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a b s t r a c t

A method of solving the radiative transfer equation using Feynman path integrals (FPIs) is discussed. The
FPI approach is a mathematical framework for computing multiple scattering in participating media. Its
numerical behavior is not well known, and techniques are being developed to solve the FPI approach
numerically. A missing numerical technique is detailed and used to calculate beam spread functions
(BSFs), a commonly studied experimental property of many types of media. The calculations are com-
pared against measured BSFs of sea ice. Analysis shows differently-shaped BSFs, and suggests the width
parameter of the calculated BSF's Gaussian fit approaches a value in the limit of the number of path
segments. A projection is attempted, but suggests a larger number of path segments would not increase
the width of the calculated BSF. The trial suggests the approach is numerically stable, but requires further
testing to ensure scientific accuracy.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple scattering is sometimes expressed as a large collections
of paths through participating media. Because there are very few
restrictions on paths radiation can take through the media, the total
path space to explore is quite large. Feynman path integrals (FPI)
applied to radiative transfer [1–4] is a mathematical model for ra-
diation transport through participating media which is general and
suitable for many applications. For instance, Perelman et al. [5–8]
have modeled light transport using path integrals with intended
application in optical tomography, though much of their work uses
the path integral model as theory to compare with experimental or
Monte Carlo results rather than directly evaluating the path integral.
The key difficulties in directly evaluating the path integral in our
approach are the lack of known numerical methods for solving it
and immense amount of computer time which is needed to arrive at
a solution. Recent work [9] had revisited and sped up a numerical
method used for perturbing paths and analyzed its statistical be-
havior, proving repeatability and unbiased Monte Carlo calculation.
Numerical methods for creating initial paths to use as inputs for the
perturbation algorithm were not yet defined, which is a necessary
step for more complex experiments, for example, to validate the
technique against experimental data.

Beam spread functions (BSFs) and point spread functions (PSFs)
are equivalent [10], well-studied optical properties of scattering
media such as sea ice [11] and ocean water [12]. Mertens and
Replogle [13] give thorough definitions of both and their applica-
tion to optics. They are geometrically simple and typically studied
in cases which can be approximated by a uniformly scattering and
infinite media. Multiple scattering effects are apparent in the
higher-angle portions of a BSF or PSF plot, manifesting as a gradual
decrease in the intensity from a single peak at °0 . This makes the
BSF and PSF attractive options for comparison of computational
radiative transfer solutions.

To summarize the scope of work completed in the measure-
ment of both BSFs and PSFs, each has been measured for various
types of media in both laboratory and field settings. This has
yielded some results which computational techniques can use for
validation. Some of the earliest work was by Duntley [12] with
laboratory PSF measurements in highly scattering water tanks.
Voss [14] measured the PSF of the Sargasso Sea water. Schoon-
maker et al. [15] measured the BSF of laboratory-grown sea ice,
and were able to fit a Gaussian model to their data. Maffione et al.
[11] measured the BSF of Alaskan sea ice and attempted a Gaussian
fit but found a Lorentzian form function which fit their data.

Because of the available data on BSF measurement, much of
this article focuses on the comparison of the FPI approachto
measured sea ice BSFs, particularly those measured by Maffione
et al. We use this data because of the many different depth levels
and radii at which it is measured, and the provided models for
Gaussian and Lorentzian functions to describe the data. By using
the same models, we can begin to make comparisons with the
experimental data and determine if the FPI approach is capable of
modeling physical phenomena.
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The rest of this article is as follows. Section 2 provides back-
ground on the FPI approach and its mathematical foundations.
Section 3 presents a recently developed numerical technique to
create “seed paths” for integration over some of the spatial in-
tegrals in the FPI approach. Section 4 presents a comparison of the
BSFs calculated by the FPI approach to those measured by Maf-
fione et al. Finally, Section 5 presents concluding remarks and
future directions.
2. Path integrals for radiative transfer

Using Feynman path integrals for solving radiative transfer was
first introduced by Tessendorf in 1987 [1] who also studied its
numerical behavior in 2009 [3]. This report gives a derivation of
the mathematical model of volume rendering which is derived
from the radiative transfer equation,
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where G is the transport kernel and S is a source function. The
transport kernel gives a proportion of the radiation transported
from the source function at position →x0 and direction n̂0 traveling a

over an arbitrary time variable s and ending at a position →x1 and

direction n̂1. In this article we refer to the parameters of the
transport function as the boundary constraints as they are fixed
when calculating the path integral which defines G. The source
function gives the physical quantity of light emitted from position
→x0 and direction n̂0. For the purposes of the FPI approach, we will
assume s is the arc length of a photon of interest's flight path. This
equation for the radiance at →x1 in direction n̂1 tells us we must
integrate G over all space, over all directions, and over all arc
lengths to compute an answer.

Even if the boundary constraints are fixed, there are several
possible paths that satisfy these constraints. Therefore, calculating
G, the transport kernel, is still a matter to discuss. The FPI ap-
proach says the transport kernel has a representation in the form
of a Feynman path integral. We can define a path as a space curve
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The path integral portion only will accept space curves satisfying
the boundary constraints set by the outermost integrals in Eq. (1).
Therefore, the constraints for the space curve are
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We also define scalar field functions to represent the optical prop-
erties of the media. They are (→)a x , the absorption coefficient; (→)b x ,
the scattering coefficient; and (→) = (→) + (→)c x a x b x , the total extinc-
tion. Though, in this article we consider the case where these are
not spatially varying. We simplify the notation by writing a, b, and c
respectively in this case. The path integral form of G [3] is
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We adopt the notation Ω[ ]d and [ ]dp to represent an integration over

all the β̂ ( )s and ( )sp functions; the delta functions force satisfaction of
Eqs. (3) to (5). The term Z̃ is the phase function of the media, trans-
formed into a Fourier-like form and p is also introduced from this
transformation. This article uses a forward-peaked Gaussian phase
function for Z̃ because of its exact analytic solution and computational
ease, but the general phase function is acceptable for use in the FPI
approach. A Gaussian phase function is not strictly accurate for sci-
entific application, but at this point we are trying to show computa-
tional feasibility for the FPI approach in a plausible test scenario.

Earlier work [9] had focused on the statistical behavior of the
path integral in the transport kernel itself, but offered no methods
for constructing space curves which meet the constraints posed by
the delta functions. In this work we explore the behavior as we
integrate over the path integral itself as well as the spatial and
solid angle distributions of a BSF. We introduce new numerical
methods to accomplish this. Using the new techniques we can
begin to compare against experimentally acquired BSFs.
3. Numerical methods

We develop a strategy for generating space curves matching
constraints posed by the path integral. To calculate the BSF of
spatially uniform media, we can set →x0 and n̂0 to arbitrary con-

stants. We use → =
→

x 00 and ^ = ^n x0 . We choose →x1 by placing a
sphere of radius R centered at →x0 and selecting →x1 and n̂1 using
spherically uniform sampling,
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where η1 is uniform on [ − ]1, 1 and ξ1 is uniform on [ ]0, 1 . This
describes a procedure for choosing boundary constraints for a BSF,
but the FPI approach is general to other geometry as well. Here, s is
a free variable, but it is useful to control its distribution. Therefore

we enforce that s is uniform on the interval ⎡⎣ ⎤⎦
→ − →x x s, max1 0 where

smax is left free.
Next, we are tasked with finding a space curve ( )tr which sa-

tisfies the randomized boundary constraints. More formally, ( )tr is
a space curve defined on ∈ [ ]t 0, 1 having the boundary condi-
tions:
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We impose the additional constraint that there is an arc length
parameterization of the space curve ′( ′)sr and it is defined on
′ ∈ [ ]s s0, . To be discretized properly we must have that
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where Δ =s s M/ , with M being path subdivision count.



Table 1
Table of experiment parameters used to reconstruct Maffione BSF
measurements.

Parameter Value

a 0.004 cm�1

b 0.1 cm�1

R 30 cm
smax 100 cm
μ 0.5
ϵ 0.075
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There are a number of different ways such a curve can be
computed. We find using Bézier curves is an attractive option due
to their ability to control both the position and tangent vector at
the control vertices. The arc length may be varied by placing ad-
ditional control vertices at different positions. We use a form for n-
degree Bézier curves. ( )tB [16, Chapter 10] is defined on ∈ [ ]t 0, 1 ,
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where →pi is one of +n 1 control vertices. We can satisfy the con-
straints by constructing a Bézier curve with the following control
vertices:
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Here, ℓ0 and ℓ1 are both independent uniform random variables,
each distributed over the interval [ ]R0, 0.5 , and ℓ2 will be com-
puted. This properly constrains both the position and tangent
vector at the space curve's endpoints. The multiplication of the
random scalars adds some measure of arc length variation. Fig. 1
offers a diagram showing the relationship between the terms.

One last constraint is to ensure the space curve B has arc length s.
The ℓ2 parameter can enforce this constraint. Choose n̂2 via spherical
uniform sampling. Form a bracketing interval on s by allowing ℓ2 to
be any value in the range [ ℓ ]0, max . Once this bracketing interval is
established, use any root finding mechanism to find a ℓ2 such that
the arc length of B is s. Brent's method is suitable for this step, and
ℓmax can be any sufficiently large static number. Alternatively, ℓmax

could be dynamically computed via a doubling procedure.
The FPI approach relies on a form of discretized Frenet-Serret

curve which is detailed in [3]. We must convert the space curve to
this discretized form to use it. The first parameter is the initial po-
sition, → = ( )x r 00 . Similarly, we must find the initial tangent vector:
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The remainder of the orthonormal frame is the Frenet-Serret frame:
Fig. 1. Diagram of Bézier curve control points. Here, →x0 and →x1 are chosen directly

from the light and sensor geometry and serve as control points. We compute →p1 and
→p3 as a function of these two points. →p2 is chosen randomly by starting at the

midpoint of →x0 and →x1 and tracing a distance ℓ2 out from a spherically uniform

vector n̂2.
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Finally, it is left to define the step size, Δs. We define this with
respect to the number of desired path subdivisions, M, which re-
mains a free parameter:

Δ = ( )s s M/ . 19

We continue to find an arc length parameterization of the space
curve. The arc length parameterization is necessary due to the
path integral formulation requiring constant step sizes Δs. Calcu-
lating arc length parameterizations is not trivial because the arc
length function is not invertible. The arc length function a(t) of our
space curve is defined
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and given our space curve is defined by Eq. 10 it is not invertible
analytically. We have to rely on numerical methods.

Finding arc length parameterizations of Bézier curves and
parametric curves in general is an area of much interest. Many
approaches seek to find approximate solutions for a speed trade-
off [17,18]. Guenter and Parent [19] numerically calculate ( )−a s1 in a
table to find bracketing intervals. The bracketing intervals aid a
Newton solver in computing a more exact solution.

Our solution, which is similar to Guenter and Parent's, follows.
Choose a positive integer k which becomes the size of the inverse
arc length table. Ideally k should be a number much less than M, as
the idea is to reduce the number of inverse arc length calculations
from M down to k. For example, we use =k M/20. Choose a se-
quence of arc lengths to calculate = ×a j s k/j . Form a table of the
matching parameter-space values by solving the inverse arc length
function numerically with Brent's method:
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Brent's method can solve the inverse arc length function by opti-
mizing ( ) − =a t s 0 for t. Once the table is calculated, form a sec-
ond sequence of arc lengths = ×s i s M/i . For each si there exists a
aj and a +aj 1 such that < ≤ +a s aj i j 1. The corresponding curve
parameter can be approximated with linear interpolation. Let

= ( − ) ( − )+q s a a a/i j j j1 :

= + ( − ) ( )+t qt q t1 . 21i j j 1

At this point, our technique differs from Guenter and Parent. They
use the interpolated value to serve as an estimate for a root solver,



Fig. 2. A calculated BSF (a) using the numerical FPI approach, normalized such the peak value is 0.025. The sample pattern shown in (b) is the reason for the increased
standard error of the mean in (a). In (c) we see similar trends as in (a) but especially at the °50 mark there is disagreement in the shape. The calculated BSF does not have the
same gradual falloff of the experimental BSFs. (a) Calculated BSF for =M 200, (b) Sample pattern for (a), (c) Experimental BSFs (Figure 5 from [11].).

Fig. 3. Fit and residuals for M¼200 data set. Visually, the fit appears decent. The residuals break down for higher-value predictions which in this case correspond to smaller
angles. It is possible the model breaks down again due to under sampling in the small angles.

Table 2
Result of the path segment variation experiment. The parameters given in Table 1
are used again in this experiment. Inspection suggests M does have a strong effect
on s.

Path segments (M) Gaussian width (s)

80 10.1
120 14.6
160 22.6
200 22.9
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and find a precise value by root finding over the subinterval. In
practice, root-finding on this subinterval is quite slow for our
purposes. Instead, we correct for the error after the curve is dis-
cretized. We sample the curvature function κ( )t and the torsion
function τ( )t along the sequence ti. This generates the curve
parameters

κ κ τ τ= ( ) = ( )t t .i i i i

These form the last remaining discrete Frenet-Serret parameters.
The remaining portion of the numerical methods is to re-

peatedly perturb these initial curves using an existing perturba-
tion algorithm. The general idea is to choose three path segments

< <i j k at random, modify κj randomly, and allow a root solver to
change the remaining curvature and torsion values such that the
boundary constraints are preserved. The algorithm is detailed in
[9] and [3].

The transport kernel can be evaluated via Monte Carlo in-
tegration. In [9] an expression is given for a single segment of the
discrete Frenet-Serret curve, written ωj for the j-th segment,
which is derived from Eq. (6). We can generate a sequence of paths
using the aforementioned perturbation method and write the path
segment weight as ωi j, for the j-th segment of the i-th path. A
path's weight is the product of its segment weights. Monte Carlo
integration of the transport kernel is then

( ) ∑ ∏ ω→ ^ → ^ =
( )→∞ = =

G s x n x n
N

, , , , lim
1

.
22N

i

N

j

M

i j1 1 0 0
1 1

,

To calculate a beam spread function, each one of these path in-
tegral calculations can be mapped to bins over an angle range in θ.
Each bin then includes path integral calculations corresponding to
that θ over a range of s. We can then perform a similar Monte Carlo
integration procedure to integrate over s for that bin.
4. Results

A BSF is a straightforward scenario to test a new fundamental
technique. A collimated light source, such as a laser, is suspended



Fig. 4. Calculated BSFs for varying path segments M (a) and the projection of the Gaussian fit width s (b). Assuming the step function is correct, the Gaussian fit width would
approach 23.78 in the limit of M. Comparing this projection with the M¼200 data set (c) shows little difference. This can mean the step function is inappropriate, there are
not enough data to obtain a good fit, or calculating a BSF for higher M would yield little change.
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in a scattering media aimed at a radiometer, placed a distance R
apart. The light source is then rotated a positive and negative angle
amount, θ, and the irradiance is measured with respect to θ.

Experimentally measured BSFs include, for instance, ocean
water and sea ice. We compare our calculated BSF against a
measured sea ice BSF [11]. Because many parameters are not
known, they are estimated for the purpose of replication. The
scattering coefficient (b) and absorption coefficient (a) are chosen
based on the relatively scattering nature of sea ice as compared to
its absorption properties. The phase function is not known, so we
assume a forward-peaked Gaussian parameterized by μ and ϵ.
Here, μ is the width of the Gaussian and ϵ is a numerical para-
meter detailed in [3] which aids in the tractability of the weight
calculation. In the limit of ϵ → 0, the calculation approaches the-
ory. We also consider a maximum arc length smax which is ten
scattering lengths. A table of parameters is given in Table 1.

Using these experimental parameters, we calculate a BSF in an
attempt to compare to experimental data (Fig. 2). There are shared
characteristics between the calculated and experimental BSFs: the
peak at °0 and gradual decrease in the relative intensity in the
mid-range angles. The gradual falloff suggests some of the multi-
ple scattering behavior is being captured. The calculated BSF falls
off to about 0 by the °90 mark, whereas experimental results still
measure some amount of intensity at the extremes.

To compare more formally, we attempt to fit models used by
Maffione et al. to the calculated BSF. They report using a Lorentzian
fit for their measurements, but also use a Gaussian as a first effort.
For the calculated BSF, a Gaussian fits fairly well (Fig. 3) whereas
the Lorentzian function did not. This suggests a shape difference in
the calculated and experimental BSFs. A key difference between
the calculated and experimental results is the broadness. A pos-
sible metric for this characteristic is the width parameter s for the
Gaussian fit. We calculated BSFs for varying path segments M with
the hypothesis that this simulation parameter affects the fit
parameter s. The reason for choosing M is its inverse relationship
with Δs. Smaller values of Δs approximate the path integral more
exactly. We choose smaller values ( = { }M 80, 120, 160, 200 ) due to
present floating point precision difficulties extending the techni-
que to higher values of M.

The results of this experiment are presented in Table 2. There is
an increase in the width of the Gaussian as more path segments
are used. The fit width s appears to approach a value in the limit of
M. Step functions offer a way to project this value. The step
function

σ = ( ( + )) ( )A M B M/ 23p p
is a possible fit for p¼4 on our limited data set. See Fig. 4b for the
resulting fit. Projecting the value of s in the limit of M yielded a
value of σ = 23.78. However, plotting such a Gaussian against the
M¼200 data set (Fig. 4c) shows little difference. Drawing con-
clusions from such a small data set is difficult, but we suspect
computing BSFs for higher M will have diminishing returns.
5. Conclusion

We introduce an algorithm for constructing initial paths for use
in the FPI approach to calculating radiative transfer. The new
method is used to calculate numerically beam spread functions. This
represents the most complex experiment conducted to date with
the FPI approach. The calculations are compared to measured BSFs
of sea ice and are found to be narrower. Lorentzian fits for the cal-
culated BSFs were found inadequate whereas a Gaussian function
fits the calculated BSFs nicely, a departure from the measured BSFs
of Maffione et al. We also see disagreement in the large angles,
where our calculated BSFs report intensity close to zero and the
measured BSFs show some intensity in the large angles. This may be
because the phase function we use is a forward-peaked Gaussian
which does not support much backscatter, and this may decrease
intensity in the larger angles. The width of the Gaussian appears to
approach a value as the path segment count increases. A projection
for this value is attempted and suggests diminishing returns for
calculating the BSF for greater numbers of path segments.

Future work using the FPI approach to calculate BSFs could
compare against other BSF data, or continue the trend of calculating
BSFs with increasing numbers of path segments. However, a single
BSF takes the FPI approach about 40 compute-years to calculate and
keep variance under control. This might be remedied by flattening
the sample distribution with respect to the BSF angle (see Fig. 2b) or
to bring the solution to other parallel architectures like GPGPU.
Currently the FPI approach is only limited by the amount of compute
time available, as it is an embarrassingly parallel problem. Other
parameters could be the subject of sensitivity studies, such as
number of path perturbations, the maximum arc length (smax), and
total path count. Improvements and approximation to the numerical
techniques introduced here could be studied. For example, the arc
length parameterization takes a significant portion of time to calcu-
late but is not always accurate – it could be omitted and the error
corrected for by the perturbation step. Standard acceleration tech-
niques for Monte Carlo approaches apply to the numerical FPI ap-
proach, such as importance sampling and the Metropolis algorithm.
We expect their adoption will be an important development.
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The results in this article show numerical plausibility in the
new extensions to the FPI approach. They show that the FPI ap-
proach is ready to be tested with more realistic phase functions,
against known benchmarks, and more experimental data sets. We
continue to know little about the FPI approach's physical accuracy
until this future work is completed, but the Monte Carlo method
shows promise.
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