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CHAPTER

ONE

FIELDS, ALGEBRA, TRANSFORMATIONS

1.1 Basic Definition of Fields

The central objects of volume modeling are fields, which are mathematical functions in 3D space that provide
a value at any point in space. There are five kinds of fields of interest:

scalar field A field that returns a scalar value, i.e. a floating-point value.

vector field A field that returns a vector-value. The vector is more that just a collection of scalar values,
in that it has particular transformation properties under spatial transformations of the field. More
about transformations below.

matrix field A field that returns a matrix value at any point in space. This kind of field also has particular
transformation properties under spatial transformations, as discussed below.

color field A field that returns a color value at any point in space.

signed distance field An implicit function field that represents the distance of any point from the surface
it represents. In these notes the convention is for positive values inside the surface, and negative values
outside the surface. Signed distance fields are different from the others because in some circumstances
they act like scalar fields, and in others they act like vector fields.

A scalar field f(x) has a float value at a point x in three-dimensional space, a vector field f(x) has a 3-
component vector as a value at any point x, a matrix field f(x) has a 3× 3 matrix as its value at x, a color
field f has a tuple of values representing color information. For most of these notes, color is represented
concretely as an rgb-valued triplet at the point x. A signed distance field f has a float value at any point.

For our purposes, fields are defined everywhere is space, and any field we construct must have a value
for any point in space. In most situations, we are interested in a value for the field in only limited regions.
But we require that some value be returned from a field at any point in space as a safety precaution against
unforseen events. In most cases, a field can return 0 or the equivalent outside of the region of interest.
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1.2 Gradients

We also assume that fields are smooth, in the sense of calculus, so that derivatives can be performed. This
is not always true, as in the case of some representations of constructive solid geometry, but we will ignore
this and pretend that in all situations fields are sufficiently smooth for the algorithms we want to execute.
Should be choose to not ignore it, much can be done by introducting distribution-valued fields like Dirac
delta functions.

Given a scalar field f(x), we can immediately construct a vector field and a matrix field from it by taking
one and two gradients of it. Hence we have the gradient vector field g(x) = ∇f(x) and the matrix field
m(x) = ∇g(x) = ∇∇f(x). Both of these gradients arise in volumetric algorithms discussed in these notes.

Computationally gradients are handled in two ways, but represented in a single, unified framework.
Gradients of analytical volumes are computed exactly, by defining the outcome of the gradient operation
along with the definition of the field values. This approach provides a mechanism for analytically handling
the chain rule of calculus and even L’Hopital’s rule. For fields with values represented by gridded data and
an interpolation scheme (see Chapter 4), gradients are evaluated with finite-difference calculation(s) and, if
appropriate, interpolation.

The exceptions to this are matrix fields and color fields. In all of the algorithms discussed in these
notes, a gradient will never be needed for these two fields, and so it is not necessary to build such capability
in them.

1.3 Algebra

Fields can be combined in a variety of ways, which we can think of as something like an algebra. All of these
combinations will come into play in later chapters of these notes. Many of them are obvious, but we want to
make sure you have all of them in mind.

Fields operating with like-fields

Obviously scalar fields can be added, subtracted, multiplied, and divided. Given scalar fields f and g, the
operations f+g, f-g, fg, and f/g make sense in the usual way. This leads to being able to do more advance

math operations like exponentiation ef and trigonometric operations like cos(f). The gradient operation for
these fields is the obvious one, e.g. ∇ cos(F) = − sin(f) ∇f.

There are also operations that came from constructive solid geometry, but which apply more generally
to manipulating fields. We will discuss CSG in detail later (Chapter 2.3). The union operation between two
fields returns the maximum of the two:

(f ∪ g) (x) = max {f(x), g(x)} (1.1)

and the intersection is the minium of the two

(f ∩ g) (x) = min {f(x), g(x)} (1.2)

Also worth mentioning is the cutout operation

(f ∧ g) (x) = min {f(x), −g(x)} (1.3)

These operations are not differentiable, and so violate our assumption that we can take derivatives whenever
we want. To battle this, smooth versions of these operations have been constructed define[19]. Alternatively,
we can introduce the Dirac delta function to create the gradient operation.
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Vector fields combine linearly with each other and scalarfields. Given scalar fields f and g, and vector
fields v and w, the combination

u = f v + g w (1.4)

is also a vector field. This same property holds for matrix and color fields, so

m = f n + g o (1.5)

is a valid matrix field given matrix fields n and o, and

c = f a + g b (1.6)

is a valid color field from color fields a and b.

Linear algebra

As with ordinary vectors, vector fields have an inner product (v ·w) that produces a scalar field and a cross
product (v×w) that produces a vector field.

Vector fields and matrix fields can be multiplied to produce vector fields. The product

u = m · v (1.7)

is a vector field and

w = v ·m (1.8)

is a different vector field. Matrix fields can be multiplied together to produce new matrix fields

m = n · o (1.9)

Matrix fields can also be produced from an outer product of two vector fields:

m = vw (1.10)

Color fields also have a product property. The multiplication of to color fields a and b produces a color
field c = ab that is a component-by-component multiply of the color values.

Composing fields

Most of the operations this far are natural extensions of what numbers, vectors, and matrices do. A new
operation that fields have is spatial composition. Given a vector field X, and an arbitrary field f , which may
be a scalar, vector, matrix, or color field, a new field f ′ can be build from this operation:

f ′(x) = f (X(x)) (1.11)

The shorthand notation for this operation is f ′ = f ◦ X. For gradients, the chain rule is called up. For
scalarfield g, with composition h = g ◦X, the gradient of the composition is

∇h = (∇X) · ((∇g) ◦X) (1.12)

and ∇X is a matrix field, and (∇g) ◦X is the gradient of the pre-composition scalar field g, followed
by composition.

Composition is a fundamental operation for volume modeling. There are many applications of it in a
variety of problems.
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1.4 Transformations

Just as geometry can be transformed via translation, scaling, and rotations, fields have the same operations.
Vector and matrix fields have some additional rules as part of these transformations also. The mathematics
of transformations for fields is not the same as for geometry however. In same aspects, the transformations
appear in a way that is inverse that for geometry.

Translations

Suppose you want to translate a field f(x) by ∆x. For geometry, you would change a vertex at x to the new
position x + ∆x. But for fields, the translation is

f(x) −→ f(x−∆x) (1.13)

This moves spatial features in the field properly by ∆x. One way to intuitively see how this works is to
imagine that the field has some feature that you are aware of occuring near the location x = x∗ in space.
The translated field would have that feature at x −∆x = x∗, which is at the position x = x∗ + ∆x, or in
other words the feature has translated from the position x∗ to x∗ + ∆x.

If we use the operator symbol T (∆x) for translation, then it transforms the field f to a new field h by

h(x) = T (∆x) f(x) = f(x−∆x) (1.14)

Translations apply to all field types in this way.

Scaling

With scaling, the field structure grows or shrinks around a point in space. For example you might expand
the field, leaving it anchored at one particular point. So scaling carries with it both the notion of expan-
sion/contraction, and the notion of a point around which this happens. Imagine again that a field has a
feature occuring at x = x∗. If we expand the field in all directions around the point xt by the factor t, then
the feature will occur at x = (x∗ − xt)t + xt. For a scalar field, is accomplished by transforming the field
in this way

f(x) −→ f

(
(x− xt)

t
+ xt

)
(1.15)

Suppose we define the ”pure” scaling operator S(t) by

S(t) f(x) = f (x/t) (1.16)

then a proper scaling operation is

T (−xt) S(t) T (xt) f(x) = f

(
(x− xt)

t
+ xt

)
(1.17)

We can also scale component-by-component by introducing separate scaling coefficients for each direction.
Vector fields use this scaling behavior, but also have scaling applied to the components of the vector

value. One way to understand the need for this is to look at a particular type of vector field, the gradient of
a scalar field. If we built a vector field via a gradient, i.e.

v(x) = ∇f(x) (1.18)
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then the gradient of the scaled field is

∇f

(
(x− xt)

t
+ xt

)
=

1

t
(∇f)

(
(x− xt)

t
+ xt

)
(1.19)

This means that if we want the gradient of a scalar field to transform under scaling as if it is the gradient of
a scaled scalar field, then the value of the vector field itself needs to be scaled. This can be accomplished by
defining the ”pure” scaling for vector fields as

S(t) v(x) = t v(x/t) (1.20)

so that a complete scaling around a scaling point is

T (−xt) S(t) T (xt) v(x) = t v

(
(x− xt)

t
+ xt

)
(1.21)

Matrix fields extend this behavior with another factor of t:

S(t) m(x) = t2 m(x/t) (1.22)

Color fields do not have a similar relationship between the components of the color and spatial behavior,
so color transforms like a scalar field under scaling:

S(t) a(x) = a(x/t) (1.23)

Signed distance fields transform like scalar fields in all situations except scaling. Since the SDF represents
distance, scaling the structure of the field requires also scaling the value of the field in order to retain its
meaning as distance to SDFs scale like vector fields

S(t) d(x) = t d(x/t) (1.24)

Rotations

The same logic can be used to deduce how rotations are applied. If the field is rotated about the point xr
by the rotation matrix R, the feature at x = x∗ moves to

x = R · (x∗ − xr) + xr (1.25)

so the field dependence on location changes as

f(x) −→ f
(
R−1 · (x− xr) + xr

)
(1.26)

and we want to define the ”pure” rotation operator for scalar fields as

R(R) f(x) = f
(
R−1 · x

)
(1.27)

As with scaling, vector fields also have a component-wise modification due to rotations:

R(R) v(x) = R · v
(
R−1 · x

)
(1.28)

Matrix fields have a double application, but take into account the matrix nature of rotations:

R(R) m(x) = R · v
(
R−1 · x

)
· RT (1.29)

As with scaling transformations, color fields do not have a component-wise impact and act like scalar fields:

R(R) a(x) = a
(
R−1 · x

)
(1.30)
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Rotation matrix

Rotations are generally represented as 3× 3 orthogonal matrices that multiply 3-component vectors. This is
perfectly reasonable, but constructing them can be cumbersome. Here we provide a relatively simple recipe
for constructing them.

A ”pure” rotation (i.e. putting aside the translations to/from the rotation pivot point) is defined by a
rotation axis α̂ and a rotation angle α. The rotation axis is a unit vector that points in the direction that
the rotation pivots around. Suppose a vector v is rotated. Then the rotated vector vr is a constructed from
the old one and the rotation axis vector. This means that the rotation vector can only have this form:

vr = vA + α̂B + v× α̂C (1.31)

with A, B, and C being coefficients that we need to figure out. To help us figure them out, we have three
guiding principles:

1. The length of the rotated vector is the same as the unrotated vector

2. The component of the rotated vector in the direction of rotation is the same as the unrotated vector

3. The angle between the rotated vector perpendicular to the rotation axis, and the unrotated vector
perpendicular to the rotation axis, is α.

The second and third items relate to components of the rotated and unrotated vector along and perpendicular
to the rotation axis. The components along the rotation axis are v · α̂ and vr · α̂. Item 2 says that these
must be the same. Using equation 1.31, this expands explicitly into the condition:

v · α̂ = v · α̂A+B (1.32)

which solves for B as B = v · α̂(1−A).
The component of the rotated and unrotated vectors perpendicular to the rotation axis are

v⊥ = v− (v · α̂)α̂ (1.33)

vr⊥ = v⊥A+ v⊥ × α̂C (1.34)

Item 3 says that the angle between these vectors is the rotation angle α. This means that the inner product
between them is |vr⊥||v⊥| cosα. Taking the inner product:

vr⊥ · v⊥ = |v⊥|2A = |vr⊥||v⊥| cosα (1.35)

which leads to

A =
|vr⊥|
|v⊥|

cosα =
√
A2 + C2 cosα (1.36)

Following the first criterion, and using this result for B, the length squared of the rotated vector is

|vr|2 = |v|2A2 + (v · α̂)2(1−A2) + (v× α̂)2C2 (1.37)

But from the requirement that |vr|2 = |v|2, these terms rearrange to

|v⊥|2 = |v⊥|2(A2 + C2) (1.38)
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which meams that A2 + C2 = 1. Finally, the final result is

A = cosα (1.39)

B = (v · α̂)(1− cosα) (1.40)

C = sinα (1.41)

We want now to make equation 1.31 look like a rotation matrix multiplied by the vector, i.e. we want to
cast it in the form

vr = R · v (1.42)

In doing this, we can see that the first term looks like

l cosα · v (1.43)

where l is the identity matrix. Similary the second term can be cast as

α̂α̂(1− cosα) · v (1.44)

The third term can also be cast as a matrix multiply by noting that the cross product can be expressed using
the Levi-Civita symbol1 εijk as

(v× α̂)i =

3∑
j,k=1

εijk (v)j (α̂)k (1.45)

This can be rearranged by creating three matrices τk, k = 1, 2, 3, defined by (τk)ij = εijk to be

v× α̂ =

(
3∑
k=1

τk (α̂)k

)
· v (1.46)

Assembling all three terms, we end up with

vr =

{
l cosα + α̂α̂(1− cosα) +

3∑
k=1

τk(α̂)k sinα

}
· v (1.47)

which lets us identify the rotation matrix as

R = l cosα + α̂α̂(1− cosα) +

3∑
k=1

τk(α̂)k sinα (1.48)

This rotation matrix can also be written in the form of an exponentiated matrix:

R = exp

{
3∑
k=1

τk(α̂)k α

}
(1.49)

1http://en.wikipedia.org/wiki/Levi-Civita symbol
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Field Translations T (∆x) Scaling S(t) Rotations R(R)

Scalar f T (∆x)f(x) = f(x−∆x) S(t)f(x) = f(x/t) R(R)f(x) = f(R−1 · x)

Vector v T (∆x)v(x) = v(x−∆x) S(t)v(x) = t v(x/t) R(R)v(x) = R · v(R−1 · x)

Matrix m T (∆x)m(x) = m(x−∆x) S(t)m(x) = t2 m(x/t) R(R)m(x) = R ·m(R−1 · x) · RT
Color a T (∆x)a(x) = a(x−∆x) S(t)a(x) = a(x/t) R(R)a(x) = a(R−1 · x)

SDF d T (∆x)d(x) = d(x−∆x) S(t)d(x) = t d(x/t) R(R)d(x) = d(R−1 · x)

Table 1.1: Summary of transformation properties for each field type.

Combined Transformations

Table 1.1 summarizes all of the pure transformation operators and their effect on the various field types.
A full transformation is a combination of a translation followed by a pure transform followed by the in-
verse translation. If multiple pure transforms will be performed with the same translation point, then the
pure transforms can be combined together inside a single pair of transform–inverse transform operations.
Mathematically, a scaling and rotation done about a single point xo can be done together:

T (−xo)R(R)T (xo) T (−xo)S(t)T (xo) = T (−xo)R(R)S(t)T (xo) (1.50)
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CHAPTER

TWO

IMPLICIT FUNCTIONS

2.1 Starters

Implicit functions and implicit surfaces are a rich and extensively studied part of computer graphics, with
an enormous literature (some of them are [15, 1, 7, 3, 10, 2, 12, 4, 13, 5, 14, 6, 19]). There are many
applications in movies, biology, medicine, chemistry, physics, economics, and other fields. Here we introduce
basic concepts, a few interesting and useful implicit functions, and use them throughout the rest of these
notes as tools for precisely crafting many types of volumetric fields. They also act as simple volumes for
helping us set up volume rendering later.

Implicit functions are scalar fields in 3D space that take on both positive and negative values. If f(x)
is a scalar field, it implicitly defines a surface by the equation f(x) = 0. Of course, the value 0 is a choice
we make by convention. We could have set the function to any fixed value. But this corresponds to simply
redefining the function. Our convention is also that the function is positive on the inside of this surface, and
negative outside of the surface.

Implicit functions are useful for more than just defining surfaces. They also can be used as control
functions for building volumetric structures.

The simplest implicit function is an equation for a sphere of radius r centered at the origin:

f(x) = r − |x| (2.1)

The implicit equation f(x) = 0 is satisfied by the collection of points on the surface of a sphere of radius r.
This function is not a unique implicit function for a sphere. These functions also implicitly define the sphere
surface:

r2 − |x|2 (2.2)

1 − |x|
n

rn
, n > 0 (2.3)

All of them share the property that outside of the surface of the sphere the function is less than zero, and
inside the surface the function value is positive. The first version is also an example of a signed distance
function, because its absolute value is the actual distance of x from the surface of the sphere, while being
positive inside and negative outside.
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Figure 2.1: Volume render of the implicit function of a sphere.

For visualization purposes, we can use implicit functions to create a density field (see section 2.4) and
render it volumetrically (chapter 3). For the implicit function of a sphere, equation 2.1, the result is in
figure 2.1. The visualization comes from generating polygonal representations of the implicit surface using
the methods discussed in chapter 5.

2.2 A library of implicit functions

A few handy implicit functions are listed in table 2.1. The accompanying images were generated according
to the procedures in sections 2.4 and 3.

Function Equation Rendering Visualization

Sphere r − |x|
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Ellipse

1− Z2

r2
major

− |x⊥|2

r2
minor

Z = x · n
x⊥ = x− Zn

Torus
4R2

major|x⊥|2 −
{
|x|2 +R2

major −R
2
minor

}2

x⊥ = x− (x · n)n

Box R2q − x2q − y2q − z2q
Plane −(x− x0) · n

Cone
x · n x · n < 0
h− x · n x · n > h
x · n− |x| cos(θmax) 0 < x · n < h

Cylinder R− |x− (x · n)n|
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Icosahedron

cos(x+ Ty) + cos(x− Ty)+
cos(y + Tz) + cos(y − Tz)+ |x| ≤ 1.8π
cos(z − Tx) + cos(z + Tx)− 2
−1.8π |x| > 1.8π

Steiner Patch −(x2y2 + x2z2 + y2z2 − xyz)

Table 2.1: Equations for a few useful implicit functions

2.3 Constructive solid geometry (CSG)

Constructive solid geometry is a set of operations that allow us to combine multiple implicit surfaces into a
new one. These operations are useful for volume modeling because the shaped implicit functions give more
precise control of volumetric calculations.

CSG operations

There are three primary operations in CSG: union, intersection, and cutout. Unions are literally just the
union of the two functions, and is built from looking at the maximum value. The union of two implicit
functions f and g is denoted f ∪ g, defined as the maximum value of the two functions:

(f ∪ g)(x) = max{f(x), g(x)} (2.4)

Figure 2.2 shows the union of two implicit spheres.
The intersection of two implicit surfaces is the minimum of the values of their values:

(f ∩ g)(x) = min{f(x), g(x)} (2.5)

and is illustrated in figure 2.3 for the intersection of two spheres.
The cutout operation

(f ∧ g)(x) = min{f(x),−g(x)} (2.6)

removes the second implicit surface from the first one, effectively cutting the shape of the second implicit
surface from the first, as illustrated in figure 2.4.
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Figure 2.2: CSG union of two spheres.

Figure 2.3: CSG intersection of two spheres.
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Figure 2.4: CSG cutout of one sphere from another.

Blends and other operations

Other operations of interest: masks, clamps, math, and blending
The mask is a form of volumetric switch. It takes an implicit function and returns 1 if the function is

positive, and zero if it is negative or zero:

mask(f) =

{
1 f(x) > 0
0 f(x) ≤ 0

(2.7)

This is useful as a switch in the following scalar field:

r = h mask(f) + g (1−mask(f)) (2.8)

This scalar field has the value of the scalar field h inside the implicit surface f, and the value of the scalar
field g outside of f.

A clamp limits the range of values of a scalar field:

clamp(f, f0, f1) =

 f(x) f0 ≤ f(x) ≤ f1

f0 f(x) < f0

f1 f(x) > f1

(2.9)

Any traditional math function can be computed as a scalar field. For example, exponentiation of a scalar
field:

exp(f)(x) = exp (f(x)) (2.10)

or trigonometric functions

cos(f)(x) = cos (f(x)) (2.11)

There are a variety of methods to blend implicit functions. Blends are similar to CSG operations, but are
smoother. One of the common ones is the Blinn Blend of two implicit functions f and g into a blended third
implicit function h as

h = exp(f) + exp(g) − β (2.12)
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Figure 2.5: An illustration of blending of two implicit functions. Left: A torus and box, unioned together.
Right: The Blinn blend of the torus and box.

The constant β defines the zero point of the implicit function. Figure 2.5 show two implicit shapes, a box and
a torus, along with a blend of the two. Two other controls are possible by scaling the two implicit functions
by factors sf and sg,

h = exp(f/sf ) + exp(g/sg) − β (2.13)

The three constants sf , sg, and β can significantly change the shape of the implicit function. Small values of
sf and/or sg cause the corresponding exponentials to rapidly switch on and off. The factor β controls how
broad the implicit shape is.

The Blinn Blend of two implicit functions can be generalized to blending N implicit functions fi, i =
1, . . . , N as

h =

N∑
i=1

exp(fi/si) − β (2.14)

There are other types of blending operations as well, each with advantages and disadvantages. The
literature is very large.

Another operation that can be useful is adding or subtracting a constant value to an implicit function.
Adding a positive amount to an implicit function increases the volume in the positive region. Subtracting
value decreases the volume of the positive region. So a simple way of making an implicit shape expand/shrink
is to add/subtract a value to the function. A simple application of this is to generate a shell, i.e. a hollowed
out implicit function. This is done by cutting out a smaller version of an implicit function from a larger one.
So if we want a shell of thickness h around an implicit shape f, then the shell is

shell(f) =

(
f +

h

2

)
∧
(

f− h

2

)
(2.15)

Figure 2.6 shows a cut away of a shelled sphere.
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Figure 2.6: A shell sphere, cut away to show the thickness of the shell.

2.4 Using implicit functions as density in volume rendering

Implicit functions are volume rendered for two reasons. (1) Volume rendering is a way of visualizing the
function by treating the negative region as invisible and the positive region as a smoke cloud. (2) Implicit
functions serve in many roles as controls for trimming or extending other volumes that are rendered. So
it is worthwhile to have a simple method of volume rendering any implicit function. Volume rendering is
discussed in chapter 3. Here we just discuss a couple of simple procedures for making implicit functions
suitable for volume rendering.

Volume rendering requires a density field, essentially a scalar field that is zero or positive everywhere.
Negative values are a no-no. The negative region of an implicit function should be interpreted as transparent,
which effectively means we want the density to be zero in the negative region. So one very simple definition
of density is the mask function of an implicit function. Density is typically denoted by the symbol ρ, so the
density field would be

ρ(x) = mask(f)(x) (2.16)

and the density is zero everywhere outside of the implicit surface, and 1 inside the implicit surface.
The mask function is a hard step - density is either 0 or 1. This can be very difficult to render without

artifacts because the ray march in volume rendering can have aliasing artifacts in such a rapid change. An
alternative approach is to use the clamp function, along with scaling the implicit function:

ρ(x) = ramp(f/sf , 0, 1)(x) (2.17)

As with the mask, the density is zero outside of the implicit surface, and has a peak value of 1. But from
the surface inward the value of the density ramps from 0 at the surface to 1 in the interior. The ramp makes
the edge of the density softer and easier to volume render without artifacts.
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CHAPTER

THREE

VOLUME RENDERING

3.1 Rendering Equation

The algorithm for ray marching in volume rendering is essentially just the numerical approximation of the
rendering equation for the amount of light L(xC ,nP ) received by a camera located at position xC , at the
pixel that is looking outward in the direction nP . The rendering equation accumulates light emitted by the
volume along the line of sight of the pixel. The accumulation is weighted by the volumetric attenuation of
the light between the volume point and the camera, and by the scattering phase function which scatters
light from the light source into all directions. The rendering equation in this context is a single-scatter
approximation of the fuller theory of radiative transfer:

L(xC ,nP ) =

∫ ∞
0

ds cT (x(s)) κ ρ(x(s)) exp

{
−
∫ s

0

ds′ κ ρ(x(s′))

}
(3.1)

The density ρ(x) is a material property of the volume, representing the mass per unit volume present at any
point in space. Note that anywhere that the density is zero has no contribution to the light seen by the
camera. The ray path x(s) is a straight line path originating at the camera and moving outward along the
pixel direction to points in space a distance s from the camera.

x(s) = xC + s nP (3.2)

The total color is a combination of the color emission directly from the volumetric material, and the color
from scattering of external light sources by the material.

cT (x(s)) = cE(x(s)) + cS(x(s)) cI(x(s)) (3.3)

Both cE and cS are material color properties of the volume, and are inputs to the rendering task. The
illumination factor CI is the amount of light from any light sources that arrives at the point x(s) and
multiplies against the color of the material. For a single point-light at position xL, the illumination is the
color of the light times the attenuation of the light through the volume, multiplied by the phase function for
the relative distribution of light into the camera direction

cI(x) = cL TL(x) P (n · nL) (3.4)
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with the light transmissivity being

TL(x) = exp

{
−
∫ D

0

ds′κ ρ(x + s′nL)

}
(3.5)

where is the distance from the volume position x and the position of the light: D = |x− xL|, and nL is the
unit vector from the volume position to the light position:

nL =
xL − x

|xL − x|
(3.6)

For N light sources, this expression generalizes to a sum over all of the lights:

cI(x) =

N∑
i=1

cLi T
L
i (x) P (n · nLi ) (3.7)

The phase function can be any of a variety of shapes, depending on the material properties of the volume.
One common choice is to ignore it as an additional degree of freedom, and simply use P (n ·nL) = 1. Another
choice that introduces only a single control parameter g is the Henyey-Greenstein phase function

PHG(n · nL) =
1

4π

1− g2

(1 + g2 − 2gn · nL)3/2
(3.8)

This function is plotted in figure 3.1 for several values of g. As g → 1, the phase function becomes sharply
peaked in the forward direction,i.e. n · nL ∼ 1. As g → −1, the strong peak is in the backward direction,
n ·nL ∼ −1. Phase functions have been measured and calculated for many natural materials, such as clouds,
water, and tissues [9]. A model phase function called the Fournier-Forand phase function fits many natural
materials well:

PFF (Θ) =
1

4π(1− δ)2δν

[
ν(1− δ)− (1− δν) + (δ(1− δν)− ν(1− δ)) / sin2

(
Θ

2

)]
+

1− δν180

16π(δ180 − 1)δν180

{
3 cos2 Θ − 1

}
(3.9)

δ =
4

3(n− 1)2
sin2

(
Θ

2

)
(3.10)

δ180 =
4

3(n− 1)2
(3.11)

ν =
3− µ

2
(3.12)

and ν, µ, and n are physical parameters. Figure 3.2 illustrates this phase function for several values of µ,
along with plots of Petzold’s phase function data for 3 ocean water conditions [8].

Finally, recognizing that the volumetric material occupies a finite volume of space, it is not necessary to
integrate along a path from the camera to infinity. There is a point s0 ≥ 0 where the density starts, and a
maximum distance smax past which the density is zero. So the render equation can be reduced to evaluating
the integral just within those bounds:

L(xC ,nP ) =

∫ smax

s0

ds cT (x(s)) κ ρ(x(s)) exp

{
−
∫ s

0

ds′ κ ρ(x(s′))

}
(3.13)
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Figure 3.1: The Henyey Greenstein phase function for g = 0.99, 05,−0.5,−0.99.
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3.2 Ray Marching

Discretizing the rendering equation 3.13 leads to the ray march algorithm used in production volume
rendering. The rendering equation 3.13 is decomposed into a set M of small steps of length ∆s, with
M∆s = smax − s0. Without approximation, the rendering equation becomes

L(xC ,nP ) =

M−1∑
j=0

Tj

∫ ∆s

0

ds cT (xj + snP ) κ ρ(xj + snP )

× exp

{
−
∫ s

0

ds′ κ ρ(xj + s′nP )

}
where

xj = xC + j∆snP (3.14)

and the transmissivity factor Tj is

Tj =

j−1∏
k=0

∆Tk (3.15)

and

∆Tk = exp

{
−
∫ ∆s

0

ds κ ρ(xk + snP )

}
(3.16)

Note that we can construct these quantities iteratively through the relationships

xj = xj−1 + ∆snP (3.17)

Tj = Tj−1 ∆Tj−1 (3.18)

with the initial conditions

x0 = xC (3.19)

T0 = 1 (3.20)

which define the ray march process.
One of the first graphics papers on this problem is by Kajiya [18]. In that paper an approximation for

optically thin density is applied, i.e. it is assumed that the density across a short path segment is relatively
small. In these notes we do not make that assumption. In fact, only one significant assumption is made here,
namely that the color field is constant across the length of a short path segment. We do not assume the
optically thin approximation that Kajiya chose. This leads to a simple but significant improvement to the
algorithm that solves difficulties in how the edges of clouds/smoke/whatever are handled in compositing.

The discretization step takes the form of choosing a march step size ∆s that is sufficiently small that
we can assume that the color cT is constant within the length of the step ∆s. With that single choice, the
rendering equation reduces to

L(xC ,nP ) =

M−1∑
j=0

cT (xj) Tj (1−∆Tj) (3.21)
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This sum also can be handled via an iterative update of L. Combined with the iterations for xj and Tj the
complete iteration is

xj = xj−1 + ∆snP (3.22)

L + = cT (xj) Tj (1−∆Tj) (3.23)

Tj+1 = Tj ∆Tj (3.24)

Comparing to the optically-thin approach chosen by Kajiya, this algorithm is identical to that one except
for the factor (1 − ∆Tj), which does not appear in Kajiya’s treatment. However, if we apply an optically
thin approximation, namely that ∆sκρ � 1, then our factor reduces in the limit to just ∆sρ(xj)κ which
is the factor that appears in Kajiya’s approach. So this ray march algorithm is an extension of Kajiya’s
which removes the optically-thin assumption. In practical use in production, it also has the benefit that it is
easier to composite clouds rendered with this approach, because the edges of the clouds fade in opacity more
correctly than the optically-thin approximation does.

The one item left to work out is the values of ∆Tj . This depends on how the density varies along the
short path segment. The simplest approximation is to assume that the density is constant along the path.
In that case

∆Tj = exp(−κ ρ(xj) ∆s) (3.25)

Another possibility is that the density varies linearly along the short path segment. Supose the density varies
linearly from ρ0(xj) at the beginning of the path and ρ1(xj) at the end of the segment, then the result is
similar to the constant case, but with the constant density replaced by the average density along the path.

∆Tj = exp(−κ (ρ0(xj) + ρ1(xj)) ∆s/2) (3.26)

In more general situations with the density having a complex behavior along the short path segment, we can
take inspiration from the linear variation case. We can evaluate an average density 〈ρ〉(xj) along the path
segment, and arrive at

∆Tj = exp(−κ 〈ρ〉(xj) ∆s) (3.27)

The average density can be evaluated, for example, by sampling the density at random positions along the
path, i.e.

〈ρ〉(xj) =
1

Ns

Ns∑
i=1

ρ(xj + rj∆snP ) (3.28)

where the Ns numbers rj are random numbers between 0 and 1.
If the color cannot be assumed to be constant in the interval ∆s, then one approach to this is to subdivide

the interval further. Here again the random sampling idea can be brought to bear. Suppose we decide to
subdivide into Ns subsegments, within each we can assume that the color and density are constant. The
procedure can be as follows

• generate Ns − 1 random numbers rj and order them so that r1 < r2 < r3 < . . . < rNs−1. For this
notation, we can define r0 = 0.
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• Accumulate through the subintervals j = 1, . . . , Ns − 1 exacly as for the primary intervals:

x + = rj ∆s nP

∆T = exp {−(rj − rj−1) ∆s ρ(x) κ}
L + = c(x) T (1−∆T )

T ∗ = ∆T

3.3 Deep Shadow Maps

When lights are used in the volume render, an additional ray march is required for each light to compute
the transmissivity TL (equation 3.5) between each light and the points x on the primary ray march path.
Computing these “secondary” ray marches at each point of the primary drastically slows the rendering
process. However, a 3D volumetric map called a Deep Shadow Map (DSM) serves to reduce this additional
computational effort substantially. DSMs have additional benefits: they are generated prior to the primary
ray march, and as long as the lights and volume do not change in an animation, they do not have to be
recalculated; changing the optical properties of the volume do not require changes to the DSMs.

Storing a DSM in a grid requires that values of the DSM off grid points must be obtained through an
interpolation algorithm. The quantity TL is bounded between 0 and 1, and so is not an ideal candidate for
storage in a grid because many interpolation schemes can produce values outside of that range, leading to
visually odd behavior. A better choice for the DSM grid is the integrated density, i.e.

DSM(x) =

∫ D

0

ds′ ρ
(
x + s′nL

)
(3.29)

This quantity has a minimum of 0 but is unbounded from above, reducing the visual oddity of interpolation
errors. The transmissivity is then

TL(x) = exp (−κ DSM(x)) (3.30)

3.4 Camera Model

These equations for ray marching drive the specification for a pin-hole camera model in a volume rendering
system. A camera C contains the following data:

1. A position in space, xC .

2. A unit vector for the view direction along the center of the image, nC .

3. A horizontal field of view, fC , in degrees

4. An aspect ratio, aC , consistng of the horizontal length divided by the vertical length of the image.
Square images has aspect ratio of 1. An HD image has aspect ratio 16/9.

5. Near and far distances dnear and dfar, specifying the closest and farthest points of ray marching volume
sampling.

6. A 3D unit vector vC defining the “up” direction of the image plane. This vector is perpendicular to
the view direction nC .
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7. A 3D unit vector uC defining the “horizontal” direction of the image plane. This vector is defined by
uC = vC × nC .

The basic model that maps points x in 3D space to image plane locations q is

q =
x− xC

nC · (x− xC)
− nC (3.31)

This model assumes that the point in space is in front of the camera, i.e. nC · (x − xC) > 0. Note that
by construction the vector q is perpendicular to the view direction nC and is dimensionless. We can create
horizontal and vertical components of the image plane location by using the horizontal and up directions
defined for the camera:

u = q · uC (3.32)

v = q · vC

The horizontal field of view, fC , and the aspect ratio, aC of the image plane restrict the values of u, v that
lie on the image plane. In particular, for the horizontal coordinate u to be in the field of view, we must have

− tan(fC/2) ≤ u ≤ tan(fC/2) (3.33)

and for the vertical coordinate a similar expression after the aspect ratio is folded in:

− tan(fC/2)

aC
≤ v ≤ tan(fC/2)

aC
(3.34)

For ray marching, the inverse mapping is needed, i.e. for a given point on the image plane, a direction
vector nP is needed. Suppose points on the image plane are given in a “normalized” coordinate fashion, i.e.
by pairs (x, y), with 0 ≤ x ≤ 1 being the horizontal location and 0 ≤ y ≤ 1 being the vertical direction. The
u, v values are

u = (2x− 1) tan(fC/2) (3.35)

v = (2y − 1)
tan(fC/2)

aC

From these values the vector q is built as

q = u u + v v (3.36)

Note that from equation 3.31 the vector q + nC is parallel the vector x− xC for any 3D point that maps to
the location u, v. So the direction vector we seek is just the normalization of this one:

nP =
q + nC
|q + nC |

(3.37)

3.5 Accelerating Ray Marching with Axis-Aligned Bounding Boxes

Many times, the spatial distribution of density in the volume has regions of zero density which do not
contribute color or transmissivity loss. Ray marching through these regions uses computational resources
without contributing interesting information to the render. Like ray tracing, acceleration data-structures and
methods can be applied to (1) identify regions of zero density, and (2) skip over those regions quickly during
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the march. Like ray tracing, there are many instances where this acceleration can speed up a volume render
by many orders of magnitude. In this section we introduce the Axis-Aligned Bounding Box (AABB) that
is familiar from ray tracing, and use the AABB, sometimes along with Kd-trees, to build the acceleration
procedure.

In two dimensions, an AABB is a rectangle with edges along the primary axes. The bounds of the
rectangle can be specified in terms of a lower left corner (LLC) and an upper right corner (URC). In 3D, the
AABB is a rectangular box with faces along the primary axes, and again is described by a LLC and a URC.
If the LLC and URC are

xLLC = (xLLC , yLLC , zLLC)

xURC = (xURC , yURC , zURC)

(3.38)

the eight vertices of the AABB are

(xLLC , yLLC , zLLC)

(xURC , yLLC , zLLC)

(xLLC , yURC , zLLC)

(xLLC , yLLC , zURC)

(xURC , yURC , zLLC)

(xURC , yLLC , zURC)

(xLLC , yURC , zURC)

(xURC , yURC , zURC)

The key aspect of AABBs is that the algorithm for ray intersection tests with them is extremely fast and
efficient [24]. The intersection process has a computational signature pseudo-code like

bool intersect( AABB, ray, tmin, tmax )

If there is no intersection of the ray with the AABB, this method returns false and no ray march is needed.
If there is an intersection, it returns true and the positive values of tmin and tmax are the distances from
the ray to the closest and furthest intersections. If the ray begins inside the AABB, then tmin is zero. The
ray march can skip over the intervening empty space, begin marching at tmin and stop at tmax. This makes
it effective to use them to designate the most important regions to ray march, just as in ray tracing AABBs
identify the regions of space that have objects to trace.

Suppose the volume is composed of two volumetric objects, with intersection distances (tmin0, tmax0)
and (tmin1, tmax1). We can designate object 0 as the closer one, i.e. tmin0 < tmin1. There are two possible
situations: the AABBs are separated, or they overlap (just touching on a face is overlap in this discussion).
We are trying to establish a (tmin, tmax) pair that will ray march through a contiguous portion of volume
that does not have gaps between AABBs. If the two AABBs do not overlap, then tmin1 > tmax0, and we
should set our pair to (tmin, tmax) = (tmin0, tmax0). This ray march will terminate on the far side of object
0, so we will want to continue ray marching by advancing the ray to the position of tmin1 and continue from
there through tmax1.

If tmin1 ≤ tmax0 the two volumes overlap, and the ray march pair should include both AABBs, i.e. the
pair should be (tmin, tmax) = (tmin0, tmax1).

31



Now suppose we have a generalization of the situation. The volume is composed of N volume elements
combined in some way, and for each one we have a AABB, AABBi, i = 0, . . . , N − 1. We do not have any
information about relative positioning other than the list of AABBs. The ray march along a single ray will
look like a sequence of segments, each segment built from a subset of volume elements that overlap. Building
this sequence requires only building the closest segment for the ray, following by iterating this for rays that
begin where the previous segment left off. This algorithm is illustrated in Algorithm 1. For two volume

Algorithm 1 Raymarch through many segments.

procedure IterateRayMarch({AABBi}, Ray)
status← true
while status do

(status, tmin, tmax)← FindClosestSegment({AABBi}, Ray)
if status then

RayMarchAlongSegment(Ray, tmin, tmax)
Ray ← AdvanceRayTo(tmax)

end if
end while

end procedure

elements, our previous discussion gave us the FindClosestSegment() algorithm. For many unordered volume
elements, this can be generalized into an iterative comparison shown in Algorithm 2.

Algorithm 2 Finding the closest segment.

procedure FindClosestSegment({AABBi}, Ray)
(status, tmin, tmax)← intersect( AABB0, Ray )
for all aabb in {AABBi} do

(stat, t0, t1)← intersect( aabb, Ray )
if stat then

if not status then
(status, tmin, tmax)← (stat, t0, t1)

else if t0 < tmin then
temp← tmin

tmin← t0

if temp > t1 then
tmax← t1

end if
else if t0 ≤ tmax then

tmax← t1

end if
end if

end for
return {status, tmin, tmax}

end procedure

AABBs used via Algorithms 1 and 2 can speed up volume rendering substantially. When the number of
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AABBs grows to a large number (hundreds or thousands), the number of intersection evaluations can grow
to the point where their cost becomes larger than the benefit from reduced ray march stepping. In that case,
we can restore efficiency by adding a traditional acceleration structure such at a Kd-tree or BVH to quickly
reduce the number of intersection calculations to a reasonable number.

3.6 Common Rendering Artifacts

3.7 Multiple Scattering

Monte Carlo Path Tracing and Tracking

Faux Lights

Feynman Path Integral

Feynman Path Integral Formulation for Radiative Transfer

Perturbation Expansion

Monte Carlo Path Generation in the Frenet-Serret Framework

Steepest Descents Approximation of the Feynman Path Integral

Solution for Faux Lights

3.8 Blackbody Emission

3.9 Curved Ray Marching
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CHAPTER

FOUR

3D GRIDS

Gridded values of floats, vectors, and colors come into play for some volumetric algorithms. There are two
reasons for this:

1. Some algorithms for constructing volumetric data depend on a grid structure. Examples are noise
stamping and wisps.

2. For speed and efficiency, sampling procedural volumes to grids can be a good approach. In some
situations, gridded values are problematic, but there are also some where the grid is not a problem and
the speed benefits are a net win despite the higher memory usage.

For volume modeling and rendering, there are several variations of 3D grids that are useful, characterized
by spatial structure and data structure. For spatial structure, rectangular grids are the simplest, and widely
used because they are simple to write code for, and data read/write access is fast and simple. Frustum
shaped grids are also very useful because they lay out grid elements in a pattern that is convenient for
camera sampling. There are advantages and disadvantages to both, some of which are listed in table 4.1.

For the data structure, two arrangements are widely used. Full grids allocate memory to the grid in
a contiguous block for all of the grid points during intialization, so even “empty” points take up memory.
In contrast, Sparse grids allocate memory in one of several strategies that minimize the memory taken up
by the “empty” grid points. In practice, block-partitioned schemes have proven to have a good trade-off
between memory minimization, access speed, and coding complexity, and are simple enough that they can
be implemented on GPUs[16].

Rectangular Grid FrustumGrid
Pros Cons Pros Cons
Simple data structure fixed resolution Simple data structure Tied closely to camera
Fast data access unnatural shape Fast data access variable resolution
Multipurpose holds only visible density poor for animations
Flexible location misses off-camera shadow

Table 4.1: Lists of pros and cons for rectangular and frustum grids.
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In these notes we focus on 3D rectangular grids only. Frustum grids can be built from rectangular grids
using a mapping functionality layered into the access logic.

4.1 Full grids

Full rectangular grids are very simple. The grid points are laid out in a regular rectangle with a fixed
distance between each point. Each grid point is is a corner of a “cell” of dimensions (∆x,∆y,∆z). You can
also choose to lay out the grid so that the grid points are centered inside each cell, or even at some random
point inside a cell. The key point is that there is a collection of cells, and the grid point is some convenient
reference location for each cell. The grid points correspond to an indexing scheme i, j, k, where 0 ≤ i < Nx,
0 ≤ j < Ny, 0 ≤ k < Nz, where Nx, Ny, Nz are the number of grid points in each direction, and the location
of each grid point is

xijk = xllc + ( i∆x, j∆y, k∆z ) (4.1)

and xllc is the “lower-left corner” of the grid, i.e. the grid point with the lowest numeric values of all three
coordinates.

Data values are stored at the grid points. We denote the gridded value at grid point ijk by gijk. These
values may be scalar, vector, color, matrix, or possibly something else. A common usage will be to sample the
value of a field at the grid points. The grid of values can be treated as a field also, but means of interpolation.
For a point x within the bounds of the grid, a linearly interpolated value is

g(x) = gijk (1− wi)(1− wj)(1− wk)

+ gi+1jk wi(1− wj)(1− wk)

+ gij+1k (1− wi)wj(1− wk)

+ gijk+1 (1− wi)(1− wj)wk
+ gi+1j+1k wiwj(1− wk)

+ gi+1jk+1 wi)(1− wj)wk
+ gij+1k+1 (1− wi)wjwk
+ gi+1j+1k+1 wiwjwk

where the particular ijk values are the “nearest neighbor” grid point

( i, j, k ) = floor

(
x− xllc

∆x
,
y − yllc

∆y
,
z − zllc

∆z

)
(4.2)

Outside of the volume of the grid, it is necessary to specify a value that should be returned. This is
determined by the meaning of the particular data and the intended application. When used as a density
field, it is usually appropriate to set the value outside of the grid to 0.

There is a significant downside to full grids. Holding a full grid in cpu memory limits the possible size of
the grid. In practice, full grids much larger than approximately 20003 are impractical even on big machines.
If multiple grids of data are needed for a task, the size of each is correspondingly smaller. But applications
at film resolution frequently require grids that are on the order of 50, 0003 size. This is because the grid must
contain more structure than is directly viewed by a camera, either because the camera animates or because
the out-of-view material contributes to lighting of the material in the camera view.
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Fortunately, there is a way out. Practical applications of very large grids also generally have content in
the grid that has a lot of “empty” space, i.e. regions where the density is 0 or some default value. This opens
up the feasibility of using lossless compression schemes to hold the data in cpu memory. The method of
Sparse Grids using block-partitioning has proven very useful for the applications encountered so far in VFX.

4.2 Sparse Grids

The major problem with full grids is that they consume a great deal of memory. Modest-resolution grids can
have 2K×2K×2K voxels, and even on machines with sufficient memory for that, the growth curve memory
for grids is steep. Two important observations about gridded volumetric data have driven grid technology
to make them flexible and useable:

1. Gridded data needs to be very fine resolution to capture many kinds of interesting detail, finer in fact
than can be achieved in core memory presently.

2. For most applications, there is a substantial amount of “wasted space”, i.e. regions of the volume where
there is no useful information. This waste can have two forms (a) Density fields have a lot of empty
space where the density is zero; (b) signed distance functions have useful information in a narrow-band
around the surface, but distance information far from the surface has little value.

Because of these two observations, it is clear that there is a lot of benefit from creating sparse grids that
only allocate core memory to voxels that have useful information. Multiple storage and access schemes are
possible. The honors thesis [16], reproduced in appendix B, examined several of them and their relative
performance properties. Of the ones they examined, the block-partition method was the most useful for
storing density information, both because it can be implemented in a hierarchical fashion to allow extremely
large grids, and because it can be implemented both in C/C++ and in OpenCL/CUDA with compatible
data structures - allowing the option of moving gridded data between CPU and GPU systems.

A complementary option is to use out-of-core storage, moving data between RAM and disk as needed.
Here again sparse storage schemes are essential so that resources are not wasted moving around useless data.

An open source sparse storage system is contained in the OpenVDB project[11]. This project includes
many efficient and useful algorithms for gridded data.

A secondary value of sparse grid schemes is that they provide a convenient and efficient method of
assembling axis-aligned bounding boxes for fast ray traversal in volume rendering, allowing the ray march to
skip empty regions of the volume and reduce render time sometimes by several orders of magnitude.

4.3 Frustum-Shaped Grids

A very useful variation on rectangular grids are grids shaped like view frustums. The shape is achieved by
distorting the shapes of voxel cells from rectangular boxes. Imaging a box that is distorted into the shape
of a frustum. The cells are generated inside the distored box by slicing along two planes that line up with
image plane pixels, and one slice plane perpendicular to the view direction of the frustum. Each voxel cell
in a frustum has a different shape and/or volume from any other voxel cell. If such a volume is used and the
frustum is identical to the camera frustum, two advantages are realized: (1) volume data is stored in the grid
only in regions that are visible to the camera, so no spaced is used storing out-of-view volumes; (2) voxel
cells near the camera have smaller volume and higher spatial detail precisely in the region where the camera
can most see that detail. Figure 4.1 illustrates these benefits. Using a camera-locked frustrum grid, this
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Figure 4.1: A frame from the DPA MFA Thesis project 3D Fractal Flame Wisps by Yujie Shu [22]. Note the
extremely fine distribution of particles from the wisp-like algorithms employed. The wisp data was stored in
a frustum shaped volume matching the camera frustum.

scene is rendered with a 2000x2000x2000 grid. Using rectangular grids would have required sizes in excess
of 5000x5000x5000.

However, there are potential downsides to using a frustum grid locked to the camera: (1) volume content
that is time consuming to generate has to be regenerated each time the camera and frustum moves; (2)
volume material outside the camera fov is not represented, so shadows from off-camera volumes will not be
properly built.

A frustum grid is actually just a rectangular grid paired with a camera that provides the frustum data,
and a frustum mapping function that maps points in space to locations in the grid. OpenVDB provides
functionality for this. Here we describe a simple way to accomplish it.

A camera C as defined in section 3.4 is a convenient of specifying the parameters needed for a frustum
grid mapping. What is needed is a 1-1 mapping between points in 3D space and locations in the frustum
space. The frustum grid is oriented so that its x and y directions line up the the image plane of the camera,
and the grid z direction corresponds to distance out from the near distance dnear. Assume that the number
of cells in each direction is Nx×Ny×Nz. A point x maps to camera-plane positions via the two step process
of constructing q and u, v from equations 3.31 and 3.32, then

x =
1

2

(
u

tan(fC/2)
+ 1

)
(4.3)
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y =
1

2

(
v aC

tan(fC/2)
+ 1

)
The depth value comes from the distance, formalized by the near and far values:

z =
|x− xC | − dnear
dfar − dnear

(4.4)

Within the frustum volume, x, y, z all have value ranges of 0 to 1, and convert to grid index values by

i = x Nx (4.5)

j = y Ny

k = z Nz

Going the other way, starting with index values i, j, k, the corresponding position in 3D space comes from
the steps:

u = (2(i/Nx)− 1) tan(fC/2) (4.6)

v = (2(j/Ny)− 1) tan(fC/2)/aC

Z = dnear + (k/Nz)(dfar − dnear)

q = uu + vv

x = xC +
(q + nC)

|q + nC |
Z

4.4 Spherical Solid Angle Grids

4.5 Wrapping Grids in Fields

When volume data is stored in a grid, we still want to be able to combine it with procedural volumes and
even other gridded volumes. So it is important to be able to sample values of the volume data at any point
in space, not just at the stored grid points. This means we need to combine the discrete volume values with
an interpolation scheme to generate those values. A variety of interpolation methods could be used, e.g. tri-
linear interpolation, splines, hermite polynomials, etc. The interpolation scheme may also be supplemented
by a boundary treatment to determine how the discrete data is extended past the bounds of the grid.

The combination of gridded volumetric data, an interpolation scheme, and boundary treatment is a
wrapping procedure to make the discrete data look like a continuous field with values everywhere. We will
denote such a wrapper a “gridded” field. For example, a scalar field defined from grid of scalar values g is

f = gridded(g) (4.7)

Once a grid is wrapped in a field, futher processing can proceed treating the data as a continuous field.
Several advantages accrue from this approach:

• Processing algorithms can be implemented without the burden of grid-handling logic.

• Multiple wrapped-grid fields can be used, each with different choices for grid cell dimensions, point sizes,
and locations. Choices for these parameters can be made by the user based on the best representation
of the content of individual grids, without the need to fit all data into a common grid parameterization.
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Figure 4.2: Multiple spheres stamped into a volume with various selections of blending operation.

4.6 Stamping Fields into Grids

Occasionally it is useful to have a representation of a field in a gridded form. That is, the values at the grid
points are the value of some field at the location of those grid points. The gridded form of a field is not
necessarily identical to the original field because the field can have detailed structure on a scale smaller than
the cell dimensions, and it may have significant values at locations outside the scope of the grid. We label
the process of sampling values from a field and storing the values on a grid as stamping.

A common use of stamping is to speed up the evaluation of a field. Suppose a field f is the product of
an expensive collection of calculations. The combination in algorithm 3 replaces the expensive field with

Algorithm 3 Replacing a field with a stamped version

g ← stamp(0) . Initialize grid with empty value.
stamp(f, g) . Stamp field into grid g.
f← gridded(g) . Replace the field with a gridded version.

fast-evaluating interpolations of values on a grid. This approach limits the number of expensive evaluations
to the number of grid points. For the gridded version to be an accurate representation of the original field,
the grid parameters must be chosen based on the spatial structure of the field and the intended application.

Stamping fields is also a method of creating a complex volume by stamping many copies of fields in many
locations. In this process, fields overlap and there is an additional opportunity to offer different methods
of combining, or blending, fields in the overlap regions. In addition to CSG operations like union and
intersection, many other blending operations are feasible. For example, addition, blinn blending, averaging,
could be chosen. The appearance of the stamped volume will vary widely depending on the blend choice.
Figure 4.2 illustrates the visual impact of many of these choices. For a set of fields {fi}, algorithm 4 depicts
the process. Common blend choices include

Algorithm 4 Algorithm for Stamping Multiple Fields into a Grid.

g ← stamp(0) . Initialize grid with empty value.
b← blend . Choose a blend method.
for f ∈ {fi} do

stamp(f, g, b) . Stamp field into grid g using blend method b.
end for

• Add Simple add of the current field value to the accumulated value at the grid point.

• Replace Replace the grid point value with the current field value.

• Max Replace the grid point value with the maximum of the grid point vale and the current field value.

• Min Replace the grid point value with the minimum of the grid point vale and the current field value.

• Alpha Set the value at the grid point with gα+ f(1− α), for a predefined value 0 ≤ α ≤ 1.
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For maximum control and variability, particles are an efficient method of controling the properties of
stamping. Each particle in a particle system can represent a field to be stamped into a grid. The attributes
of the particles can drive the location of the field, scale, transformation, and even blending selection.

4.7 Higher Order Interpolation of Gridded Data

In section 4.1, linear interpolation was set out as the basic method for treating gridded data as a continuous
field. Other types of interpolation could also be brought to bear. Depending on the specifics of the inter-
polation scheme, various qualities can be preserved or introduced. In this section, we construct a family of
interpolation schemes that seek to treat the gridded data as if it is a sampling of a continuous function, and
the interpolation seeks to restore a more accurate reconstruction of the function.

We begin with a derivation of the scheme in one dimension. The extension to three dimensions that
follows in straight forward.

One Dimensional Derivation

Suppose g(x) is a continous function in one dimension. Assuming a grid of points in one dimension xm =
m∆x,m = −∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞, with the value of g known only at those grid points gm ≡ g(xm),
the interpolation problem is to reconstruct the value of the function at any point x not on a grid point. We
begin by decomposing the position x as x = xm + y, where xm is the nearest grid point “to the left” of x:

xm =

{
floor (x/∆x) ∆x x > 0
(floor (x/∆x)− 1) ∆x x < 0

(4.8)

and y is the residual “distance” of x from that grid point. By construction, y ≥ 0. The interpolation is
generated directly from the collection of values in the neighborhood surrounding xi:

g(x) ≈
N∑

j=−N+1

g(xm+j) ωj (4.9)

where 2N is the size of the neighborhood, and ωj is the collection of weights for the interpolation. Basic
linear interpolation can be written this way, with N = 1, ω0 = 1− y/∆x, ω1 = y/∆x.

The goal here is to allow N to be arbitrary sized, and construct the collection of weights ωj for any choice
of N , independent of the particular function under interpolation.

The derivation of a systematic approach begins by observing the form of equation 4.9 when the function
has a Fourier transform representation, i.e. the general function can be written

g(x) =

∫ ∞
−∞

dk g̃(k) eikx (4.10)

Inserting this into equation 4.9 and rearranging, we get

0 ≈
∫ ∞
−∞

dk g̃(k) eikxm

eiky − N∑
j=−N+1

eik∆x jωj

 (4.11)

An algorithm that is independent of the function can follow by attempting to force the quantity in parentheses
to be zero. For finite N , this cannot be forces always to be zero, and so that deviation is a measure of the
error of the algorithm.
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Because the interpolation uses only a finite number of points, the best we can hope for is to Taylor expand
the quantity in parentheses and zero out the lowest order terms. This generates a set of 2N equations( y

∆x

)m
=

N∑
j=−N+1

jm ωj , m = 0, 1, . . . , 2N − 1 (4.12)

This is 2N equations for 2N unknowns ωj , and so is a solveable linear system. Note that the first equation,
for m = 0 is that the weights are normalized:

1 =

N∑
j=−N+1

ωj (4.13)

From which follows the solution for ω0:

ωo = 1 −
N∑

j=−N+1;j 6=0

ωj (4.14)

The solution of this linear system is that the weights are polynomials in y/∆x:

ωj =

2N−1∑
r=1

qjr

( y

∆x

)r
, j = −N + 1,−N + 1, . . . ,−1, 1, 2, . . . , N (4.15)

and the coefficients qjr can be arranged as a 2N − 1× 2N − 1 matrix that satisfies

δmr =

N∑
j=−N+1;j 6=0

jm qjr , m, r = 1, 2, . . . , 2N − 1 (4.16)

and δmr is the Kronecker delta. This set of equations can be solved linearly as well, and the results are shown
in tables 4.2.

An additional property satisfied by the coefficients comes from the special case when y = ∆x. In this
situation, ω1 = 1 and all weights must be zero. This provides the “sanity check” criterion:

δj1 =

2N−1∑
r=1

qjr (4.17)

Three Dimensions

The three dimensional version comes from applying the one dimensional interpolation three times.

g(x) ≈
N∑

l=−N+1

N∑
m=−N+1

N∑
n=−N+1

g(xi+l j+m k+n) ωl ωm ωn (4.18)
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Table 4.2: Coefficients qjr for higher order interpolation.

j
r

1

1 1.0

N = 1

j
r

1 2 3

-1 -1/3 1/2 -1/6
1 1 1/2 -1/2
2 -1/6 0.0 1/6

N = 2

j
r

1 2 3 4 5

-2 1/20 -1/24 -1/24 1/24 -1/120
-1 -1/2 2/3 -1/24 -1/6 1/24
1 1 2/3 -7/12 -1/6 1/12
2 -1/4 -1/24 7/24 1/24 -1/24
3 1/30 0 -1/24 0 1/120

N = 3
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4.8 Finite Difference Gradient

When using fields that are based on gridded data, the issue arises of how to construct the gradient of the
field. A similar issue arises for some fields that do not have a well-defined analytic expression for a gradient,
for example the CSG operations. A natural approach is to use a finite difference expression to approximate
the gradient. In the simplest case, the gradient could be expresses as

∇f(x) ≈
(

f(x + x̂∆x)− f(x− x̂∆x)

2∆x
,

f(x + ŷ∆y)− f(x− ŷ∆y)

2∆y
,

f(x + ẑ∆z)− f(x− ẑ∆z)

2∆z

)
(4.19)

The accuracy of this approximation can be seen by Taylor exanding the field f for a few terms, to find that
there is an error proportional to powers of ∆x, ∆y, ∆z.

The finite difference expression can be extended to higher order as desired to give higher quality. Illus-
trating with a 1-D function f(x), the Taylor expansion

f(x+ y) =

∞∑
k=0

yk

k!
f(k)(x) (4.20)

can be used to assemble any order finite-difference approximation. Here f(k) is the k − th derivative of the
function. A derivative can be represented as a finite sum of 2N terms:

d

dx
f(x) ≈

N∑
n=−N

an f(x+ n∆x) (4.21)

with suitably chosen coefficients an. The approach to fixing their values comes from applying the Taylor
expansion to this approximation to get

∞∑
k=0

∆xk

k!
f(k)(x)

N∑
n=−N

nk an (4.22)

If this is intended to represent the first derivative, the coefficients must be fixed by the series of equations

N∑
n=−N

an = 0 (4.23)

N∑
n=−N

n an =
1

∆x
(4.24)

N∑
n=−N

nk an = 0 k > 1 (4.25)

Equation 4.23 and all equations 4.25 for even k are satisfied if the coefficients are antisymmetric, i.e. a−n =
−an. This fixed a0 = 0. Further, it makes sense to scale the coefficients by an = αn/∆x. Once these choices
are made, the remaining equations are

N∑
n=1

n αn =
1

2
(4.26)

N∑
n=1

n2k+1 αn = 0 k > 1 (4.27)
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Table 4.3: Coefficients for finite difference derivatives up to N = 8.

N = 1 N = 2 N = 3 N = 4
α1 0.5 0.57142857142857151 0.60810810810810767 0.63039399624765435
α2 -0.071428571428571438 -0.1188063063063063 -0.15064623723160311
α3 0.010698198198198195 0.02101573900354391
α4 -0.00076349801959558095

N = 5 N = 6 N = 7 N = 8
α1 0.64535955746772966 0.65609985088633171 0.66418180822321082 0.67048320765246205
α2 -0.17321459058935865 -0.18996590374149147 -0.20286437997462345 -0.213090576806653
α3 0.029559879293859895 0.036481469793162628 0.042119156095069443 0.046767457952830598
α4 -0.0017378184115276803 -0.0026999821278442119 -0.0035797086604024858 -0.004362453117772256
α5 3.2972239295226059e-05 8.5528288191602389e-05 0.00014591197349313843 0.00020752664200811052
α6 -9.6309840124388086e-07 -2.8080248121598451e-06 -5.2279046772863686e-06
α7 2.0367364328490342e-08 6.598736368669243e-08
α8 -3.26811256996574e-10

The coefficients for choices of N up to 8 are shown in table 4.3. Extending these results to three dimensions,
the gradient looks like

∇f(x) =

N∑
n=−N

αn

(
f(x + n∆xx̂)

∆x
,

f(x + n∆yŷ)

∆y
,

f(x + n∆zẑ)

∆z

)
(4.28)
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CHAPTER

FIVE

SIGNED DISTANCE FUNCTIONS AND LEVEL SETS

5.1 Signed Distance Function

A particular class of implicit function that has very useful properties is the Signed Distance Function (SDF).
The SDF is an implicit function with two important properties:

1. The magnitude of the value of the SDF at any point in space is equal to the distance of that point from
the closest point on the implicit surface.

2. If a point in space is outside of the implicit surface, the value of the SDF is negative. If a point is inside
the implicit surface, the value of the SDF is positive.

The second property concerning the sign is a convention. In some applications the opposite sense of sign is
used, i.e. positive outside and negative inside.

The fact that the magnitude of the SDF is a distance separates SDFs from scalar fields. Scalar fields and
SDFs have the same transformation properties when in comes to rotations and translations, but their scale
transformations differ as shown in table 1.1.

Signed distance functions have a very useful and special property: the gradient of a SDF is a unit vector.
Like any other implicit function, the gradient is normal to the surface, but only distance functions are a unit
vector. In the case of the sphere the property is easy to see. The SDF for a sphere is

f(x) = R − |x− x0| (5.1)

so the gradient is

∇f(x) = − x− x0

|x− x0|
(5.2)

Manifestly, |∇f| = 1. For a simple, but nonrigorous, proof that this is generally true, we can construct any
SDF as

f(x) = β |x− x∗(x)| (5.3)
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where x∗(x) is the location on the surface closest to the point x, and β is +1 or -1 depending on whether x
is in or outside of the surface respectively. Taking the gradient of this

∇f(x) = β
x− x∗(x)

|x− x∗(x)|
− β ∇x∗(x) · x− x∗(x)

|x− x∗(x)|
(5.4)

Two important properties are important to know here. First, because x∗(x) is the closest point on the
surface to the point x, the difference x−x∗(x) is perpendicular to the surface. Second, the gradient ∇x∗(x)
is always tangent to the surface. Consequently, the second term, containing the inner product of ∇x∗ and
x− x∗ is zero. It then follows that the gradient of any SDF is a unit vector.

The fact that the SDF gradient is a unit vector gives rise to a very useful quantity. The vector field x∗(x)
defined as

x∗(x) = x− f(x) ∇f(x) (5.5)

is called the Closest Point Transform, or CPT, and is the collection of points located on the surface of the
SDF. This non-invertible map allows many algorithms to be sped up because it quickly locates the surface
point for any spatial point. In some applications in which the implicit surface is not a SDF, it can be
computationally efficient to convert the implicit function to a SDF in order to take advantage of the CPT.
More on this in chapter 10.

5.2 Level Set

The special case of a signed distance function that has values on a 3D grid is called a level set. One way
of creating a level set is to stamp a SDF into a grid. However, there are many scientific and graphics
applications of level sets, and the most common way of creating them is via processing algorithms in the
particular applications. For example, a closed model consisting of polygons can be converted into a level
set via the Fast Marching Method. In reverse, a level set can be converted into a polygon model of surface
via the Marching Cubes algorithm. Effectively, level sets and polygonal models are conceptually equivalent
representations of geometry.

The amount of spatial detail that can be encoded in a level set is directly related to the cell resolution of
the grid. Because the surface is at locations where the grid data interpolates to zero, at least two cells are
needed to locate the surface position. This means that no surface features smaller that the size of one cell
can be resolved by a level set.

Nominally, the level set representation of a large surface with many fine features would require a grid
with many grid points. However many applications of level sets use the data in a way that reduces the data
load and makes the memory demands quite manageable. The key observation is this: when the primary
purpose of the level set is to identify the surface and surface properties immediately in the neighborhood of
the surface, useful signed distance data is needed only in a “narrow” band of grid points about the surface.
Grid points far away from the surface have little or no useful purpose, and so need not contain data. This
allows the construction of data structures that store data only in bands of grid points, the size of the band
being adjustable for the application at hand; at grid points outside of these bands, the points need only be
identified as being inside or outside of the surface. The memory savings obtain from these data structures
can be very large, and speed enhancements can also be quite large because processing algorithms can be
directed to focus only in regions of useful information. The first such data structure to be defined was DT
Grids [21], and the current favorite is the open source project OpenVDB [11].
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Figure 5.1: Demonstration of the conversion steps polygon → level set → polygon, for well-matched surface
and grid. (a) Original polygonal surface; (b) Level set in OpenVDB format, showing the active voxels; (c)
Polygon surface generated from level set. Note that (a) and (c) are identical surfaces.

Figure 5.2: Demonstration of the conversion steps polygon→ level set→ polygon, for a “low-resolution” grid.
(a) Original polygonal surface; (b) Level set in OpenVDB format, showing the active voxels; (c) Polygon
surface generated from level set. The surface in (c) has lost details and features contained in the original
surface.

5.3 Geometry vs Level Set

A polygonal closed surface is equivalent to a level set, as long as the size of the polygons and cell size of the
level set are comparable. For example, a “well-constructed” surface can be converted into a level set with
a cell resolution somewhat smaller than the smallest span of any of the polygons, using the Fast Marching
Method. The level set can be converted back into polygons using Marching Cubes. If the cell resolution
and the polygon sizes have been paired well, the output surface can many times be identical to the original,
vertex for vertex, edge for edge, polygon for polygon. Figure 5.1 demonstrates this behavior.

But what happens when the cell resolution and polygon sizes are not well matched? For example,
suppose the resolution of the level set grid is insufficient to resolve at least some of the polygons? Figure
5.2 demonstrates the impact of this situation. Details of the surface have been lost in the conversion to a
“low-resolution” level set, so that the conversion back into a surface shows less structure and detail. Such a
loss of detail can be of value for some problems. For example, it is part of a process for smoothing surfaces,
as discussed in section 7.1. Level set oriented methods of fracturing use the grid resolution as a way of
controlling the number and size of fragments in the fractured geometry, as shown in section 7.4. Other
techniques that filter the level set can algorith the surface geometry as well (section 7.3).
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CHAPTER

SIX

NOISE

The word “noise”, used in the context of volumetric modeling, has several technical meanings. One of
them is as the output of pseudo-random number generators that obey various probability density functions.
For example, uniformly-distributed noise from the Mersenne Twistor, or gaussian, log-normal, or other
distributions.

Another meaning for “noise” is the spatial pattern of values from any of many functions that could
be used, sometimes coupled with itself or other functions using scale, translation, rotation, and multiplier
transformations. Example of these spatial noise functions are Perlin noise, Worley noise, and others [17].

Here we explicitly present a few noises from pseudo-random number generators, and spatial noise func-
tions. Fractal sums of spatial noise functions serve as a means of creating ever more complex and subtle
noise patterns that can have many natural-looking patterns and properties.

6.1 Pseudo-Random Number Generators

Some standard pseudo-random number generators that have been commonly used for many years are rand()
and drand48(). The algorithms behind these generators have significant flaws for volumetric purposes,
because both have too-short period lengths and some patterns can be recognized in the sequence of numbers
they produce.

A very powerful and widely available pseudo-random number generator is the Mersenne Twister1[20].
This algorithm has an extremely long period, no obvious patterns in the sequence, and fits very well into the
uses we have here.

Pseudo-random numbers are used to drive parameters for volumetric structures. For example, hundreds of
spheres could be generated with randomized radius and location. They could also be used to randomize any
other parameter that occurs in a volumetric model. In chapter 8 and appendix A, many particle attributes
can be usefully randomized, and interesting, controllable spatial patterns created using random walks.

1Mersenne Twister: http://en.wikipedia.org/wiki/Mersenne_Twister
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6.2 Spatial Noise

Perlin Noise

FFT Noise

6.3 Fractal Sums of Spatial Noise

For spatial noise SN(x), more complex patterns coming from linear combinations of multiple octaves of the
noise. We can express fractal sums of the noise as

FSN(x) =
1− r

1− rN
N∑
n=0

rn SN
(
(x− xt) f f

n
j

)
(6.1)

where N is the number of “octaves”, r is the roughness, f is the based frequency, fj is the “fjump” for the
successive change of frequency for each octave, and xt is translation of the noise. The factor (1− r)/(1− rN )
serves to keep the range of the fractal summed noise the same as the range of the spatial noise.

6.4 Terrain Noise

TN(x) =

{
A+ FSN(x)γ+ if FSN(x) >= 0
−A− |FSN(x)|γ− if FSN(x) < 0

(6.2)

6.5 Implicit Function + Noise

6.6 Pyroclastic Sphere
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CHAPTER

SEVEN

MORE IMPLICIT FUNCTION MANIPULATIONS

7.1 Smoothing

7.2 Roughening

7.3 Distortion

7.4 Fracturing Geometry
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CHAPTER

EIGHT

PARTICLES

8.1 Particle Attributes

8.2 Guide and Child Particles

8.3 Random Walks
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CHAPTER

NINE

STAMPING NOISE INTO GRIDS

9.1 Noise Clouds

9.2 Spline and Surface Noise

9.3 Wisps

9.4 Spline and Surface Wisps

9.5 3D Fractal Flame Wisps
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Figure 9.1: Several frames from a short film of evolving 3D fractal flame wisps. Artist: Yujie Shu.
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CHAPTER

TEN

VECTOR FIELDS

Fields fundamentally are prescriptions for doing work. They describe and execute specific algorithms and
computations when invoked. Vector-valued fields also provide a collection of methods to alter the work done
by other fields, for example by redirecting the location in space where the field is evaluated. In this chapter
we explore several mechanisms for vector fields to encode, or warp, information about the structure of the
space. We also explore some common ways to generate vector fields from noise as random velocity fields for
advection and other applications. In chapters 11 and 12 both are brought to bear to displace and advect
fields in a variety of ways.

10.1 Closest Point Transform

The Closest Point Transform (CPT) was introduced in chapter 5. Here we take a deeper look at its properties.
Given a signed distance function f, the CPT XCPT (x) is constructed as

XCPT (x) = x − f(x) ∇f(x) (10.1)

The CPT is a many-to-one mapping of points in space to the set of points on the surface of the signed
distance function.

It can be interesting to think of vector fields that act as CPTs, independent of their definition in equation
10.1. A mathematician might want to think of and categorize the set of all possible CPTs. Of interest here
is the question: given one or more CPTs, what operations or transformations can be applied to create other
vector fields that are also CPTs? Such a set of operations and/or transformations could be thought of as a
set of invariance operations on the set of CPTs, i.e. they map CPTs back to other CPTs.

There are some obvious CPT invariances that we can list here. When an SDF is scaled by α

f(x) → αf (x/α) (10.2)

the CPT becomes

Xα
CPT (x) = x − α f (x/α) ∇f (x/α) (10.3)

or

Xα
CPT (x) = α XCPT (x/α) (10.4)
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showing that under scaling operations, the CPT transforms in the same way at the SDF.
An SDF that has been dilated uniformly is still and SDF, although with a different surface. The dilation

of the SDF has the form

f → f + c (10.5)

for some constant value c. The CPT of the SDF is transformed by

Xc
CPT (x) = XCPT (x) − c ∇f

= XCPT (x) ± c
XCPT (x)− x

|XCPT (x)− x|
(10.6)

and the choice of plus or minus sign depends on sign of the underlying SDF.
Finally, a translation of the SDF by the amount x0 changes the CPT to

Xx0

CPT (x) = XCPT (x− x0) + x0 (10.7)

Note that, in these transformations, we are mostly able to express the transformed CPT without explicitly
invoking the SDF, i.e. if we know completely the CPT, we can directly generate other CPTs using these
example transformations without first creating or evaluating SDFs. It would be an interesting and beneficial
exercise to find the set, or space, of all possible transformations of CPTs into other CPTs.

The CPT is a type of vector field called a conservative vector field, which is a vector field of the form

XCPT (x) = ∇ U(x) (10.8)

for some scalar field U(x). This scalar field is called a potential field. In particular, we can construct U for
a given SDF f as

U(x) =
1

2

(
|x|2 − f2(x)

)
(10.9)

As a conservative vector field, it has no axial component and so no curl:

∇×XCPT (x) = ∇×∇ U(x) = 0 (10.10)

From its definition in equation 10.1, the CPT also satisfies the differential condition

(XCPT (x)− x) · ∇ XCPT (x) = 0 (10.11)

10.2 Near Point Transform

The CPT is a well defined entity computable from a signed distance function, representing the collection of
points on the surface defined by the SDF. Any implicit function has a collection of points on its surface,
so it should be possible to create an vector field with similar properties for an implicit function. The CPT
is easily constructed from an SDF because the SDF has a value representing distance, and its gradient is
a unit vector. For general implicit functions, neither of these properties is available. But we can at least
approximate the form of the CPT by using a Taylor expansion approximation. Give an implicit function f,
at a position x not on the surface, we can define the vector y as the displacement of x to the surface:

f(x + y) = 0 (10.12)

55



An approximate value of y can be found from the first order Taylor expansion of this expression:

0 = f(x + y) ≈ f(x) + y · ∇f(x) (10.13)

If we assume that y has a form inspired by the CPT formula of y = d∇f(x), then we can solve this linear
equation for the quantity d as

d = − f(x)

|∇f(x)|2
(10.14)

The Near Point Transform (NPT) gives the approximate position of the surface point x + y as

Xf
NPT (x) = x − f(x)

∇f(x)

|∇f(x)|2
(10.15)

and in particular, if the implicit function coincidentally happens to actually be a SDF, the formula for the
NPT reduces to that of the CPT.

Although the NPT gives only an approxiation of a point on the surface, that point should be closer than
the point at which the NPT is evaluated. This means we can set up an interative procedure, expressed
in Algorithm 5, to get arbitrarily close to the surface point for the CPT using a suitable threshold value.
Additionally, the iteration could be stopped by limiting the number of loops through the while. This iterative
algorithm we refer to as the Iterative Near Point Transform (INPT), and denote the mathematical operation

as Xf
INPT (x) for the implicit function f.

Algorithm 5 Iterative Computation of the CPT from the NPT.

x← Xf
NPT (x)

while |f(x)| > threshold do

x← Xf
NPT (x)

end while

Note that with a sufficient number of iterations, the INPT produces a point on the surface of the implicit

function, i.e. the INPT converges to a CPT with XCPT (x) = Xf
INPT (x). Recall that equation 5.3 expresses

signed distance functions in terms of their CPT. This means that for the implicit function f we can construct
a corresponding signed distance function g as

g(x) = sign(f(x))
∣∣∣Xf

INPT (x) − x
∣∣∣ (10.16)

This algorithm can be used to “redistance” an implicit function into a SDF.
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10.3 Composing Maps

10.4 Texture Coordinate Transfer

10.5 Velocity Fields

Velocity from Spatial Noise

Velocity from FFT Random Numbers

Velocity from Other Fields

10.6 Incompressibility
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CHAPTER

ELEVEN

DISPLACEMENTS

The obvious application of SDFs, both procedural and level sets, is the representation of surface geometry by a
volumetric field. Such a representation also presents an opportunity to create new fields and surface geometry
using volumetric manipulations. This chapter is devoted to exploring displacements of the SDF. A classic form
of displacement is the Pyroclastic displacement, which gets its name from the lumpy structure is generates,
reminiscent of volcanic pyroclastic clouds. This is most easily illustrated by the pyroclastic sphere, which has
been used extensively in VFX for snow avalanches and clouds. The pyroclastic sphere displacement generalizes
to pyroclastic displacement of arbitrary SDFs. An extension of the general pyroclastic displacement is a
method called cumulo because it accumulates multiple displacements to give a more realistic appearance of
a cumulus cloud.

11.1 Pyroclastic Sphere

The pyroclastic sphere originated in Alan Kaplar’s VFX work on the film XXX, to create the appearance of
a dangerous growing avalanche chasing behind a skier. Its visual structure consists of a spherical volume of
density with the surface displaced using a particular choice of noise function, so that the volume resembles
a pyroclastic, or cauliflower, puff, as illustrated in figure 11.1. There are two ingredients in this process: (1)
a spatial noise field, and (2) a displacement procedure that is driven by the spatial noise.

The mathematics of the sphere is sufficiently simple that we can build it two different ways. The first
method constructs the densitydirectly without referencing the concept of a SDF. The second method begins
with the SDF and constructs the pyroclastic sphere as an implicit function, from which density can be
constructed via the procedure described in section 2.4.

The algorithm is illustrated here for a pyroclastic sphere that has densityof ρps inside. The algorithm for
calculating the densityof a pyroclastic sphere at any point x in space is as follows (see also algorithm 6):

1. Calculate the distance from the point of interest x to the center of the sphere xsphere:

d = |x− xsphere| (11.1)

2. Compare d to the displacement bound dbound of the Perlin noise and the radius R of the sphere. If
d < R, x is definitely inside the pyroclastic sphere, and the density is ρps. If d > R+ dbound, then the
point x is definitely outside of the pyroclastic sphere, density is 0.
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Figure 11.1: Examples of classic pyroclastically displaced implicit spheres.

3. If 0 < d − R < dbound, then compute the displacement: Create a point on the unit sphere surface
n = (x− xsphere)/d. The displacement by the noise is is r = |N(n)|. If d−R < r, the point x is inside
the pyroclastic sphere and the density it ρps. Otherwise, the density is 0.

Algorithm 6 Computing the density inside a pyroclastic sphere.

d← |x− xsphere|
if d < R then

ρ← ρpa
end if
if d > R+ dbound then

ρ← 0
end if
if 0 < d−R < dbound then

n← (x− xsphere)/d
r ← |N(n)|
if d−R < r then

ρ← ρpa
else

ρ← 0
end if

end if

The absolute value of the noise is used because it produces sharply cut “canyons” and smoothly rounded
“peaks”. Rounded canyons would not have the visual impact as a pyroclastic structure.

The SDF version of this algorithm begins by noting that the SDF for a sphere is

fsphere(x) = R − |x− xsphere| (11.2)

The comparisons used in each step of the above algorithm were based on examining the value of this quantity.
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(a) (b) (c)

Figure 11.2: Pyroclastic displacement of a sphere using (a) positive displacement; (b) negative displacement;
(c) both positive and negative displacement

Adding the pyroclastic noise component amounts to altering the SDF:

fps(x) = R − |x− xsphere| +

∣∣∣∣N(R x− xsphere

|x− xsphere|

)∣∣∣∣ (11.3)

and so the density field is

ρ(x) = ρps mask(fps)(x) (11.4)

There are many variations of this approach that lead to other structures and appearances. For example,
switching from the absolute value of the noise to negative of the absolute value would cause the extremes
of displacement to be sharp instead of rounded, and the valleys rounded instead of cusped, as illustrated
in figure 11.2(b). Alternatively, removing the absolute value would give the bumps and equally rounded
appearance on the extremes of displacement, as in 11.2(c). Using a power on the noise

fps(x) = R − |x− xsphere| +

∣∣∣∣N(R x− xsphere

|x− xsphere|

)∣∣∣∣γ (11.5)

gives control on the sharpness or flatness of the displacement extremes (figure 11.3).
For a volume consisting of many pyroclastic spheres, pyroclasts can be augmented to handle overlap.

Simply unioning multiple SDFs works well. For algorithm 6, the equivalent merge is to set the density equal
to the maximum of the density result for all of the overlapping pyroclasts.

For pyroclastic spheres, there is little compelling preference the SDF versus algorithm 6. However, in
more general geometries, the SDF approach continues to be straightforward and efficient regardless of the
geometric complexity involved. Generalizing algorithm 6 beyond spheres is problematic.

11.2 Pyroclastic Displacement of Arbitrary Geometry

The generalization of pyroclastic displacement to arbitrary geometry becomes very straightforward by using
the level set for the geometry. Suppose a particular closed surface has the level set representation fgeom. We
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(a) (b) (c)

Figure 11.3: Pyroclastic displacement as a function of γ. (a) γ = 0.2; (b) γ = 1; (c) γ = 2.

can generate an implicit surface with pyroclastic displacement this way:

fpyro(x) = fgeom(x) +
∣∣N (x∗geom(x)

)∣∣γ (11.6)

where x∗geom is the CPT of the level set of the input geometry.

x∗geom(x) = x − fgeom(x) ∇fgeom(x) (11.7)

An unfortunate consequence of pyroclastic displacement is that the implicit function produced, i.e. equation
11.6, is not a SDF. The easiest way to see that is by taking a gradient and finding that it is not a unit vector.
In general, most of the algorithms that manipulate a SDF produce an implicit function that is not a SDF.
Consequently it is very worthwhile to work out how to accomodate non-SDF implicit functions from the very
beginning.

The key issue when pyroclastically displacing a general implicit function is how to locate the surface,
given that the CPT is not available for general implicit functions. In this situation, we have the NPT and
INPT introduced in section 10.2. Then the generalization of pyroclastic displacements to implicit functions
g is

gpyro(x) = g(x) +
∣∣∣N(X

g
INPT (x)

)∣∣∣γ (11.8)

Figure 11.4 shows several examples of implicit surfaces pyroclastically displaced.

11.3 Cumulo

Pyroclastic displacement is very useful in volume modeling because it produces natural-looking surface detail.
In some modeling problems, for example modeling clouds such as those depicted in figure 11.5, there are
multiple layers of “bumps” that look like pyroclastic displacements layered on top of pyroclastically displaced
surfaces. A procedure first described in [23] called Cumulo sets up the ability to apply multiple layers of
pyroclastic displacement, with control over the characteristics of each layer.
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(a)

(b)

Figure 11.4: Implicit surfaces and their pyroclastic displacements. (a) Torus; (b) Box.
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Figure 11.5: Cumulus clouds with multiple layers of bumps.
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11.4 Displacement via Local Transformations

An alternate approach to construction implicit functions that appear to be pyroclastically displaced to is
actually displace the input implicit function, rather than altering the implicit function formula. Given an
implicit function f(x), the quantity f(X(x)) is also an implicit function, where X(x) is a vector field that
remaps or displaces points in space. The art of choosing the pyroclastic structure comes down to the choise
of the mapping function. We will refer to the mapping function X(x) as the Pyroclastic Point Transform
(PPT) because of its origins and motivation, even though in many cases a pyroclastic appearance is not the
goal.

An convenient advantage of using a PPT for generating pyroclastic displacement is that it does not alter
the numerical range of values of the implicit function. Some algorithms for manipulating implicit functions
anticipate that is will have values within a known range, particularly if the algorithm expects the implicit
function to be an SDF or level set. Since the pyroclastic displacement approaches in the previous sections
of this chapter alter the values of the implicit function, subsequent use of these other algorithms would be
problematic.

Noisy Local Transformations

A first demonstration of using a PPT uses a sphere and Perlin noise, similar to section 11.1. As in that
situation, we want displacements that are perpendicular to the surface, so the PPT has the form

X(x) = x +

∣∣∣∣N( x− xsphere

|x− xsphere|

)∣∣∣∣γ ( x− xsphere

|x− xsphere|

)
(11.9)

This PPT produces a pyroclastic sphere like that shown in figure 11.6. In more general situations with an
arbitrary SDF f, a better choice of pyroclastic PPT would used the CPT and the fact that the gradient of
the SDF is a unit vector:

X(x) = x + |N(x∗(x))|γ ∇f(x) (11.10)

When the implicit function is not an SDF, this recipe has to be generalized to use the INPT instead of the
CPT, and the gradient has to be explicitly normalized:

X(x) = x +
∣∣∣N(Xf

INPT (x)
)∣∣∣γ ∇f(x)

|∇f(x)|
(11.11)

For the torus, this PPT produces the result in figure 11.7.

Distance-Preserving Transforms: Meepzoids

There is a particular situation that is of interest with the implicit function is a signed-distance function.
Given the SDF f(x), the displaced field f(X(x)) is not an SDF in general, because the gradient of the
displaced field is no longer a unit vector. The displaced field is still a valid implicit function, but it has lost
the attribute of having values that correspond to the distance from the point in space to the surface.

We can ask however, whether there are conditions under which the displaced SDF remains an SDF. If it
is possible to build and control PPTs that perserve, it would eliminate the need to convert the pyroclastic
field back into an SDF. The fundamental definition of the SDF is that it’s gradient is a unit vector. Taking
the gradient of the displaced SDF gives

∇f(X(x)) = (∇X(x))T · ∇f(y)|y=X(x) (11.12)
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Figure 11.6: Pyroclastic sphere generated from a PPT with Perlin noise normal displacement.
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Figure 11.7: Pyroclastic torus generated from a PPT with Perlin noise normal displacement.
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Requiring that the gradient of the displaced SDF be a unit vector imposes the requirement

1 = ∇f(X(x)) · ∇f(X(x)) = ∇f(y) · (∇X(x)) · (∇X(x))T · ∇f(y)|y=X(x) (11.13)

This requirement can be satisfied whenever the PPT has the property

(∇X(x)) · (∇X(x))T = 1 (11.14)

which means that the gradient of the PPT is a matrix field that is orthogonal at every point in space. The
continuous set of all such matrices is a Lie Group called SO(3). In this situation, the gradient of the PPT is
a local rotation, and has the form

∇X(x) = exp

(
3∑
k=1

τk ωk(x)

)
(11.15)

using the matrices τk introduction in section 1.4, and any three scalar fields ωk(x).
A viable strategy for creating distance-preserving PPTs is this:

1. Construct ω1(x), ω2(x), ω3(x) from some artistic choices.

2. Integrate equation 11.15 to obtain the PPT.

3. Apply the PPT as needed.

Step 2 is the subject of the next subsection. A PPT that preserves distances will be designated a Meepzoid.

Solving for a Meepzoid

This subsection presents an integration algorithm for solving equation 11.15 for the meepzoid X(x). The
approach solves for the vector field on a rectangular grid, and is similar to the Gauss-Seidel solution for
Poisson’s equation. It is based on an expression for the gradient in terms of a finite-difference representation,
combined with an iterative refinement of a solution of the finite-difference. The Gauss-Seidel solution for
Poisson’s equation is based on the simplest finite-difference expression for a Laplacian. For this problem,
we can solve for the meepzoid in the context of the more general expression for a finite difference gradient
presented in section 4.8. For an N term finite difference, the gradient is

M(x) ≡ ∇X(x) =

N∑
n=−N

αn

(
X(x + n∆x)

∆x
,
X(x + n∆y)

∆y
,
X(x + n∆z)

∆z

)
(11.16)

where the coefficients are anti-symmetric, i.e. α−n = −αn, and so α0 = 0. Throughout this discussion we
assume we have chosen the point x to be one of the grid points for our rectangular grid, so that all values of
X are needed only at grid points.

Taking the inner product of this expression with ∆x, and isolating just one term n = j (we will generalize
shortly), we get

αj X(x + j∆x) = ∆x ·M(x)−
N∑

n = −N
n 6= j

αn X(x + n∆x) (11.17)
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Since x is an arbitrary point on the grid, we can shift the point by −j∆x to get

X(x) =
1

αj
∆x ·M(x− j∆x)− 1

αj

N∑
n = −N
n 6= j

αn X(x + (n− j)∆x) (11.18)

Two more equations like this one follow from taking the inner products with ∆y and ∆z. We can also
construct 2J equations for each of these by varying j between −J and J for some integer J ≤ N . Averaging
all of these,

X(x) = Xt (11.19)

+
1

6J

J∑
j = −J
j 6= 0

1

αj
(∆x ·M(x− j∆x) + ∆y ·M(x− j∆y) + ∆z ·M(x− j∆z))

− 1

6J

J∑
j = −J
j 6= 0

1

αj

N∑
n = −N
n 6= j

αn (X(x + (n− j)∆x) + X(x + (n− j)∆y) + X(x + (n− j)∆z))

where Xt is an overall translate amount that occurs as an integration constant.
This form sets up an iterative solution process, again like Gauss-Seidel. The initial solution can be

X0(x) = x, and the expression for Xk+1 in terms of Xk is

Xk+1(x) = Xt (11.20)

+
1

6J

J∑
j = −J
j 6= 0

1

αj
(∆x ·M(x− j∆x) + ∆y ·M(x− j∆y) + ∆z ·M(x− j∆z))

− 1

6J

J∑
j = −J
j 6= 0

1

αj

N∑
n = −N
n 6= j

αn

(
Xk(x + (n− j)∆x) + Xk(x + (n− j)∆y) + Xk(x + (n− j)∆z)

)

This algorithm has unknown convergence speed and properties.

Noisy Meepzoids
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APPENDIX

A

PARTICLE EDITING

A.1 Notes on Editing Particle Databases to Create Visual Detail

These notes were created around 1999. They describe how to generate and manipulate large amounts of
particles procedurally, then render them one-by-one in a custom statistically-based particle renderer.
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TRICKS FOR PDB PARTICLE SHADING
AND EMISSION

Contents

Intro to Pdb Editing 
The emit() function 
Creating child particles 
Child particle algorithms 

Uniform space filling 
Cauliflowers 
Curves in space 
Basic Random Walk 
Correlated Random Walk 
Spherical vs Cartesian walk 
Levy Flight 
Directed walk 
Filling inside implicit surfaces 
Time-dependence (pulses, shocks, and waves) 

Intro to Pdb Editing

The PdbEditor executes a pdb shader once for each particle contained in the pdb file(s) specified. Before
executing the shader, the particle attributes have been updated to the values for the current pdb particle.
Those values are accessed via the getAtt function, and can be modified via the setAtt function. For
example 

float radius;
getAtt("radiusPP", &radius);

retrieves the value of the particle radius, and places it into the variable radius. The names of the
attributes, such as "radiusPP" in this example, are the ones contained in the Pdb file, and are generally
based on the same names given by Maya or any other pdb generating package. Other attribute names
commonly used are in the table below: 

Attribute Data Format Description

radiusPP float radius 

rgbPP vector color

position vector 3D position of particle center

velocity vector 3D velocity of particle

age float age of particle

id int particle id number 



Probably to two most important attributes are the id and position. Because of that, the example editor
shading routines below generally begin with the code segment 

int id;
getAtt("id", &id);
vector position;
getAtt("position", &position);

The shading technology behind the pdb editor allows for a wide flexibility to manipulate particles,
perform mathematical operations, compute vector mathematics, etc. The details can be found in its
documentation. To some extent, many of the details can be learned just from following the examples
below. 

The pdb shading file contain all of the examples below. 

The emit() function

The shader function emit() performs application specific work within the editor. In the partman
application, the emit() call sends the particle attributes the the renderer, which renders a sphere created
according to those attributes. In other applications, the emit() call performs other functions. 

A simple example editor shader using the emit() call is: 

int main()
{
int id;
getAtt("id", &id);
vector position;
getAtt("position", &position);

/*  Change the position just for fun  */
vector displacement;
displacement[0] = 2.3;
displacement[0] = 0.6777;
displacement[0] = -45;

position = position + displacement;
setAtt("position", position);

/*  Now emit the particle  */
emit();

return 7;
}

This editor shader will simply shift every particle in the pdb file over by the vector amount (2.3, 0.6777,
-45). As each one is shifted, emit() is called to dispose of it. The reason why emit() is so important is
because it may be called any number of times for each pdb "guide" particle. This allows us to turn one
pdb particle into many "child" particles. As each child particle is created, the attributes are changed to
suit the need, and emit() is called to dispose of it. 

Creating child particles



Here is a simple example of how to create child particles and emit them: 

int main()
{
/*  Retrieve guide particle info  */
int id;
getAtt("id", &id);
srand48(id);

vector position;
getAtt("position", &position);
float radius;
getAtt("radiusPP", &radius);

/*  Determine how many child particles are desired  */
float childmax;
childmax = 100;

/*  Reduce size of child particles 
 so that they fit inside guide particle  */
float childradius;
childradius = 0.3 * radius / pow(childmax, 0.3333);
setAtt("radiusPP", childradius);

float child;
child = 0;

/* Loop over all children, creating new positions  */
vector d;
while( child < childmax )
{
 d[0] = drand48() - 0.5;
 d[1] = drand48() - 0.5;
 d[2] = drand48() - 0.5;
 d = radius * d / sqrt( d . d );
 d = d + position;
 setAtt("position", d);
 emit();
 child = child + 1;
}
return 7;
}

The figures below show the effect of the child creation process using this code sample. 



 

Guide particles

Child particles

In fact, the generic layout of the child creation editor can be outlined as follows: 



/*  Define global data structures for guide and child particles */

/*  guide particle data  */
int       guideid;
float     guideradius;
vector    guideposition;
vector    guidecolor;
vector    guidevelocity;
float     guideage;

/*  child particle data  */
float    childcounter;
float    maxchildcount;
float    childradius;
vector   childposition;
vector   childcolor;

/*  others...  */
/*  ....       */

/*  Define functions to do the work  */

void getGuideParticleInfo()
{
getAtt("id",       &guideid);
getAtt("radiusPP", &guideradius);
getAtt("position", &guideposition);
getAtt("rgbPP",    &guidecolor);
getAtt("velocity", &guidevelocity);
getAtt("age",    &guideage);
return;
}

void setChildParticleInfo()
{
/*  dependent on application  */
/*  set child attributes that are fixed  */
return;
}

void initChildParticle   ()
{
childcounter = 0;

/*  if using random numbers, initialize seed
to track with the guide particle          */
srand48(guideid);

/*  give inital values of changing attributes */
return;
}

int  moreChildren        ()
{
int flag;
flag = 0;
childcounter = childcounter + 1;
if(childcounter <= maxchildcount) {flag = 1;}
return flag;



}

int setChildParticle    ()
{
/*  Do something to distinquish this child 
from the many others being created.      */
return 1; /* return 1 to emit, 0 to not emit  */
}

/*  Operate main() in a fairly generic way  */
int main()
{
/*  Retrieve guide particle info of use  */
getGuideParticleInfo();

/*  Setup and Initialize child parameters  */
setChildParticleInfo();
initChildParticle();

/* Loop over all children  */
int emitdecision;
while( moreChildren() )
{
 emitdecision = setChildParticle();
 if(emitdecision==1){emit();}
}
return 7;
}

With this set-up, a variety of algorithms can be brought to bear to spread child particles around the
volume of space based on pseudo-dynamical forms, guide particle data, statistics, and any other
paradigm. The next section is devoted to providing several methods of filling the setChildParticle()
function to achieve various ends. Many of these methods can be used simultaneously or in sequence. 

Child particle algorithms

Most of the algorithms in this section for placing child particles are based on some randomizing scheme.
This is done in order to achieve complexity in the gross structure of accumulated particle collection. One
of the primary issues in taking this approach is the control of the shape and size of the collection after all
of the randomization has taken place. 

Uniform space filling

In this approach, child particles are placed randomly within a specified volume, without history. By
history, I mean that the placement of a child has no correlation with the placement of any other child.
For example, uniformly filling a rectangular box has this form: 

float boxheight, boxwidth, boxlength;  /* values set by some criterion */
vector displacement;

int setChildParticle_UniformRectangleFill()
{
displacement[0] = boxheight * (drand48() - 0.5);
displacement[1] = boxwidth  * (drand48() - 0.5);
displacement[2] = boxlength * (drand48() - 0.5);



childposition = guideposition + displacement;
setAtt("position", childposition);
return 1;
}

The figure below is an example of uniform rectangle filling. 

 

Rectangular uniform filling

For filling a sphere, the process is only a little different: 

float sphereradius;  /* value set by some criterion */
vector displacement;

vector RandomUnitVector()
{
vector ruv;
float theta, phi;
theta = 3.14159265 * drand48();
phi   = 2.0 * 3.14159265 * drand48();
ruv[0] = sin(theta) * cos(phi);
ruv[1] = sin(theta) * sin(phi);
ruv[2] = cos(theta);
return ruv;
}

int setChildParticle_UniformSphereFill()
{
displacement = RandomUnitVector();
displacement = sphereradius * displacement * drand48();
childposition = guideposition + displacement;
setAtt("position", childposition);



return 1;
}

The result is shown in the figure below. 

 

Spherical uniform filling

To generate the images in this section, the setChildParticleInfo() routine has the form 

void setChildParticleInfo()
{
/*  dependent on application  */
/*  set child attributes that are fixed  */

childradius = 0.2*guideradius;
setAtt("radiusPP", childradius);

maxchildcount = 100;

sphereradius = guideradius;
boxheight = guideradius;
boxwidth  = 1.5 * guideradius;
boxlength = 2 * guideradius;

return;
}

Cauliflowers

A cauliflower is a hierarchy of spheres. Beginning from a guide sphere, a collection of smaller spheres



are placed on its surface. If you desire to go to one more level, each of the spheres on the surface of the
guide sphere can have a set of spheres placed on their surfaces. This process can continue as far as you
like in a recursive way. The figure below illustrates one, two and three levels of sphere placement. 

 

One recursion of cauliflower growth.

 

Two recursions of cauliflower growth.



 

Three recursions of cauliflower growth.

 

Four recursions of cauliflower growth.

Carrying this much farther would lead to a special object called Fractal Growth Pattern, which is also
related to the random walk discussed in sections below. 

For our algorithm, the new important parameters are: 



/*  cauliflower distribution  */
float cauliflowerscale;
int nbcauliflowerclumps, nbcauliflowerrecursions;

The parameter cauliflowerscale controls the relative size of spheres in each recursion level. At each
level, nbcauliflowerclumps spheres are placed on the surface of each sphere from the previous level.
Finally, the total number of recursion levels is nbcauliflowerrecursions. These three parameters are
used to recursively create the cauliflower. The approach is: 

void putbumps(vector gpos, float gradius, int nb, float scale, int rec)
{
int p, trackrec;
float theta, phi, radius;
vector pos;

/*  track the number of recursions  */
trackrec = rec-1;

/* loop over particles to clump onto surface of parent  */
p = 0;
while(p < nb)
{
/*  place the particle on the surface of its parent  */
pos = RandomUnitVector();
pos = gpos + gradius * pos;
setAtt("position", pos);

/*  give the particle a reduced size  */
radius = gradius * scale;
setAtt("radiusPP", radius);

emit();

/*  now recurse to put particles on the surface of this particle  */
if(trackrec > 0){putbumps(pos, radius, nb, scale, trackrec);}
p = p + 1;
}
return;
}

int setChildParticle_Cauliflower()
{
emit(); /* emit guide particle */
/*  recursively places and emits particles  */
putbumps(guideposition, childradius, nbcauliflowerclumps,
      cauliflowerscale, nbcauliflowerrecursions);
return 0;  /* dont emit because emission occured during recursion  */
}

Several new things are going on in this algorith. First, because of the recursion, all of the emit() calls
take place inside setChildParticle_Cauliflower(), and its return value is zero so that no additional emit()
calls are made. The second new technique is recursion. With each recursive call to putbumps(), the next
level of spheres are placed, with a sphere radius that is larger or smaller than the previous level by a
factor of cauliflowerscale. By setting this parameter less than one, the bumps get smaller and
smaller. In the example images above, the values used were: 



/* cauliflower placement  */
cauliflowerscale = 0.5;
nbcauliflowerclumps = 20;
nbcauliflowerrecursions = 3;

Curves in space

Space curves are simply a parametric representation of the continuous sequence of points. We can draw
the curve simply by placing particles in sequence along the length of the curve path. Positions on the
curve are generated by knowing the position of an anchor point, and a parameter that traverses the lenght
of the curve. 

In the algorithm below, we generate a simple space curve which has constant helicity and curvature. For
this, the important data to track is 

/*  Constant helicity and curvature space curve  */
float pathlength, dpath, helicity, curvature;
vector Tangent, Normal, Binormal, T, N, B, G;

/*  Space Curve Routines  */

void ComputeSpaceCurveGamma()
{
float hh;
hh = 1.0/sqrt(1.0 + helicity*helicity);
G = (helicity * B - T ) * hh;
return;
}

vector ComputeSpaceCurvePosition()
{
vector Position;
float cl, sl, theta;
theta = pathlength * curvature;
sl = sin(theta);
cl = cos(theta);
float hh;
hh = 1.0/sqrt(1.0 + helicity*helicity);
Position = T * theta;
Position = Position - N * cl * hh;
Position = Position + G * (theta - sl) * hh;
Position = Position / curvature;
return Position;
}

void ComputeSpaceCurveTangent()
{
float cl, sl, theta;
theta = pathlength * curvature;
sl = sin(theta);
cl = cos(theta);
float hh;
hh = 1.0/sqrt(1.0 + helicity*helicity);
Tangent = T;
Tangent = Tangent + N * sl * hh;
Tangent = Tangent + G * (1.0-cl) * hh;
return;
}



void ComputeSpaceCurveNormal()
{
float cl, sl, theta;
theta = pathlength * curvature;
sl = sin(theta);
cl = cos(theta);
float hh;
hh = 1.0/sqrt(1.0 + helicity*helicity);
Normal = N * cl + G * sl;
return;
}

void ComputeSpaceCurveBinormal()
{
float cl, sl, theta;
theta = pathlength * curvature;
sl = sin(theta);
cl = cos(theta);
float hh;
hh = 1.0/sqrt(1.0 + helicity*helicity);
Binormal = B - ( N * sl + G * (1.0-cl) ) * helicity * hh;
return;
}

 

Space curves drawn from the guide particles.

Basic Random Walk

A random walk is basically just that. The basic of each successive child particle is a random step away
from the position of the previous child particle. Over the space of many steps, the connected path can
form a complex, fractally shape. Of course, there are many types of randomness, producing random



walks with a variety of characteristics. We explore several of these in this and the next four algorithm
sections. 

The figure below was generated from the most basic random walk method. To accomplish this, the
particles are very small (0.005 times the guide particle radius), and lots of them are used (20000 per
guide particle). When even more particles are used in the next image (200,000 per guide particle, over
15 million total), you can clearly see that the random walk marches all over space. 

The most basic random walk. There are 20000 child particles for each guide particle, over 1.5 million
total.



Longer version of the basic random walk. There are 200000 child particles for each guide particle, over
15 million total.

The random walk process uses the following code: 

vector RandomStep()
{
vector ruv;
ruv[0] = drand48() - 0.5;
ruv[1] = drand48() - 0.5;
ruv[2] = drand48() - 0.5;
return ruv;
}

int setChildParticle_BasicRandomWalk()
{
childposition = childposition + walkstep * RandomStep();
setAtt("position", childposition);
return 1;
}

The routine RandomStep() generates a vector with components lying in the range (-0.5,0.5). The current
child particle is placed at a position that is randomly displaced from the previous particle, with the
distance of the displacement in the range (0,sqrt(3)/2 walkstep). 

There are no bounds on the size or length of random walk achievable. Because of the randomness in the
direction and size of the steps however, there is a theoretical estimate of the approximate range the
random walk will occupy. Based on the statistics of the random numbers being used, the root mean
square step sizes is S = walkstep/sqrt(24). After maxchildcount steps, the range of the random
walk should be roughly (S sqrt(maxchildcount)). 



Correlated Random Walk

As might be expected, the correlated random walk is very similar to the basic random walk. The
difference comes in one spot only: the random walk set is no longer independent from particle to
particle. A statistical correlation is introduced in the following way: 

int setChildParticle_CorrelatedRandomWalk()
{
walk = walk * mixin + walkstep * RandomStep() * mixout;
childposition = childposition + walk;
setAtt("position", childposition);
return 1;
}

The parameters mixin and mixout are mix the previous value of the random step with the new one, and
so 0 < mixin < 1, and 0 < mixout < 1, with mixin + mixout = 1. The special case mixin = 0 is the
uncorrelated basic random walk, while at the other extreme mixin = 1 produces purley straight lines. 

The range in between uncorrelated random walk and straight line posseses a wide range of behaviors
that we will try to organize in this section. 

The first thing to sort out is what the impact of correlation is. The figure below shows that clearly:
correlation turns the path that the particles are laid out on into a "smooth" curve with unpredictable
twists and turns. As the mixin parameter approaches 1, the number of kinks and turns become fewer.
The example below for example, using 50000 particles per guide particle, with short spacing between
them. The mixin is 0.9999. Thats right, there are four 9’s to the right of the decimal point. 

A correlated random walk, with correlation mixin = 0.9999. Despite the very high correlation, there is
considerable structure in each path. There are 50000 child particles for each guide particle. 



To give you some idea of the importance of 0.9999 versus 0.999 for example, the image below was
produced with mixin = 0.999. There is a substantial difference between the two. 

A correlated random walk, with correlation mixin = 0.999. There are 50000 child particles for each
guide particle. 

Finally, below is the same set of particles as the other two, but with mixin = 0.99. 



A correlated random walk, with correlation mixin = 0.99. 

Spherical vs Cartesian walk

In the previous random walk examples, the vector step was of a "Cartesian" form, which means that the
direction and length of the step were subject to randomization each step. This was accomplished by
randomizing the three cartesian components of the step independently. An alternative useful method of
conducting a random was is to randomize the direction of each step, but leave the magnitude of the step
fixed. This is "spherical" walk. In practice, in requires only a small change in the code to accomplished.
Using the random unit vector generator from the uniform spherical filling, the setChildParticle code is
simply: 

int setChildParticle_SphericalRandomWalk()
{
childposition = childposition + walkstep * RandomUnitVector();
setAtt("position", childposition);
return 1;
}

So, in the spherical random walk, successive steps are a distance exacly walkstep apart, whereas in the
basic cartesian random walk, the distance between steps can be as little as 0 and as much as walkstep.
This has the effect of leaving the spherical random walk volume less dense in the center, as shown in the
example below. 



A spherical (and uncorrelated) random walk. 

Just as with the cartesian random walk, we can introduce correlation in the walk. This is accomplished
this way: 

int setChildParticle_CorrelatedSphericalRandomWalk()
{
walk = walk * mixin + walkstep * RandomUnitVector() * mixout;
childposition = childposition + walk;
setAtt("position", childposition);
return 1;
}

We have introduced the mixin and mixout parameters that same as in the basic cartesian case. An
example of correlated spherical walk is below: 



A spherical random walkwith correlation mixin = 0.999.

Levy Flight 

A Levy Flight is a kind of random walk. The fundamental difference between Levy Flights and other
random walks is that the length of the steps of a Levy Flight are chosen at random from a power law
distribution. The impact of that choice is that the averge size of the walk after a number of steps is very
different from other random walks. Levy Flights tend to have regions that look similar to ordinary
random walks, but the regions are connects by occasional long single steps. This produces a nice
clumping effect, as illustrated in the figure below. 



A Levy Flight random walk. In this case, the parameter settings were LevyMu = 2.2 and LevyMin =
0.03 * guideradius. There was no correlation in the steps, and there were 2000 child particles (i.e.

Levy steps) per guide particle.

The code for performing a Levy Flight is 

vector RandomLevyStep()
{
     vector ruv;
     ruv = RandomUnitVector();
     float step;
     step = LevyMin * pow(drand48(), 1.0/(1.0-LevyMu));
     ruv = step * ruv;
     return ruv;
}

int setChildParticle_RandomLevyWalk()
{
     childposition = childposition + RandomLevyStep();
     setAtt("position", childposition);
     return 1;
}

Directed walk

Walking the Surface of Implicit Surfaces

As discussed so far, random walks traverse space without any real restrictions on where they travel. For
some purposes, it is useful to perform a random walk in order to get the complex structure, but limit the
region the walk can occur it. Limiting the walk is the focus of this section. 



Before proceeding, the convention chosen here for implicit surfaces is that the implicit function has a
value of zero on the surface, has a positive value inside the surface, and a negative value outside the
surface. 

First, we need a method of computing the relevant information about the implicit surface. For this
problem, we need routines that can retrieve two pieces of information: 

1. For any point in space, what is the value of the implicit funcition. 
2. For any point in space, what is the "normal" vector, defined as the unit vector that lines up with the

gradient of the implicit function at that point, pointing outwards from the surface. 

These two type of information will be contained in two function: getISFunction() and
getISNormal(). For the simplest case of a spherical implicit surface, these can take the form 

float getISFunction(vector r)
{
   /*  simple circle case   */

   vector test;
   test = r - positionIS;
   float returnvalue;
   returnvalue = 1.0 - (test.test)/(radiusIS*radiusIS);
   return returnvalue;
}

int getISSign(vector r)
{
    /*  > 0 => inside surface;  < 0 => outside surface  */
    float ISFunctionvalue;
    ISFunctionvalue = getISFunction(r);
    int returnvalue;
    returnvalue = 0;
    if(ISFunctionvalue > 0){ returnvalue = 1; }
    if(ISFunctionvalue < 0){ returnvalue = -1; }
    return returnvalue;
}

vector getISNormal(vector r)
{
    /*   simple circle case  */
   vector test;
   test = r - positionIS;
   test = test / sqrt(test . test);
   return test;
}

We have also added the routine getISSign() which uses getISFunction() to decide if a point in space
is inside or outside the implicit surface. While we have built functions for spherical implicit surfaces, the
process described here is applicable for any implicit surface. 

The random walk illustrated in setChildParticle_CorrelatedTraverseIS() below is altered at each
step to that is preferentially moves along the normal toward the surface of the Implicit Surface. At any
step, the walk determines whether the current child position is inside or outside the surface, then
re-orients the random step so that it moves toward the surface. There is still a random element in each
step perpendicular to the normal. 



int setChildParticle_CorrelatedTraverseIS()
{
    float ISsign;
    vector ISnormal;
    ISnormal = getISNormal(childposition);

    /* ISsign > 0 => inside; ISsign < 0 => outside  */
    ISsign   = getISSign(childposition);

    /*  step in a random direction perpendicular to IS  */
    walk = RandomUnitVector();
    walk = walk - (walk . ISnormal) * ISnormal;
    walk = walk / sqrt(walk . walk);
    walkIS = walkIS * mixin  + stepIS * (ISsign * ISnormal + walk) * mixout;
    childposition = childposition + walkIS;
    setAtt("position", childposition);
    return 1;
}

The two examples results below demonstrate that the random walk is bound to the implicit surface. 

A random walk along the surface of an Implicit Surface (sphere), with mixin = 0.0.



The same random walk along the surface of an Implicit Surface as above, with mixin = 0.99.

Filling the inside (and outside) of Implicit Surfaces

It takes only a simple modification of the previous setChildParticle technique to have the random walk
fill the inside of the implicit surface. The difference is that, when the particle is inside the implicit
surface, the random walk is unaffected (whereas previously it was biased toward the surface). So now
the routine setChildParticle_CorrelatedFillIS() looks like: 

int setChildParticle_CorrelatedFillIS()
{
    float ISsign;
    /* ISsign > 0 => inside; ISsign < 0 => outside  */
    ISsign   = getISSign(childposition);

    /*  step in a random direction perpendicular to IS  */
    walk = RandomUnitVector();
    if(ISsign < 0) /*  Outside: redirect inside  */
    {
       vector ISnormal;
       ISnormal = getISNormal(childposition);
       walk = walk - (walk . ISnormal) * ISnormal;
       walk = walk / sqrt(walk . walk);
       walkIS = walkIS * mixin  + stepIS * (ISsign * ISnormal + walk) * mixout;
    }
    else  /*  Inside: let it go  */
    {
       walkIS = walkIS * mixin  + stepIS * walk;
    }
    childposition = childposition + walkIS;
    setAtt("position", childposition);
    return 1;



}

As you can see, the difference is that now if the particle is inside, the random walk is unaltered. 

The examples below demonstrate filling for various random walk correlations. 

A random walk inside an Implicit Surface (sphere), with mixin = 0.0.



A random walk inside an Implicit Surface, with mixin = 0.5.

A random walk inside an Implicit Surface, with mixin = 0.9.

A random walk inside an Implicit Surface, with mixin = 0.95.



A random walk inside an Implicit Surface, with mixin = 0.99.

Time-dependence (pulses, shocks, waves, and cheesy dynamics)

The idea behind pulse is that a procedural method exists to tag positions along a random walk, and
control any behavior with that tag. Because we have access to the frame number via the
parameter$frame provided by the pdbEditor, the tag can be positions along the walk in a time dependent
way. 

An example of this is the following code: 

float cosh(float arg)
{
   float b;
   b = exp(arg);
   return 0.5*(b + 1.0/b);
}

float ComputeSpread()
{
   float pl;

   /*  compute relative centroid of pulse based on speed and time  */
   pl = pathlength - pulse_spreadspeed * $frame;

   /*  use cosh function for a on-off behavior */
   return pulse_minspread + (pulse_maxspread-pulse_minspread) / cosh(pl/pulse_spreadwavethickness);
}

int setChildParticle_Pulse()
{
    /*  Start out similar to a space curve  */



    childposition = guideposition + ComputeSpaceCurvePosition();
    ComputeSpaceCurveNormal();
    ComputeSpaceCurveBinormal();
    ComputeSpaceCurveTangent();

    pathlength = pathlength + dpath;

    /*  Now build a cloud around that position with a thickness  */
    float spread, angle;
    spread = ComputeSpread();
    int cloudsize, cloudcount;
    cloudsize =  pulse_cloudsize * (spread/pulse_minspread);
    cloudcount = 0;
    while(cloudcount < cloudsize)
    {
        displacement = RandomStep();
        /* extract and scale component along tangent  */
        pulse_position = childposition + dpath * (displacement.Tangent)*Tangent;

        /* extract and scale component perp to tangent */
        displacement = displacement - (displacement.Tangent) * Tangent;
        pulse_position = pulse_position + spread * displacement;
        setAtt("position", pulse_position);
        emit();
        cloudcount = cloudcount + 1;
    }
    return 0;
}

What does this code do? The first few lines of setChildParticle_Pulse() just set up the walk as a
SpaceCurve, exact as in the previous Curves in space section. Then a routine called ComputeSpread()
is invoked. The number that comes from this is used in two ways. First, a set of "grandchild" particles
are created, and the number of them depends on the spread value - the higher the spread, the more
particles. Each grandchild is created as part of an ordinary random placement, but the placement is
confined to the disk perpendicular to the space curve at that point. The distance that the placement
extends perpendicular to the curve is controlled by the value of spread also. Effectively, spread
controls the local thickness of the curve in space. 

Now examine how spread is computed. The computation involves the inverse of the cosh() function,
which is plotted below: 



A plot of the 1/cosh() function. 

So the ComputeSpread() routine returns the value pulse_minspread for all points on a walk except
when pl = pathlength - pulse_spreadspeed * $frame nears a value of zero, where it smoothly
changes to the value pulse_maxspread. But that near-zero point is a funciton of frame number, so over
a sequence of frames, the segment of a walk with ComputeSpread() different from pulse_minspread
moves farther out on the walk, giving the illusion of pulse propagation. This image below illustrates a
frame of pulses in a set of space curves. 



A set of particle strings with a pulse. As time progresses, the pulse propagates along each string.

This effect can be modified so that instead of producing a limited region of a pulse, a shock-wave style
effect can be produced. In this effect, once ComputeSpread() has smoothly changed from the value
pulse_minspread to the value pulse_maxspread, it remain there. This is accomplished by the line 

return pulse_minspread + (pulse_maxspread-pulse_minspread) /

cosh(pl/pulse_spreadwavethickness); 

in ComputeSpread() with the line 

return minspread + (maxspread - minspread) * Heaviside(pl/spreadwavethickness);

where the Heaviside() function is 

float Heaviside(float arg)
{
   float b;
   b = exp(-arg);
   return b/(1.0 + b);
}

Jerry Tessendorf
$Date: 2000/03/24 18:15:53 $
$Revision: 1.10 $ 



A.2 A Small Gallery of Particles

The following images were generated using the methods described above and the particle renderer jahasa.
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APPENDIX

B

SPARSE GRID VOLUME RENDERING ON A GPU

This appendix is a report written for an honors undergraduate class

Authors: Sam Bryce and Zach Welch, Clemson University, 2012

B.1 Introduction

Volume rendering is a method for creating images from a three dimensional set of particles. Volume rendering
has a wide variety of applications. Medical technology uses volume rendering in Computer Tomography
(CT) scans and Magnetic Resonance Imaging (MRI). Scientific visualization applications often use volume
rendering techniques. Volume rendering is often used in the digital special effects to render amorphous and/or
gaseous elements like clouds, dust, smoke, or flames 5. Something like a cloud can be more realistically
modeled by a volume of particles than the traditional graphics paradigm of representing objects as surfaces.
This more realistic modeling in turn leads to a more realistic image. Volume renderers can take into account
factors such as how light travels through various mediums and the effects of light scattering. The elements
to be rendered are modeled as sets of volumetric data within a 3D grid. This grid is conceptually made up
of 1x1x1 cubes called voxels 2. Each voxel stores a density and a color of the particle at that specific voxel.

One of the key limitations of traditional volume rendering is memory size. If at each voxel we store a
single 4 byte floating point number and three 4 byte floats representing the RGB color at this voxel, we end
up storing 16 bytes for every voxel. A single voxel is inconsequential in terms of memory usage. However,
volume rendering utilizes large grids of voxels to work. The larger the volume to be rendered and the more
detailed the volume needs to be, the larger the array of voxels. Rendering a 10003 grid with 16 bytes allocated
for each grid point would require a minimum of 15 GB of main memory, well beyond most machines. Also, it
is very likely that a substantial majority of voxels are empty, meaning that much of the memory allocated is
unused and therefore redundant. An ideal situation would involve storing only non-empty voxels in memory,
with the understanding that if a voxel is not in memory, then it contains specified default values. This is the
basic idea upon which sparse grids are built. Sparse grids, as opposed to dense grids that allocate memory
for each grid point, regardless of its value, only store a portion of the data 4. When the volume renderer
attempts to access data at a grid point, the sparse grid must determine whether this grid point is actually
allocated and return the appropriate values.
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Figure B.1: A set of volume rendered clouds

B.2 Background

Sparse Grids

Sparse grids are not appropriate for all situations. If there are no memory management concerns, or if the
importance of shorter render times outweighs decreasing the size of the data, then sparse grids will not likely
be of much use. Even in situations where using less memory is an important goal, sparse grids may not be
a useful solution. There is a threshold of data a sparse grid can hold beyond which the sparse grid is less
memory efficient. This threshold varies depending on the implementation. Since sparse grids store memory
in a noncontinuous fashion, extra information must be stored to retrieve the correct data. This information
will end up being more of a burden on memory if too much of the grid is allocated. Sparse grids are useful
for a specific class of problems. If the application contains a grid that is mostly empty and for which better
memory usage justifies slower rendering speeds, sparse grids are appropriate. The added computation in
looking up values is a sparse grid is what causes the slowdown in render time.

OpenCL

Specifically, we are interested in building and analyzing the performance of sparse grid implementations in
OpenCL. OpenCL is a programming framework designed to take advantage of the heterogeneous nature of
modern computer systems 1. One of the major benefits of OpenCL is the ability to execute code on graphical
processing units (GPU). GPUs are highly parallel, with many threads of execution. This inherent parallelism
combined with the fast floating point processing cores used in GPUs makes these devices very appealing for
solving parallelizable problems (like volume rendering). OpenCL seeks to take advantage of the attributes
of the GPU. Programs written for OpenCL must have a host and at least one kernel written in order to
function. The host program, written in a language like C or C++, is tasked with setting up the kernel and
handling interactions between the kernel and the rest of the system.
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Common tasks performed by the kernel include discovering what OpenCL devices are in the system,
loading a kernel, choosing the appropriate OpenCL device for the kernel to run on, and loading data onto
the OpenCL device. OpenCL devices are usually CPUs and GPUs, and the host program can specify what
type of OpenCL device a kernel is to run on. Kernels are written in OpenCL C, a C like language with
some alterations. The kernels written for the volume renderers used in this paper utilize the data parallel
programming model. In other words, a set of input data is split up and a sequence of operations is performed
on each element of the input data in separate threads of execution. In this case, kernels contain the sequence
of operations. This same kernel is run concurrently on many threads.

Each data element is given a unique global id, and using this id, each thread spawned is given a different
element’s id. The host program specifies the number of threads to spawn, which is often the number of data
elements to be processed. One of the important factors in OpenCL is device memory. Since the CPU the
host is executing on and the device executing the kernel are almost always different, data the kernel needs
must be loaded into the device’s global memory. For most systems, this device memory is smaller than
main memory, especially if the device in question is a GPU. Thus, efficient memory management is even
more important when using OpenCL. OpenCL is an attractive language for volume renderers because of the
speedup provided by GPU concurrency, but memory limitations are a serious concern. Sparse grids are a
valuable extension that can potentially greatly expand the size of renderable grids.

Related Work

Several popular libraries already exist that utilize sparse grids. Field3D is an open source C++ library
originally developed by Sony Pictures Imageworks 2. While Field3D uses dense grids by default (which are
generally much faster but bigger), the library does have sparse grid options available. Field3D uses a scheme
similar to the Block-partition sparse grid implementation described below. In a nutshell, Field3D divides
the grid into multi-voxel blocks. These blocks are only allocated when a voxel within a given block is set.
Field3D has some additional functionality not found in our implementations, such as deallocating blocks and
iterating over blocks. This functionality was not necessary for our purposes and thus was not added.

Gigavoxel is a system developed by Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eise-
mann 3. It uses N3-trees to store and access voxel data. Each node of an N3-tree can be subdivided into
N33 children. N3-trees are a more generalized form of octrees, which are N3 trees with N = 2. Different
values of N can be used to achieve different performance goals. If N is small, the data structure will be more
memory efficient. If N is large, the data structure will allow for quicker traversal. Each node in Gigavoxel’s
N3-tree stores either a block of pointers or a single value. The single value represents a value that is shared
by all elements in the particular N3 sized block. Usually this will be zero, representing an empty block. All
node data and blocks of voxels are stored in texture memory. Gigavoxel is capable of rendering 20483 sized
RGBA data in real time on GPUs.

B.3 C++/C implementations

Before attempting to build an OpenCL volume renderer, a number of implementations of sparse grids were
created. These implementations were analyzed and compared based on memory usage, lookup time, and
load time. The grids described below were implemented as C++ classes with a common API. The one C
struct implemented was written to match this API as closely as possible. Several variations are made where
appropriate, but the important methods are :
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get(int,int,int) - given an index for each dimension, return the value at grid point
set(float,int,int,int) - given an index for each dimension, set the grid point to the given float value
init(int,int,int) - given dimensions for x, y, and z components, initialize the grid
In addition, all sparse implementations have an additional method
setDefVal(float) - sets the default value for the grid

Non Sparse Implementation

As a baseline for comparison, a dense grid class was implemented. Given X,Y, and Z dimensions for the grid,
a 1D float array of size X ∗ Y ∗ Z is dynamically allocated. Assuming an indexing scheme from 0 to N-1,
grid point (i,j,k) would be accessed by indexing into the array

index = i+ j ∗X + k ∗X ∗ Y (B.1)

This value is used both when getting and setting this grid point. Since there is very little computation and
the memory is all allocated beforehand, both operations are performed very quickly.

C++STL Maps

Two implementation of sparse grids were created using the Map class from C++’s Standard Template Library
(STL). Abstractly, maps are a set of (key,value) pairs. A map can store a value with a unique key. If given
a potential key, a map will either indicate that the key does not exist or return the corresponding value.
The C++ STL map class is templated; a type must be specified for both the key and the value. In both
implementations described below, the value type is float, while the key type varies based on implementation.
Note that the map class is not currently portable to OpenCL; these two implementations served as a baseline
for completely sparse grids.

The first implementation has a key,value type of < int, float >; given an int key, there would potentially
be a float value. This associative storage of data is very similar to the general idea of sparse grids and a
sparse grid can easily be implemented using an < int, float > map. First, a default float value must be
defined. Though commonly 0.0 (grid points with no data would have no density) , the value is application
specific. The grid must then be initialized with the X, Y, and Z dimensions of the grid. Though no memory
is allocated, the grid dimensions must still be known for correct getting and setting. When a value F is to be
set set at grid point (i,j,k), the key value pair to be inserted into the map will be (i+ j ∗X + k ∗X ∗ Y, F ).
This insertion is only performed if F 6= defV al. In this way, only relevant data is stored in the grid. When
getting a value from position (i,j,k) on the grid, if the map does not contain key i + j * X + k * X * Y,
then the default value is returned. If i + j ∗ X + k ∗ X ∗ Y does have an associated value, it is returned.
Whereas the dense grid had O(k) set and get methods, the complexity of the set and get methods for the
map< int, float > sparse grid is O(log n), where n is the number of elements in the map.

The second implementation of sparse grids using STL maps has a key,value pair type of < int,map <
int,map < int, float >>>. Each of the three ints in the key,value pair type correspond to a dimension of
the grid. The get method works by checking for (i,j,k) if any value has been stored with an X index of i, if so
whether any value has also been stored with Y value of j, and so on. Setting works in a similar though reverse
way. The benefits of this implementation may not be initially obvious behind the layers of abstraction. The
main benefit of this implementation is that there is no need for predefined grid dimensions. This allows for
practically infinite sized grids, as long as the indices are valid ints and there is available memory. Grid data
can be positioned anywhere without having to specify an offset as in other grid implementations. The benefits
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described above also come at a large cost. The set and get methods of the map< int,map < int,map <
int, float >>> sparse grid are O((log n)3).

Red-Black Tree

Since the C++ STL map is not something that can be used in an OpenCL kernel, one of the potential avenues
pursued by the authors was creating a sparse grid with an underlying data structure that would be compatible
with OpenCL and also improve upon either the render time or the memory overhead. It was decided that
the underlying data structure for storing non-empty grid points would be a binary search tree. The key for
organizing the nodes of the tree is the i+j ∗X+k∗X ∗Y , which is unique for each grid point. Binary search
trees insert smaller keys into the left sub-tree and larger values into the right sub-tree. It is very possible
that a user of the grid class would start at grid point (0,0,0) and loop over the acceptable values of i,j, and
k to initialize their grid. This potentially leads to the worst case scenario for the tree, in which it essentially
becomes a linked list of right sub-trees. Since this possibility could easily occur in use, it was decided to use
a self balancing tree, specifically a red-black tree. While this may incur a hit in inserting new nodes, this
should decrease the look up time, especially in the worst case. The red-black tree implementation of a sparse
grid was written in C. Instead of a C++, a struct was used, and all methods had an additional SparseGrid *
parameter. Notice that this implementation (as well as all sparse implementations) does introduce memory
overhead for each non-empty value added to the grid. Pointers to the left and right subtrees and a key value
must be stored for each float to be stored in the tree. This overhead means that for grids where greater than
25% of the grid points are non-empty, the sparse grid implementation is actually less memory efficient.

Block-Partition

The method for sparsely storing voxel data described here is similar to the scheme used by Field3D 2. This
implementation partitions the grid in into cubes of one or more voxels. Often the grid is partitioned so that
each block (the partition size) is a power of two in each dimension 4. This is implemented as an array of
float* all originally set to null. When an element is to be set at a certain grid point, the correct block is
found. If this block has not been allocated, the entire block containing the grid point will be allocated as
an array of size (partSize)3. The value is then set at the appropriate index in the appropriate block array.
If the block has already been created, then the only step is having the correct element of the array is set.
Looking up a value involves indexing to the correct block. If this block is null, the default value should be
returned. If the block is allocated, the correct value within the block should be returned.

Unlike previous spare grids implemented, the block-partition method does not attempt to only store filled
voxels. Block-partition instead attempts to use the inherent spatial locality of particles within most grids.
In the entities we are often trying to render, like clouds, if a specific voxel is filled, it is very likely that
most if not all of its adjacent voxels will also be filled. This property does not hold along the outer edges
of the entity, and it is possible there are non filled areas within the entity, but for the majority of particles
spatial locality should apply. This coupled with the expensive cost of dynamically allocating space makes
building grids using this algorithm generally faster than other implementations. Implementations like those
using the STL maps and red-black trees carry a high cost in terms of the amount of data necessary to get
to organize the grid (ex: the pointers for the left and sub-trees). In block-partition method, only one extra
value is created for every partSize3 voxels. While not all of these voxels may be used, the majority of them
will likely be used for most volumes. It is not unlikely that for many sets of data the block-partition method
may be more memory efficient than other sparse implementations discussed. Another very tangible benefit
of this scheme is its handling of dynamically allocating memory. The first grid point to be set in a block
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should be about as slow as other implementations since the block must be allocated before the value can be
set. However, later values placed into that block will be inserted almost as quickly as in the dense grid (there
is some extra computation involved in finding the correct block), since the space has already been allocated.
This is one of the ways that this implementation takes advantage of the spatial locality of most data. The
computational complexity of setting and getting values in partition-block grids is O(k). This is the same
order of complexity as dense grids. The multiplicative constant for dense grids is lower, so sets and gets on
a dense grid will still run faster than the block-partition grid.

Comparison

With five different implementations of grids written, we were interested in seeing how these grids would work
in use. The two important metrics of sparse grids are time and memory usage. Multiple grid sizes were
used in testing; the tests were repeated with both a 2563 grid and a 5123 resolution grid of a wisp The grids
contained only floats, no color element was taken into account. The rendered 5123 grid used for testing.

Figure B.2: The rendered 5123 grid used for testing

To get a sense of how long each grid takes to set and access data, the time it took for each implementation
to build a grid and iteratively get every point in the grid was measured. Loading a grid is a test of the speed
of each grid’s set method. Iterating over a grid in turn gives an idea of the relative time it takes each grid
to look a value up. This test was repeated fifteen times, one immediately after the other. The results of
the first five runs were discarded, since they almost always tended to be much less consistent than the latter
runs. The load time and iteration time of the next ten runs were then averaged. The results of this testing
were displayed below.

Several trends are worth discussing from this chart. Immediately apparent is the time inefficiency of the 3
nested STL maps implementation. This is not unexpected given its high computational complexity compared
to the other grids, but its load and iteration times almost double that of the next slowest implementation.
Unless the added benefit of not having to predefine maximum grid dimensions far outweigh the time costs
displayed here, this implementation is not of much practical worth. The single STL map and the red-black
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Figure B.3: CPU Grid Implementations - Time

implementation achieved similar results, which is not surprising. Maps like the ones found in the STL can be
implemented using tree structures, and the two implementations were both O(log n) for setting and getting
voxel data. The red-black tree performed slightly better, but this could potentially be attributed to a number
of things like differences between the gcc and g++ compilers, extra overhead by the templates used in STL
maps, or that the red-black implementation was written specifically for grids. This chart also makes it clear
that sparse grids take the bigger time hit in accessing data. The sparse grids (nested map excluded) all
performed about as well as the dense grid when it came to loading data. The dense grid iterates over both
lists faster than it loads them. The opposite is true for the sparse grid implementations. The block-partition
grid, which is clearly the most efficient sparse grid from a time standpoint, is twice as slow in iterating over
its data as loading it. This means that getting a value is about four times slower for block-partition grids
than for a dense grid.

Time is only one metric to analyze sparse grids. The other important metric is memory usage. To track
memory usage, a 2563 and a 5123 grid were again loaded into memory. Valgrind, a tool that tracks memory
allocation of programs, was used to see how much memory was being allocated in the process of loading each
grid. The results are displayed below.

It is obvious that all of the sparse grids are much more memory efficient than the dense grid at storing data.
Interestingly, the most efficient sparse grid (for these two images, which are representative of the majority of
images rendered) is the block-partition grid, which does not attempt to contain only non-empty values. This
is likely the case because the overhead incurred by the STL map and red-black tree implementations place a
far greater burden on memory than the array of pointers to blocks and the unused but still allocated voxels.

Based on the tests we ran, the partition-block scheme of sparse grids is the clear winner. It is significantly
faster and more memory efficient than any of its sparse counterparts. It is also clearly the most scalable,
which is an important attribute for these grids considering that their purpose is in rendering larger grids of
data. It is for these reasons that the sparse grids used in our volume renderers use block-partition grids.
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Figure B.4: CPU Grid Implementations - Memory

B.4 OpenCL implementations

Non-sparse

To serve as a foundation for building volume renderers utilizing sparse grids, we started with volume renderer
with a C++ host that set up the volume to be rendered and the appropriate OpenCL setup. The renderer
used two OpenCL kernels. The first kernel calculates and builds a deep shadow map for the volume. The
second kernel performs the ray marching 5 and creates the image data, which is then returned to the host and
written to an image file in the requested format. The shadow map kernel was removed during development
to allow for more space in GPU memory.

Single Level of Abstraction

The original sparse grid implementation of a volume renderer in OpenCL features a system based on the
partition-block implementation described above. The grid is built in the C++ code and loaded onto the GPU
to be used by the kernel. Due to the nature of memory on a GPU, one major deviation is made from the
C++ implementation. The C++ implementation kept an array of pointers to blocks of grid points, initially
set to null. When a grid point was being set within a null block, space for the block would be dynamically
allocated and the array of pointers would then point to their respective blocks. The problem with this
implementation is that when the array is loaded into the graphics card’s memory, the values of those array
indexes are pointing to memory locations in a totally different address space, in main memory. To fix this
problem, the initial array of pointers is replaced with an int array of the same size. Initially all values in
the array are set to -1. Using the same indexing scheme described to index into the array of pointers with a
given (i,j,k), whenever a location is accessed for the first time, its value is changed from -1 to one less than
the total number of locations indexed to so far. The first location accessed will be given a value of 0, the
second location accessed will be given a value of 1, etc. These new values will be used to index into a second
array of floats containing the actual values. Each time a new block is indexed, the float array will have to

119



be reallocated with partSize3 more floats to accommodate a new partition. All of the newly allocated floats
must be initialized to the default value.

Figure B.5: A 4x4x2 grid with a partition size of 2

Once both arrays are built in this fashion, getting a value from the grid is a two step process. The first step
involves looking up the indexed int array value. If this is -1, then the default value is immediately returned.
Otherwise, the array value is used to index into the correct partition in the float array, and then the correct
value within the partition is returned. This difference allows the spare grid to be loaded and correctly work
on the GPU. The sparse grid was updated so that OpenCL’s float4 type could also be stored at each data
point. A separate array of float4s was kept and values were added and gotten identically to the float array.
In the volume renderer the first three values of the float4 stored RGB color information. The original volume
renderer using dense grids was heavily modified to accommodate the sparse grid implementation. Aside
from trivial API differences between the grid classes on the C++ side, the majority of the changes to the
C++ code involved getting all of the extra data needed by the sparse grid loaded onto the GPU. The sparse
grid needs the mapping int array, the partition size, and the default values for the float and float4 arrays in
addition to what is required of the dense grid. The kernels were altered to handle the additional arguments
and the sparse data. The original dense grids relied on direct access to the arrays and were rewritten to
correctly access the appropriate data.

Multiple Levels of Abstraction

Most of the overhead associated with the block-partition scheme hinges on the size of each partition. Larger
partitions mean a smaller int array for mapping, but also means that more potentially unused grid points
are being allocated. Conversely, depending on the size of the grid, it is possible that making the partition
size will cause the total memory usage of the system to go up because of the increased size of the mapping
array. In addition, it is possible that many of the integer blocks will be unused, containing a default value
of -1. One way to alleviate this issue is to extend the idea of sparse grids so that the mapping array is
itself sparsely stored into partitions. Adding an additional array of ints adds a layer of complexity both
conceptually and computationally, but given a sparse enough grid the improvements in in memory usage are
substantial. When setting a value at a grid point, the class must first check if the correct mapping partition
has been allocated, allocate if necessary, and then do the same with the data partition before setting the
value. Value look up also has the extra step of checking if the mapping partition has been allocated. The
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Figure B.6: An 8x8x4 double sparse grid

doubly sparse grid implemented here has the same partition size for both levels, though a natural extension
might be to have separate partition sizes for each level.

B.5 Results

Optimization

Several improvements were made to the two sparse renderers after achieving basic functionality. In the
original version of the sparse renderer, only grids in which each dimension was a multiple of the partition size
would correctly renderer. The double sparse renderer, in turn, would only correctly render with dimensions
the multiple of the square of the partition size. Grids not fitting these requirements would produce images
with noise around the edges. This noise was the result of the extra space created by dividing the grid into
blocks; since the grid does not evenly divide into the blocks, a subset of the blocks will contain space for data
that should not exist. This extra space would cause incorrect some indirect indexing into the sparse grid
and thus distort the image. This was resolved by forcing non-multiple grid dimensions to the next highest
multiple (a 1013 grid will be forced to a 1043 grid for single sparseness), ensuring the image produced will
never have this issue.

Other changes were made to the renderers to improve performance in terms of both speed and memory
usage. The deep shadow map kernel and its associated grid were removed from later versions of all three
renderers. This change decreased both the render time of the image and the memory usage of the GPU
since the shadow map data no longer had to be loaded on the card and there were fewer computations to
perform in the ray march kernel. During the development and refinement of these renderers, we found that a
partition size of four seems to produce optimal results for the test volume. The optimal partition size varies
between volumes and the value that seemed the best compromise between render time and memory size.
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Testing

Memory

In addition to creating an image, each renderer returns pertinent information like the partition size used,
amount of time spent on the GPU, and the number of blocks allocated (for the sparse grids). From this data
it is easy to calculate the amount of memory necessary to successfully create and store a grid. To compare
the three renderers, the same image was rendered on each renderer. If a render was successful, the grid size
was increased in each dimension by 250 voxels. When a grid gets too large for the GPU to store, an allocation
failure flag is thrown and the render terminates. The results of testing are shown below. The results discussed
below were generated by an Nvidia GeForce 9600M GT with 256 MB of memory. Additional tests were run
on WHATEVER CHORTLES CARD IS and comparisons between the gathered data can be found later in
the text.

Figure B.7: Voxel Allocation in Sparse Renderers

The non-sparse implementation was only able to successfully render a 1003 grid before exhausting the
memory. The renderer using single sparse grid was able to successfully render grids up to 12503, over three
thousand times larger than the non-sparse renderer. The double sparse grid implementation achieved 27503,
six times larger than the single sparse renderer and over twenty thousand times larger than the non-sparse
renderer. The sparse grid renderers are able to hold much greater volumes because they only allocate a very
minute percentage of the voxels in the grid ( < 0.1 % in most cases). As a result, grids can be orders of
magnitude larger. There is also a substantial gain in the additional layer of sparseness added for the double
sparse renderer. Notice that the percentage of voxels allocated is much closer between the two sparse renderers
than between either sparse renderer and the non-sparse one. Often, they differ by only a few thousandths of
a percent. This would seem to imply that the majority of the savings are coming from making the mapping
sparse as well. As the number of allocated map blocks reported from the double sparse implementation
indicates, the vast majority of blocks are empty in the single sparse implementation. Significant memory
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savings are made by making the map sparse as well. These savings only increase with the size of the actual
grid, since the number of allocated blocks in the double sparse implementation stays roughly the same across
grid sizes.

Render Time

The significant gains made by the sparse grid implementations in terms of memory footprint do come at the
cost of render time. The non-sparse renderer may store all of its values, but because it does so, looking up a
density value is as simple as directly indexing into an array. The single sparse renderer must perform a set
of operations to see if the desired voxel has been allocated and if so what its values are. Having to perform
these additional operations means a slower render. The double sparse renderer must essentially perform this
set of operations twice to look up a value, and as a result is noticeably slower than even the single sparse
render.

Figure B.8: Render Times Using Different Grid Sizes

Several trends, however, do appear in the data. Immediately clear is the fact that there is an inverse
relation between grid size and render time for sparse grids. This relation is especially pronounced in the
double sparse implementation results, which decrease by approximately 40% over the range of grid sizes. In
smaller grids, render times are larger and there is a large change in render time between grid sizes. As grid
sizes get larger, render time starts to decrease and there is less of a difference between the render time of
different sized grids. These results may initially seem counterintuitive. Conventional wisdom would seem to
imply that as grid size increased, so too should the time it takes to render the grid. Notice that render time
trends are similar to the trend displayed percentage of map blocks allocated as grid sizes increase. Both start
large with a fast rate of change and end with smaller values and a slow rate of change. A smaller percentage
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of allocated blocks with increasing grid size implies that the rate of filled blocks in the grid is increasing at a
slower rate the number of unfilled blocks. In other words, the majority of blocks added with an increase in
grid size will go unallocated. While this is not necessarily desirable from a memory management perspective,
it is actually a source of speed up when rendering a volume. If in the course of the look up function, the
look up function finds that the desired voxel is not allocated, the look up function immediately returns the
default value. This means that the majority of the computations needed to actually find the correct value
are skipped, and the lookup function is much faster as a result. This speedup, combined with the parallel
nature of graphics cards, leads to the shorter render times displayed in the double sparse implementation
results. This same basic principle also applies to the single sparse renderer.

Card Scalability

CHORTLE RESULTS WOULD GO HERE
Several tests were run also run on WHATEVER CHORTLES CARD IS with MEM MB of memory. While

the results clearly show that this is a more powerful card that can store much larger sparse grids, the trends
remain largely the same. The benefits of these grids translate with more powerful cards.

Other

These results show that for many volume rendering applications in which memory is the limiting factor,
sparse grids are valuable tools that can greatly increase the functionality of said application. If the volume
needs to be rendered as fast as possible, or if the volume is mostly filled, sparse grids are probably not
appropriate. Our results show that a single layer of sparseness allows grids with orders of magnitude more
voxels for a relatively modest increase in render time. These memory savings come occur because only
a minute percentage of voxels in the grid are actually allocated. More time is needed to render because
additional computations are needed to correctly index to the allocated voxels. Eventually memory in a single
level of sparseness the limiting factor becomes the size of the map used to index to allocated voxels rather
than the voxels themselves. This limitation is solved by making the map itself sparse, creating a double level
of sparseness. This double sparse renderer is slower than its less sparse counterpart, but also can render much
larger volumes. With increasing grid size, these sparse renderers actually take less time to render. This is
because the vast majority of voxels added by the increased grid size will be unallocated. Unallocated voxels
can be looked up much faster than allocated voxels, which helps speed up the render. We recommend that
a volume be rendered with the lowest degree of sparseness possible. Rendering an image using a sparse grid
which can rendered with a non sparse renderer only increases the render time without real benefits. The
value in sparse grids is in rendering grids so large they could not normally be rendered.

B.6 Conclusion

There are many possible methods of reducing the memory size of large volume grids. We implemented sparse
grids using C++ STL maps, red-black trees, and block-partitions. Overall, block-partition sparse grids seem
to be the most efficient method of storing volumetric data. Implementing block-partition grids in OpenCL
allows large volume grids to be rendered on GPUs, which typically do not have as much RAM as CPUs.
Using block-partition grids reduces memory usage but increases render time. Potential future work involves
the use of texture memory on the GPU. Texture memory provides faster access time than global memory.
To use texture memory for sparse grids, we envision writing the one-dimensional, sparse RGBA data to the
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two-dimensional texture memory. We would choose an texture width that is some power of two in order to
speed up indexing calculations. The logical extension of what has been presented in this paper would be to
design a triply sparse grid. This could be useful for volumes that are extremely large but mostly empty. In
general, however, there will be diminishing returns on adding extra levels of sparse mapping. Every extra
layer of sparse mapping increases data access time significantly. Another potential improvement would be
to find the optimal partition size or sizes computationally on the host before sending the data to the kernel.
Generally, a partition size of around 4 is most memory efficient, but in some cases a larger partition size might
save memory. We could develop an algorithm that analyzes that volume grid on the host and determines
which partition size would result in the least possible memory usage. A drawback is that partition sizes that
are powers of 2 make indexing calculations much faster. Using a partition size of 5 instead of 4 might save
GPU memory, but it could double render time. Our current implementation coalesces a block into a single
value only if every element in the block is exactly equal to one particular value. In other words, if the default
value is zero, then a block of values will be allocated in the sparse grid if any of the values in the block are
not exactly equal to zero. We could add a range of values that would be clamped to the default value. This
would decrease memory usage but also decrease render quality.
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