set the source and obstruction grids

for(int k = 0; k < N*M; k++)
{
 height[k] += source[k];
 height[k] *= obstruction[k];
}

// ... now apply propagation

Wakes

Wakes from moving objects are naturally produced by the iWave method of
interactivity. In this special case, the shape of the obstruction is also the shape of the
source. Setting source[k] = 1.0-obstruction[k] works as long as there is
an anti-aliased region around the edge of the obstruction. With this choice, moving an
obstacle around in the grid produces a wake behind it that can include the V-shaped
Kelvin wake. It also produces a type of stern wave and waves running along the side
of the obstacle. The details of the shape, timing, and extent of these wake components
are sensitive to the shape and motion of the obstacle.

Ambient Waves

The iWave method is not very effective at generating persistent large scale wave
phenomena like open ocean waves. If the desired application is the interaction of
objects with “ambient waves” that are not generated in the iWave method, there is an
additional procedure to follow to generate that interaction without explicitly
simulating the ambient waves.

The ambient waves consist of a height grid that has been generated by some other
procedure. For example, FFT methods could be used to generate ocean waves and put
them in a height grid. Since we are only trying to compute the interaction of the
ambient waves with an obstruction, the ambient waves should not contribute to the
simulation outside the region of the obstruction. The pseudo-code for modifying the
height grid, prior to propagation and just after application of obstructions and sources
as above, is

float ambient[N*M];

// ... set the ambient grid for this time step

// ... just after the source and obstruction, apply:
for(int k = 0; k < N*M; k++)
{
 height[k] -= ambient[k]*(1.0-obstruction[k]);
}

// ... now apply the propagation

With this, ambient waves of any character can interact with objects of any animating
shape.

Grid Boundaries

Up to this point we have ignored the problem of how to treat the boundaries of the
grid. The problem is that the convolution kernel requires data from grid points a
distance P in all four directions from the central grid point of the convolution. So
when the central grid point is less than P points from a boundary of the grid, missing
data must be filled in with some sort of criterion. There are two types of boundary
conditions that are fairly easy to apply: periodic and reflecting boundaries.

Periodic Boundaries

In this situation, a wave encountering a boundary appears to continue to propagate
inward from the boundary on the opposite side. In performing the convolution near
the boundaries, the grid coordinates in equation 3 ki + and lj + may be outside of

the ranges []1,0 -N and []1,0 -M . Applying the modulus (i+k)%N is guaranteed to

be in the range []1,1 -+- NN . To insure that the result is always positive, a double
modulus can be used: ((i+k)%N + N)%N. Doing the same for the lj + coordinate
insures that periodic boundary conditions are enforced.

Reflecting Boundaries

Reflecting boundaries turn a wave around and send it back into the grid from the
boundary the wave is incident on, much like a wave that reflects off of an obstacle in
the water. If the coordinate ki + is greater than 1-N , then it is changed to

kiN --2 . If the coordinate is less than 0, it is negated, i.e. it becomes ki -- , which
is positive. An identical procedure should also be applied to the lj + coordinate.

To efficiently implement either of these two types of boundary treatments, the fastest
approach is to divide the grid into 9 regions

1. The inner portion of the grid with the range of coordinates []PNPi --Œ 1,

and []PMPj --Œ 1, .

2. The right hand side []1, --Œ NPNi and []PMPj --Œ 1, .

3. The left hand side []1,0 -Œ Pi and []PMPj --Œ 1, .

4. The top side []PNPi --Œ 1, and []1,0 -Œ Pj .

5. The bottom side []PNPi --Œ 1, and []1, --Œ MPMj .
6. The four corners that remain.

Within each region the particular boundary treatment required can be coded
efficiently without conditionals or extra modulus operations

Surface Tension

So far the type of simulation we have discussed is the propagation of gravity waves.
Gravity waves dominate surface flows on scales of approximately a foot or larger. On
smaller scales the character of the propagation changes to include surface tension.
Surface tension causes waves to propagate faster at smaller spatial scales, which tends
to make the surface appear to be more rigid than without it. For our purposes, surface
tension is characterized by a length scale TL , which determines the maximum size of
the surface tension waves. The only change required of our procedure is a different
computation of the convolution kernel. The kernel calculation becomes

() () () 00
2222 exp1, GrqJqLqqlkG

n
nnTnnÂ -+= s

Other than this change, the entire iWave process is the same.

Conclusion

The iWave method of water surface propagation is a very flexible approach to
creating interactive disturbances of water surfaces. Because it is based on 2D
convolution and some simple 2D image manipulation, high frame rates can be
obtained even in a software-only implementation. Hardware acceleration of the
convolution should make iWave suitable for many game platforms. The increased
interactivity of the water surface with objects in a game could open new areas of
game play that previously were not available to the game developer.

References

[Abramowitz72] Milton Abramowitz and Irene A. Stegun, Handbook of
Mathematical Functions, Dover, 1972. Sections 9.4.1 and 9.4.3.
http://members.fortunecity.com/aands/page_369.htm

[Arete03] Arete Entertainment. http://www.areteis.com
[Jensen01] Lasse Jensen, on-line tutorial, 2001.

http://www.gamasutra.com/gdce/jensen/jensen_01.htm
[Kinsman84] Blair Kinsman, Wind Waves, Dover, 1984.
[Tessendorf02] Jerry Tessendorf, “Simulating Ocean Water,” Simulating Nature,

Siggraph Course Notes, 2002. http://home1.gte.net/tssndrf/index.html

