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Abstract The Method of Characteristics is examined

as a tool for making fluid simulation more efficient and

effective in VFX production. A mathematical frame-

work for a Characteristic Map is shown to be a general-

ization of the previous methods called Gridless Advec-

tion and Semi-Lagrangian Mapping. We demonstrate

that the Characteristic Map can be used to modify

a fluid flow post-simulation, including injecting higher

resolution motion, and precise flow control from blend-

ing Characteristic Maps.

Keywords Fluid Simulation · Characterist Function ·
Volume Rendering · Visual Effects

1 Introduction

The pressures of VFX production continually drive stu-

dios to find new and improved methods for fluid sim-

ulation that simplify the pipeline, improve and control

visual quality, improve speed, reduce memory, and ex-

pand artistic stylization of the simulations. One success-

ful approach has been to apply various post-simulation

volumetric manipulations using the density and velocity

fields, without further simulation. For example, Grid-

less advection (GA) and SEmi-Lagrangian MApping

(SELMA) have been successfully applied in several shows

[1]. These procedures generate a density field showing

much more detail and visually-interesting features that
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the advected density coming directly from the simula-

tion. We examine the natural extension of those proce-

dures by incorporating the mathematical framework of

the Characteristic Map (CM) function, and show that

it acts as a unifying computational approach that can

be applied to fluid simulations for several purposes:

1. For a desired level of detail, smoke simulations can

be generated at lower spatial grid resolution, then

re-advected via the CM.

2. New types of tradeoffs are made available. For ex-

ample, the density field can be built entirely from

procedural calculations, while still being advected

through a velocity field. The CM can be entirely

procedurally built from the velocity field, or sam-

pled to a grid repeatedly for memory savings, while

producing higher spatial detail than advection and

gridding of the density directly.

3. Multiple unrelated simulations can be merged seam-

lessly with standard blending methods operating on

the CM. This even includes densities and velocity

fields that are procedurally generated without sim-

ulation.

4. Compressible flows have additional impacts on the

density field, and this can be applied using the CM

and a quenching factor shown in section 3.3.2. For

finite-in-time stepping of the density and velocity

fields, this factor can grow or collapse exponentially,

spoiling the visual impact of the field. We show a

way to mitigate this for VFX applications.

The goal of these post-simulation manipulations is

to extend the utility of the fluid simulations without

having to re-run simulations or start over with entirely

new ones. We hope to make fluid simulations fit better

into the standard practice of VFX production through

tools that allow iterative adjustment, editing, and blend-
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ing of simulation results in a style consistent with other

areas of VFX.

The rest of this paper is devoted to two tasks: quan-

tifying the CM and it’s computation from the velocity

field, and demonstrating the utility of the items above.

We illustrate these points using a simple smoke sim-

ulation generated at low spatial resolution, large time

steps, with a highly dissipative advection scheme. Not

only is this simulation easy to generate on modest hard-

ware, the much improved visual quality of the CM-

based modifications emphasize the production benefits

of the Characteristic Map.

Section 3 lays out the mathematical structure of

the Characteristic Map, beginning with it’s forerunners

in production, gridless advection and Semi-Lagrangian

Mapping. The evolving density field is derived for in-

compressible and compressible velocity fields. Applica-

tions of the CM to the tasks listed above are discussed

in section 4, and illustrated with the simple smoke sim-

ulation.

2 Previous Work

The method of characteristics has enjoyed wide and

varied adoption in PDE research, yet has seen little

exploration in computer graphics. The popular semi-

Lagrangian advection schemes which can be viewed as

an application of the method of characteristics [2]. These

methods have been attractive for their ease of imple-

mentation and unconditional stability. One of the main

drawbacks of this method comes from examining its

effect on the physical equations. It has been shown in

[3] that the semi-Lagrangian method solves a perturbed

equation which has a velocity-dependent diffusion term.

This diffusion behavior has been problematic since it

diffuses density details which we would like to sharpen

for production scenarios. The characteristic mapping

approach ameliorates this issue.

The method of characteristics has been used in study-

ing many hyperbolic problems, especially those where

advection plays a larger role than other effects like diffu-

sion, the so called ‘transport-dominated’ problems. In

the field of fluid dynamics where the transport terms

can be significant and are non-linear, the method has

been used to accurately compute advection for two-

phase flows [4] using a fractional time-stepping proce-

dure similar. This splitting process, which is similar in

spirit to the typical Stam-style solver framework, per-

forms an error analysis showing that the method of

characteristics leads to an error bounded by terms of

O(∆t2).

Our application of the CM differs from these past

applications, in that we use the CM after the simula-

tion is complete to reconstruct a new version of the den-

sity field. The method preserves strong gradients in the

density better than the simulations do, and so reveals

more spatial structure than the density fields directly

produced by the simulations.

The calculation of the CM bears resemblance to

schemes for advecting textures [5]. There are signifi-

cant differences however because the goals of CM and

advected textures are quite different. One of the critical

issues in advecting textures is a refreshment process to

restore or maintain the qualities of the texture because

advection would otherwise stretch and distort it beyond

recognition. There is no such concern in our approach,

because we are focused on methods to enhance and alter

the fluid simulation for control and iteration purposes,

without regard to the impact on textures. Texture ad-

vection is a separate concern which could be applied

independent of our process.

3 Formulation of the Characteristic Map

Before introducing the CM in it’s general form, it is

worthwhile to look at two special cases that have been

useful in VFX productions recently. Gridless advection

and Semi-Lagrangian Mapping were introduced in [1]

and [6]

3.1 Gridless Advection

Gridless Advection (GA) is a render-time technique for

improving the visual clarity of densities which are un-

dergoing advection. While traditional rendering of a

coarse density grid would lead to a blurred visual ap-

pearance, GA enables the user to resolve finer details

than would otherwise be possible. The advection source

can be from a simulation, a suitable noise field (like

vector-valued Perlin noise), or a combination of both.

If the underlying velocity field is noisy, then GA has

the effect of adding fine filaments and sheets to the sur-

face of the density. When this process is repeated it

is possible to produce fine-scale details that are finer

than can be resolved in the ray march procedure of a

volume renderer, and so the number of iterations are

usually limited so that temporal aliasing (which visu-

ally appears as a shimmering effect) in the ray march

is avoided. Also, in practical use, users find that apply-

ing more than four or five iterations of GA in a render

adds more time and memory to a volume render than

is desirable.

Implementing gridless advection only requires alter-

ing the density sample position during the ray march

of a volume renderer. Given a position x that the ray
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marcher would sample for density, GA instead samples

a density advected by the flow using semi-Lagrangian

advection:

ρGA(x) = ρ(x− u(x, t)∆t) (1)

It is also possible to perform multiple steps of GA via

an iteration

ρk+1
GA (x) = ρkGA

(
x− u(x, tk+1)∆t

)
. (2)

with ρ0 being the initial density before any gridless ad-

vection. Each time the density is sampled by the volume

renderer this iterative chain of steps is evaluated. For a

few iterative steps the time cost is not severe and the

visual benefit is great. The cost of evaluating gridless

advection is linear (space and memory) in the number

GA iterations since each frame requires evaluating a

chain of advections and storing each velocity field in

memory. GA is impractical when doing large numbers

of iterations.

3.2 SEmi-Lagrangian MApping (SELMA)

SELMA is a practical compromise of GA for applica-

tions of a large number of iterations. It allows simula-

tions to be retargeted to different initial densities and

enables a trade-off between spatial detail in advection

and memory/time requirements while keeping a visu-

ally crisp density field. In SELMA, the CM is sampled

to a finite resolution grid which is updated by advecting

the mapping function over time. At the end the density

is evaluated at the mapping function.

Calculation of the SELMA map follows from recog-

nizing that the iteration formula for GA can be written

as an iteration of a map Xk(x)

ρk(x) = ρ0(Xk(x)) (3)

Xk(x) = Xk−1 (x− u(x, tk+1)∆t
)

(4)

with the initial conditions X0(x) = x. This rephrasing

of GA separates the iteration process from the density

field. SELMA is the process of sampling the GA map

onto a grid at each iteration. The resolution and extent

of this map grid need not be the same as the velocity

data, and it can be useful to use a higher resolution

than the velocity field to capture much of the detail

generated by GA. Hence at each iteration the mapping

data consists if a gridded vector field which eliminates

further need of the velocity data.

Although SELMA is a Semi-Lagrangian advection

of a map, it can be applied to velocity fields generated

from any type of advection scheme. Figure ?? shows

the impact of using SELMA by comparing the density

field produced directly from the simulation with the one

produced from applying the SELMA-computed CM to

the initial density field. This comparison is made for

a fluid simulation using Semi-Lagrangian advection in

1 (a) and (c), and for a BFECC fluid simulation in 1

(b) and (d). Regardless of the type of underlying fluid

simulation, SELMA enhances interesting visible detail

in the density field.

Whereas the cost of using GA is linear with the

number of iterations, SELMA has constant cost in time

and memory, because the map is always kept on a grid

with constant time evaluation and no velocity fields

need be retained in memory. In practice using a grid in

SELMA is a highly effective compromise between the

extremely high but costly detail in multiple iterations

of GA and the low resolution but fast sampling of a

gridded density field.

3.3 Characteristic Map

The Characteristic Map (CM) X(x, t, s) defines a map-

ping from points in space at a time s to their advected

positions at a later time t. The mapping is completely

defined by an initial state and a time evolution equation

which advects the mapping function through a velocity

field u(x, t). Phrasing the advection as a form of map-

ping gives greater control and flexibility when compared

to traditional advection schemes. This scheme decou-

ples the density evolution from any particular initial

density field and allows the injection of more flow de-

tail after velocity simulation is completed.

For both compressible and incompressible flows, the

CM is the same quantity. But compressible flows require

an additional quenching factor on the advected density

related to the non-zero divergence of the velocity field.

We first present the CM for incompressible flow.

3.3.1 Incompressible Flow

The continuity equation describes the evolution of a

density field ρ(x, t) over time as a function of initial

conditions ρ(x, 0) = ρ0(x), velocity field u(x, t), and a

possibly time-varying source (or sink) S(x, t) of density.

The continuity equation for incompressible flow,

∂ρ

∂t
+ u · ∇ρ = S(x, t) (5)

has a solution in terms of the CM, which is essentially

a conversion from the continuity equation to an evolu-

tion equation for the CM. The solution is composed by

following a density through characteristic lines in the

fluid flow:

ρ(x, t) = ρ0(X(x, t, 0)) (6)

+

∫ t

0

ds S(X(x, t, s), s) (7)
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Fig. 1 Comparison of the density field directly from a fluid simulation and from applying the SELMA-computed CM to
the initial density field. (a) Density directly output from a Semi-Lagrangian fluid simulation; (b) Density directly output
form a BFECC fluid simulation; (c) Density from SELMA-mapped Semi-Lagrangian fluid simulation in (a); (d) Density from
SELMA-mapped Semi-Lagrangian fluid simulation in (b).

where the CM X satisfies the evolution equation

∂X(x, t, t′)

∂t
+ u(x, t) · ∇X(x, t, t′) = 0. (8)

The CM has the initial condition and “pre-condition”

X(x, t′, t′) = x for t ≤ t′, which is the identity mapping.

The evolution equation has an equivalent integral form

X(x, t, t′) = x−
∫ t

t′
ds u(X(x, s, t′), s) (9)

which lends itself to numerical implementation. In a

numerical implementation over finite-in-time steps ∆t,

the CM evolution equation 9 is a recursion relation, and

so a straightforward algorithm for its dynamics is given

by advecting the CM through the flow field

X(x, t+∆t, t′) = X(x− u(x, t)∆t, t, t′) (10)

This form is a Semi-Lagrangian scheme for advection.

Other schemes, for example BFECC, could also be used

for this dynamics. For this paper, we use Semi-Lagrangian.

3.3.2 Compressible Flow

Compressible flow modifies the continuity equation with

an additional term proportional to the divergence of the

velocity field.

∂ρ

∂t
+ u · ∇ρ+ (∇ · u)ρ = S(x, t) (11)

This additional term compensates for compression and

expansion effects in the flow field.The divergence term

does not stop us from writing an exact solution for this

problem as well (see Appendix). The divergence accu-

mulates into the exponential form

T (x, t, t′) = exp

{
−
∫ t

t′
ds Q(X(x, s, t′), s)

}
(12)

where Q(x, t) = ∇ · u(x, t). The explicit solution can

then be written in the closed form

ρ(x, t) = T (x, t, 0) ρ0(X(x, t, 0)) (13)

+

∫ t

0

ds T (x, t, s) S(X(x, t, s), s) (14)

For a numerical implementation with finite-in-time

steps ∆t, we can evolve the state of the CM for a com-

pressible flow field exactly as for incompressible flow,

and also update T using the divergence Q. Initializing

a field T (x, t, t′) to be initially 1 everywhere, we first

advect the mapping X in the same way as before, and

also update T by

T (x, t+∆t, t′) = T (x, t, t′) exp {−∆t Q(X(x, t, t′), t)}(15)

The factor T illustrates the numerical difficulty in

handling the unstable nature of compressibility. Large

divergence can cause an exponential growth or collapse

in density. One way to combat this is to adjust the sim-

ulation time steps so that |∆t ∇·u| < 1. This can force

extremely small time steps and increase the difficulty of
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creating the density field. Alternatively, a production-

friendly approach that avoids the problem is to clamp

this exponential term

Tclamp(x, t, t′) = clamp (T (x, t, t′), Tmin, Tmax) (16)

This clamping function limits extreme fluctuations in

density due to high flow divergence.

4 Applications

In this section we examine strategies for achieving three

different purposes using the CM. Some purposes have

more than one possible strategy that can be mixed to-

gether. Also, the strategies can be combined to achieve

multiple purposes simultaneously.

4.1 Capturing high resolution

Generating density fields with details smaller than the

grid resolution is the primary focus of GA and SELMA.

The discussions in section 3 show that GA and SELMA

are two numerical implementations of the CM in the

special case of no sources of density and advecting only

the initial density field through the CM that maps from

the simulation initial time to the current moment.

To contrast the appearance and benefits of these two

implementations, figure 2 shows the application of each

on a frame of a simple buoyant gas simulation. Of par-

ticular note is that GA enhances detail with only a few

iterations by clarifying the edges of density boundaries,

and visually enhancing filaments and two-dimensional

sheets, without altering the bulk distribution of the

density. In this sense, GA acts to ”sweeten” the density

field at render time.

SELMA more strongly alters the density distribu-

tion, but the gross pattern of the low resolution density

distribution remains. The filaments and sheets are fur-

ther enhanced, the edges are sharper still. Because of its

greater time and memory efficiency, SELMA has been

applied through the entire 50 frames of velocity field

that lead to this frame.

Had we applied GA for the full 50 frames, the amount

of fine detail would have been more than could be ren-

dered in a rational amount of time. For example, figure

3 shows frame 60 of a different gas simulation, rendered

as the gridded simulation density and as GA advected

density through the full 60 iterations. Render time of

the gridded density is two minutes, while the GA ad-

vected density took 100 hours to render, partially be-

cause the ray march step is 10 times finer than the grid

cell size in order to capture the finer detail. Yet even

after 100 hours of fine ray marching, there are clear

aliasing patterns in the GA advected image that indi-

cate the density has features finer than the ray march

could capture. This is why GA is an excellent sweet-

ening tool, but impractical for advocating over many

frames.

4.2 Injecting noise in the flow

The approach of injecting high resolution noise into a

flow can be accomplished within the context of the CM

approach. The velocity applied during the advection is

the sum of the simulation velocity and a vector-valued

noise function. The iterative CM construction is then

X(x, t+∆t, t′) = X(x− uinjected(x, t)∆t, t, t′), (17)

where the injected velocity is the sum of the simulation

velocity and noise:

uinjected(x, t) = u(x, t) + unoise(x, t) (18)

Figure 4 shows the effect of this injection, for a noise

velocity composed of vector-valued perlin noise.

4.3 Blending flows

The CM is a natural mechanism for blending flows to-

gether. The reason is analogous to how surface displace-

ments are used in surface rendering. Multiple surface

displacements can be blended through addition, sub-

traction, alpha-blending, etc. The quantity X − x is

a form of 3D displacement of the flow volume that is

conceptually very similar to the surface displacement,

and so can be blended in like fashion. For example, if

two flows produce two CMs X1 and X2, an alpha blend

would be

Xblend = (1− α)X1 + αX2 (19)

By animating the α and/or varying it over the volume, a

particular flow effect can be introduced and completely

removed in precisely controlled ways. Figure 5 shows

and example of the blending. On the left is the SELMA

advected density for a low resolution flow, i.e. X1 is the

SELMA-generated CM of the low resolution simulation.

In the center, at each frame the density is advected by

both the low resolution simulation and a perlin-noise-

based velocity field, i.e. X2 is the SELMA-generated

CM of the combination of the simulation velocity and

perlin-noise velocity. On the right, the two CMs are

blended and then applied to the density field.



6 Tessendorf, Pelfrey

Fig. 2 Impact of GA and SELMA on a low resolution buoyant gas simulation. Left: gridded density directly from the
simulation; Middle: gridded density from the simulation with three iterations of Gridless Advection; Right: the initial density
field mapped to the same frame as the others with SELMA. The simulation grid is 32X128X32, and the SELMA grid is
128X512x128. This is frame 50 of a 120 frame simulation, with no subframe stepping. Volume rendering conditions are identical
for the three images.

Fig. 3 Demonstration of the extreme detail achievable with Gridless Advection. Left: Render of the gridded simulation density.
Ray march step is equal to the cell size, render time is two minutes. Right: Render of the density from gridlessly advocating
all of the frames. Ray march step is one tenth of the cell size, render time is 100 hours, too long for practical application.
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A Derivation of the Density Evolution Solution

For the incompressible evolution equaton, the solution has
the form

ρ(x, t) = ρ0(X(x, t, 0)) +

∫ t

0

dt′ S(X(x, t, t′), t′) .

Substituting this into the evolution equation for incompress-
ible flow, the vector field X must satisfy the evolution:

∂X(x, t, t′)

∂t
+ u(x, t) · ∇X(x, t, t′) = 0

For the homogeneous (no sources) compressible case, di-
viding by the density gives the equation

1

ρ

(
∂ρ

∂t
+ u · ∇ρ+ (∇ · u)ρ

)
= 0

Rephrased in terms of the log of the density the equation is

∂ ln ρ

∂t
+ u · ∇ ln ρ+ (∇ · u) = 0
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Fig. 4 Demonstration of noise injected into the CM. Top row: Sequence of frames in the low resolution gas simulation,
advected using SELMA on the CM. Bottom row: The same sequence of frames of the simulation, with additional vector-valued
perlin noise injected into the CM at each frame prior to sampling onto the SELMA grid.

Fig. 5 Demonstration of blending flows using the CM. Left: The low resolution gas flow with SELMA advection. Middle: The
same flow, but with a perlin-noise-based velocity injected in the SELMA map at each frame to evolve additional detail. Right:
Density field from blending the Characteristic Maps from the two other cases.
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which is identical in form to the inhomogenous incompressible
evolution equation, with the velocity divergence acting as the
source. Using that form

ln ρ(x, t) = ln ρ0(X(x, t, 0))−
∫ t

0

dt′ Q(X(x, t, t′))

where Q(x, t) ≡ ∇ · u(x, t). When external sources are used,
the compressible solution can be built similar to that for the
incompressible case. Notice that in the homogeneous case,
the impact of compressibility is to insert the factor T with
the density. Since the source term S acts as an injection of
density, it is reasonable to expect that a factor of T , as defined
in equation 12, would accompany S. In fact, it is quickly
verified through explicit differentiation that

ρ(x, t) = T (x, t, 0) ρ0(X(x, t, 0))

+

∫ t

0

dt′ T (x, t, t′) S(X(x, t, t′), t′)

is the exact solution.


