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Forward

These course notes make use of a volumetric scripting language called Felt,
developed at Rhythm and Hues Studios over many years and continuing to be
developed. In 2003 the earliest working version of the Rhythm and Hues Studios
fluid solver, Ahab, had been built by Joe Mancewicz, Jonathan Cohen, Jeroen
Molemaker, Junyong Noh, Peter Huang, and Taeyong Kim, and successfully
used on the film The Cat in the Hat. At that point our group of simulation
and volume rendering developers were thinking about what sort of tools we
would need to be able to manipulate all of the volumetric data coming from
simulations, and for that matter tools to create new volumetric data without
simulations. We were very inspired by what TDs were telling us about Digital
Domain’s Storm, and its expression language in particular. But we could also
see that if we were not careful about how we built a language, there might be real
memory issues from creating and manipulating lots of grid-based volumes. At
the same time, we could see that procedural operations like those in the area of
implicit functions had a lot of nice strengths. We wanted the language to cleanly
separate the application of mathematical operations on volumetric data from
the discrete nature of the data. The same math – and the same code – should
apply whether a volume is grid-based, particle-based, or procedural-based, and
we should be able to freely mix volumes with different underlying data formats.
We also wanted a language that TD’s with programming knowledge could write
code with, so we patterned it after shading languages, a bit of perl, and C.

By the fall of 2003, Michael Kowalski built an early version of the parser for
the language, and Jonathan Cohen built the early version of the computational
engine. To their great credit, years later Felt is still based on that early code
with bug fixes and new features. We want to rewrite it for many reasons, not
the least of which is that code under development for 7 years can get a little
furry. But its quality is high enough that lots of other topics have always had
higher priorities.

When the first version of Felt came out in the fall of 2003, Jerry Tessendorf
inserted it into an experimental volume renderer called hog, and started pro-
ducing images of volumes generated using methods that we now refer to as
gridless advection and SELMA. The imagery lead to applications for fire on
The Chronicles of Narnia: The Lion, The Witch, And The Wardrobe. Figure 1
shows a very early test of converting hand-animated particles into a field of fire.
The method worked because of its ability to create high resolution structure
while simultaneously storing some of the data on grids. The design decisions
allowing the mixture of data formats and resolutions were a critical success early
in Felt’s development.

This workflow using Felt inserted directly into volume rendering continues
in production today.

In 2001, well before the conception of Felt, David Ebert invited Jerry
Tessendorf to give a talk at a conference on implicit function methods. At
the end of the talk he showed a photograph of a large cumulus cloud and spec-
ulated that implicit methods would allow the creation of detailed and realistic
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Figure 1: Early imagery showing the conversion of a particle system into a
volumetric fire. The Felt algorithms used for this included early versions of
gridless advection and SELMA.

cloud scenes within 10 years. Ironically, The A-Team was released in the sum-
mer of 2010, and indeed a large realistic cloud system had been constructed
for the film using Felt’s implicit function capabilities, just barely within the
speculated time frame. The cloud modeling is described in chapter 3.

Felt has been in development for many years, and many people contributed
to it as users, observers, and interested parties. Among those many people are
Sho Hasegawa, Peter Huang, Doug Bloom, Eric Horton, Nathan Ortiz, Jason
Iversen, Markus Kurtz, Eugene Vendrovsky, Tae Yong Kim, John Cohen, Scott
Townsend, Victor Grant, Chris Chapman, Ken Museth, Sanjit Patel, Jeroen
Molemaker, James Atkinson, Peter Bowmar, Bela Brozsek, Mark Bryant, Gor-
don Chapman, Nathan Cournia, Caroline Dahllof, Antoine Durr, David Horsely,
Caleb Howard, Aimee Johnson, Joshua Krall, Nikki Makar, Mike O’Neal, Hideki
Okano, Derek Spears, Bill Westinhofer, Will Telford, Chris Wachter, and espe-
cially Mark Brown, Richard Hollander, Lee Berger, and John Hughes.
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Chapter 1

Introduction

These notes are motivated from the volumetric production work that takes
place at Rhythm and Hues Studios. Over the past decade a set of tools, al-
gorithms, and workflows have emerged for a successful process for generating
elements such as clouds, fire, smoke, splashes, snow, auroras, and dust. This
workflow has evolved through the production of many feature films, for example:

The Cat in the Hat · Around the World in 80 Days · The Chronicles
of Narnia: The Lion, the Witch, and the Wardrobe · Fast and Furious:
Tokyo Drift · Fast and Furious 4 · Alvin and the Chipmunks · Alvin
and the Chipmunks, The Squeakquel · Night at the Museum · Night
at the Museum: Battle of the Smithsonian · The Golden Compass ·
The Incredible Hulk · The Mummy: Tomb of the Dragon Emperor ·
The Vampire’s Assistant · Cabin in the Woods · Garfield · Garfield: A
Tale of Two Kitties · The Chronicles of Riddick · Elektra · The Ring 2
· Happy Feet · Superman Returns · The Kingdom · Aliens in the Attic
· Land of the Lost · Percy Jackson and the Olympians: The Lightning
Thief · The Wolfman · Knight and Day · Marmaduke · The A-Team ·
The Death and Life of Charlie St. Cloud · Yogi Bear · Knight and Day

At the heart of this system is a multiprocessor-aware volumetric scripting
language called Felt, or “Field Expression Language Toolkit”. Felt has c-like
syntax, and is intended to behave somewhat like a shading language for volume
data. An important aspect of Felt is that it separates the notion of volumetric
data from the need to store it as discrete sampled values. Felt allows purely
procedural mathematical operations, and easily mixes procedural and sampled
data. In this capacity, Felt scripts construct implicit functions and manipulate
them, much like the methods described in [1].

In addition to modeling volume data, Felt also modifies geometry, particles,
and volume data generated with other tools, including animations and simula-
tions. This gives fine-tuning control over data in a post-process, similar to the
way a compositor can fine-tune images after they are generated. Conversely,

1



CHAPTER 1. INTRODUCTION 2

simulations can use Felt during their runtime to modify data and processing
flow to suit special needs.

These tools also provide an excellent framework for prototyping new algo-
rithms for volumetric manipulation, such as texture mapping, fracturing models,
and control of simulation and modeling, which will be discussed in chapters 3,
4, 5.

1.1 A Brief on Volume Rendering

One of the primary uses of volumetric data is volume rendering of a variety
of elements, such as clouds, smoke, fire, splashes, etc. We give a very brief
summary of the volume rendering process as used in production in order to
exemplify the kinds of volumetric data and the qualities we want it to possess.
There are other uses of volumetric data, but the bulk of the applications of
volumetric data is as a rendering element. A rendering algorithm commonly
used for this type of data is accumulation of opacity and opacity-weighted color
in ray marches along the line of sight of each pixel of an image. The color is also
affected by light sources that are partially shadowed by the volumetric data.

The two fundamental volumetric quantities needed for volume rendering are
the density and the color of the material of interest. The density is a description
of the amount of material present at any location in space, and has units of mass
per unit volume, e.g. g/m3. The mathematical symbol given for density is ρ(x),
and it is assumed that 0 ≤ ρ < ∞ at any point of space. The color, Cd(x), is
the amount of light emittable at any point in space by the material.

The raymarch begins at a point in space called the near point, xnear, and
terminates at a far point xfar that is along the line connecting the camera and
the near point. The unit direction vector of that line is n, so the raymarch
traverses points along the line

x(s) = xnear + s n

with some step size ∆s, for 0 ≤ s ≤ |xfar−xnear|. In some cases, the raymarch
can terminate before reaching the far point because the opacity of the material
along the line of sight may saturate before reaching the far point. Raymarchers
normally track the value of opacity and terminate when it is sufficiently close
to 1.

The accumulation is an iterative update as the march progresses. The accu-
mulated color, Ca and the transmissivity T are updated at each step as follows1:

x + = ∆s n (1.1)

∆T = exp (−κ ∆s ρ(x)) (1.2)

Ca + = Cd(x) T
(1−∆T )

κ
TL(x) L (1.3)

T ∗ = ∆T (1.4)

1See the appendix A for a justification of this algorithm
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The field TL(x) is the transmissivity between the position of the light and the
position x (usually pre-computed before the raymarch), κ is the extinction co-
efficient, L is the intensity of the light, and the opacity of the raymarch is
O = 1− T .

Flesh out the detail on the derivation of this formula. See the wiki page.
This simple raymarch update algorithm illustrates how volumetric data

comes into play, in the form of the density ρ(x) and color Cd(x) at every point
in the volume within the raymarch sampling. There is no presumption that
the volume data is discrete samples on a grid or in a cloud of particles, and
no assumption that the density is optically thin (although there is an implicit
assumption that single scattering is a sufficient model of the light propagation).
All that is needed of the volumetric data is that it can be queried for values at
any point of interest in space, and the volumetric data will return reasonable
values. So the data is free to be gridded, on particles, related to geometry, or
purely procedural. This freedom in how the data is described is something we
exploit in our resolution independent methods. The workflow consists of build-
ing the volume data for density and color in Felt, then letting the raymarcher
query Felt for values of those fields.

There is an assumption in this raymarching model that the step size ∆s
has been chosen sufficiently small to capture the spatial detail contained in the
density and color fields. If the fields are gridded data, then an obvious choice is
to make the step size ∆s equal to or a little smaller than the grid spacing. But we
will see below several examples of fine detail produced by various manipulations
of gridded data, for which the step size must be much smaller than might be
expected from the grid resolution. This is a good outcome, because it means
that grids can be much coarser than the final rendered resolution, and that
reduces the burden on simulations and some grid-based volumetric modeling
methods.

1.2 Some Conventions

There are several concepts worth defining here. A domain is a rectangular
region, not necessarily axis-aligned, described by an origin, a length along each
of its primary axes, and a rotation vector describing its orientation with respect
to the world space axes. The domain may optionally have cell size information
for a rectangular grid. A field is an object that can be queried for a value at
every point in space. That does not mean that the value at all points has to
be meaningful. A particular field might have useful values in some domain,
but outside of that domain the value is meaningless, so it could be set to zero
or some other convenient value. A scalarfield is a field for which the queried
values are scalars. A vectorfield returns vectors from queries, and a matrixfield
returns matrices. In the Felt scripting language, scalarfields, vectorfields, and
matrixfields are “primitive” datatypes. You can define them and do calculations
with them, but it is not necessary to explicitly program what happens at every
point in space.
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In these notes, scripts written in Felt will have a font and color like this:

scalarfield r = sqrt( identity()*identity() );
// Comments are in this color and use C++ comment symbols “//”
vectorfield normal = grad(r);

This simple script is equivalent to the mathematical notation:

r =
√

x · x
n = ∇r

because the function identity() returns a vectorfield whose value is equal to the
position in space, and the * product of two vectorfields is the inner product.

For the times that it is useful to have data that consists of values sampled
onto a grid, the companion objects to fields are caches, in the form of scalarcache
and vectorcache.

scalarfield r = sqrt( identity()*identity() );
vectorfield normal = grad(r);

// Create a domain: axis-aligned 2x2x2 box centered at the (0,0,0)
vector origin = (-1,-1,-1);
vector lengths = (2,2,2); // 2x2x2 box
vector orientation = (0,0,0); // Axis-aligned
float cellSize = 0.1;
domain d( origin, lengths, orientation, cellSize, cellSize, cellSize );

// Allocate two caches based on the domain
scalarcache rCache( d );
vectorcache normalCache( d );

// Sample fields r and normal into caches
cachewrite( rCache, r );
cachewrite( normalCache, normal );

// Treat caches like fields, using interpolation
scalarfield rSampled = cacheread( rCache );
vectorfield normalSampled = cacheread( normalCache );

In the last lines of this script the gridded data is wrapped in a field descrip-
tion, because interpolation schemes can be applied to calculate values in between
grid points. But once this is done, they are essentially fields, and the gridded
nature of the underlying data is completely hidden, and possibly irrelevant to
any other processing afterward.

Note that the construction of the sampled normal field, normalSampled, could
have been accomplished in a different, more compact approach:
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scalarfield r = sqrt( identity()*identity() );

// Create a domain: axis-aligned 2x2x2 box centered at the (0,0,0)
vector origin = (-1,-1,-1);
vector lengths = (2,2,2); // 2x2x2 box
vector orientation = (0,0,0); // Axis-aligned
float cellSize = 0.1;
domain d( origin, lengths, orientation, cellSize, cellSize, cellSize );

// Allocate one cache based on the domain
scalarcache rCache( d );

// Sample field r into the cache
cachewrite( rCache, r );

// Treat the cache like a field, using interpolation
scalarfield rSampled = cacheread( rCache );

// Take the gradient of the sampled field rSampled
vectorfield normalSampled = grad( rSampled );

Here, only one cache is used and the gradient is applied to the sampled ver-
sion of the distance rSampled. The two approaches are conceptually very similar,
and numerically very similar, but not identical. In the previous method, the
term grad(r) actually computes the mathematically exact formula for the gradi-
ent, and in that case normalCache contains exact values sampled at gridpoints,
and normalSampled interpolates between exact values. In the latter method,
grad(rSampled) contains a finite-difference version of the gradient, so is a rea-
sonable approximation, but not exactly the same. For any particular application
though, either method may be preferrable.



Chapter 2

The Value Proposition for
Resolution Independence

In volume modeling, animation, simulation, and computation, resolution
independence is a handy property for many reasons that we want to review here.
But first, we need to be clear about what the term “resolution independent”
means.

First the negative definition. Resolution independence does not mean the
volume data is purely procedural. Procedurally defined and manipulated data
are very useful, but not always the best way of handling volume problems. There
are many times when gridded data is preferrable.

A system that manipulates volumes in a resolution independent way has two
properties:

1. While the creation of volume data may sometimes require that a discrete
representation be involved (e.g. a rectangular grid or a collection of par-
ticles), there are many manipulations that do not explicitly invoke the
discrete nature that the data may or may not have. For example, given
two scalarfields sf1 and sf2, a third scalarfield sf3 can be constructed as
their sum:

scalarfield sf3 = sf1 + sf2;

But this manipulation does not require that we explicitly tell the code
how to handle the discrete nature of the underlying data. Each scalarfield
handles its own discrete nature and hides that completely from all other
fields. In fact, there isn’t even a reason why the scalarfields have to have
the same discrete properties. This operation makes sense even if sf1 and
sf2 have different numbers of gridpoints, different resolutions, different
particle counts, or even if one or both are purely procedural. Which leads
to the second property:

6
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2. Resolution independence means that fields with different discrete prop-
erties can be combined and manipulated together on equal terms. This
is analogous to the behavior of modern 2D image manipulation software,
such as Photoshop or Nuke. In those 2D systems, images can be combined
without having equal numbers of pixels or even common format. Vector
graphics can also be invoked for spline curves and text. All of this hap-
pens with the user only peripherally aware that these differences exist in
the various image data sets. The same applies to volumes. We should
be able to manipulate, combine, and create volume data regardless of the
procedural or discrete character of each volumetric object.

Resolution independent volume manipulation is a good thing for several
reasons:

Performance Trade-Offs
Some volumetric algorithms have many computational steps. If we have
access only to discrete volumetric data, then each of these steps requires
allocating memory for the results. In some cases the algorithm lets you op-
timize this so that memory can be reused, but in other cases the algorithm
may require that multiple sets of discrete data be available in memory.
This can be a severe constraint on the size of volumetric problem that can
be tackled. The alternative offered by resolution independence is that the
computational aspects are divorced from the data storage. Consequently,
an arbitrary collection of computational steps can be implemented pro-
cedurally and evaluated numerically without storing the results of each
individual step in discrete samples. Only the outcome of the collection
need be sampled into discrete data, and only if the task at hand required
it. This is effectively a trade-off of memory versus computational time,
and there can be situations in which caching the computation at one or
more steps has better overall performance. Resolution independence al-
lows for all options, mixing procedural steps with discretely sampled steps
to achieve the best overall performance, balancing memory and compu-
tational time freely. This performance trade-off is discussed in detail for
the particular case of gridless advection and Semi-Lagrangian Mapping
(SELMA) in chapters 7 and 8.

Targeted grid usage
Manipulation of fields that are gridded does not automatically generate
gridded results. The user has to explicitly call for sampling and caching
of the the field into a grid. While this means extra effort when gridding is
desired, it is a benefit because the user has full control over when grids are
invoked, and even what type of gridding is used. This targeting of when
data is sampled is illustrated by Semi-Lagrangian Mapping (SELMA),
which solves performance problems encountered in gridless advection by
a judicious choice of when and how to sample a mapping function onto
a grid. This same reasoning applies to other forms of discretized data
sampling as well.
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Procedural high resolution
There are many procedural algorithms that enhance the visual detail of
volumetric data. One example of this is gridless advection, discussed in
chapter 7. This increased detail is produced whether the original data
is discrete or procedural. So much detail can be generated that it can
become difficult to properly render it in a raymarch.

Cleaner coding of algorithms
When data is gridded or discretized, there are parameters involved that
describe the discrete environment (cell size, number of points, location
of grid, etc.). Manipulation of volume data just in terms of fields does
not require invoking those parameters, and so allows for simplified code
structure. Algorithms are developed and implemented without worrying
about the concepts related to what format the data is in. For example, the
Felt codes for warping fields and fracturing geometry in chapters 4 and
5 are completely ignorant of any notion that the input data is discretized,
and make no accomodations for such. The Felt scripts are extremely
compact as a result.

Calculations only where/when needed
Suppose you have a shot with the camera moving past a large volumetric
element (or the element moving past the camera), and the element itself
is animating. There may also be hard objects inside the volume that hide
regions from view. You might handle this by generating all of the data on a
grid for each frame. Or you might have a procedure for figuring out ahead
of time which grid points will not be visible to the camera and avoid
doing calculations on them. In the resolution independent procedures
discussed here neither of those approaches is needed, because calculations
are executed only at locations in space (on grid points or not) and at times
in the processing at which actual values for the field are needed. In this
case a raymarch render queries density and color, and field calculations
are executed only at the locations of those queries at the time of each
query.

In the remaining chapters, resolution independence is used as an integral
part of each of the scripting examples discussed.



Chapter 3

Cloud Modeling

Natural looking clouds are really hard to model in computer graphics. Some
of the reasons for it are physics-based: there is a broad collection of physical
phenomena that are simultaneously important in the process of cloud formation
and evolution - thermodynamics, radiative transfer, fluid dynamics, boundary
layer conditions, global weather patterns, surface tension on water droplets, the
wet chemistry of water droplets nucleating on atmospheric particulates, conden-
sation and rain, ice formation, the bulk optics of microscopic water droplets and
ice crystals, and more. There are also reasons related to the application: if you
need to model the volumetric density and optics of clouds in 3D for production
purposes, it usually means you need to model an entire cloud over distances
of hundreds of meters to kilometers, but resolve centimeter-sized detail within
it. Putting together a coherent 3D spatial structure than covers eight orders of
magnitude in scale is not a straightforward proposition. Real clouds exhibit a
variety of spatial patterns across those scales, some of them statistical in char-
acter and some more (fluid) dynamical. For production, we need tools that can
mix all of that together while being controllable from point-to-point in space.

Volume modeling methods have developed sufficiently to take on this task.
Levelsets and implicit surfaces provide a powerful and flexible description of
complex shapes. The pyroclastic displacement method of Kaplan[2] captures
some of the basic cauliflower-like structure in cumulous cloud systems. Gridless
advection (chapter 7) generates fluid and wispy filaments around cloud bound-
aries. Procedural modeling with systems like Felt let us combine these with
additional algorithms to produce enormous and complex cloud systems with
arbitrary spatial resolution.

The algorithms presented in this chapter were used for the production of
visual effects in the film The A-Team at Rhythm and Hues Studios. We begin
with a look at some photos of cumulous clouds and a description of interesting
features that we want the algorithms to incorporate.

9
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3.1 Cumulous cloud structure of interest

Figure 3.1 shows two photographs of strong cumulous cloud systems viewed from
above. The top photo shows a much larger cloud system than the bottom one.
There are several features of interest in the photos that we want to highlight:

Clustering
Cumulous clouds look something like cauliflower in that they are bumpy,
with a seemingly noisy distribution of the bumpiness across the cloud.
This sort of appearance is achievable by a pyroclastic displacement of the
cloud surface using Perlin or some other spatially smooth noise function.

Layering
The bumpiness is mutlilayered, with small bumps on top of large bumps.
Pyroclastic displacement does not quite achieve this look by itself, but
iterating displacements creates this layering, i.e., applying smaller scale
displacements on top of larger ones.

Smooth valleys The deeper creases, or valleys, in a cumulous cloud appear
to be smooth, without the layering of displacements that appears higher
up on the bumps. The iterated displacements must be controllable so
that displacements can be suppressed in the valleys, with controls on the
magnitude of this behavior.

Advected material Despite the hard-edge appearance of many cumulous clouds,
as they evolve the hardness gives way to a more feathered look because of
advection of cloud material by turbulent wind. This advection occurs at
different times and with different strengths within the cloud.

Spatial mixing All of the above features occur to variable degree throughout
the cloud system, so that some parts of the cloud may have many layers
of bumps while others are relatively smooth, and yet others are diffused
from advection. The cloud modeling system needs to be able to mix all of
these features at any position within a cloud to suit the requirements of
the production.

Each of these features is discussed below. The algorithm is based on represent-
ing the overall shape of the cloud as a levelset, pyroclastically displacing that
levelset multiple times, converting the levelset values into cloud density, then
gridlessly advecting the density. Along with those major steps, all of the con-
trol parameters are spatially adjustable in the Felt implementation because the
controls are scalarfields and vectorfields that are generated from point attributes
on the undisplaced cloud geometry.

3.2 Levelset description of a cloud

Cloud modeling begins with a base shape for the smooth shape of the cloud.
This can be in the form of simple polygonal geometry, but with sufficient quality
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Figure 3.1: Aerial photos of cumulous clouds. Structures of interest: the
pyroclastic-like buildup of clusters; the relatively smooth “valleys” between the
clusters; dark fringes along the edges of clusters; bright bands of light in the
“valleys”; softened regions due to advection of material.
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that it can be turned into a scalarfield known as a levelset. The levelset of the
base cloud, `base(x) is a signed distance function, with positive values inside the
geometry and negative values outside. The spatial contour `base(x) = 0 is a
surface corresponding to the model geometry for the cloud.

The volumetric density of the cloud can be obtained at any time by using a
mask function to generate uniform density inside the cloud:

ρbase(x) = mask (`base(x)) =

{
1 `base(x) > 0
0 `base(x) ≤ 0

(3.1)

Of course, clouds are not uniformly dense in their interiors. For our purposes
here, we will ignore that and generate clouds with uniform density in their
interior. This limitation is readily removed by adding spatially coherent noise
to the interior if desired.

3.3 Layers of pyroclastic displacement

The clustering feature has been successfully modeled in the past by Kaplan[2]
using a Perlin noise field to displace the surface of a sphere. This effect is
also refered to as a pyroclastic appearance. Figure 3.2 shows two examples of
a spherical volume with the surface displaced by sampling Perlin noise on its
surface. By adjusting the number of octaves, frequency, roughness, etc, a variety
of very effective structures can be produced[4]. But for cloud modeling, we need
to extend this approach in two ways. First, we need to be able to apply these
displacements to arbitrary closed shapes, not just spheres, so that we can model
base shapes that have complex structure initially and apply the displacements
directly to those shapes. Second, to accomodate the layering feature in clouds,
we need to be able to apply multiple layers of displacement noise in an iterative
way. Both of these requirements can be satisfied by one process, in which the
surface is represented by a levelset description. Applying displacements amounts
to generating a new levelset field, and that can be iterated as many times as
desired.

We describe the levelset approach based on the spherical example, then
launch into more complex base shapes.

3.3.1 Displacement of a sphere

The algorithm for calculating the density of a pyroclastic sphere at any point
in space is as follows:

1. Calculate the distance from the point of interest x to the center of the
sphere xsphere:

d = |x− xsphere| (3.2)

2. Compare d to the displacement bound dbound of the Perlin noise and the
radius R of the sphere. If d < R, x is definitely inside the pyroclastic
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Figure 3.2: Examples of classic pyroclastically displaced spheres of density.

sphere, and the density is 1. If d > R + dbound, then the point x is
definitely outside of the pyroclastic sphere, density is 0.

3. If 0 < d − R < dbound, then compute the displacement: The point on
the unit sphere surface is n = (x − xsphere)/d. The displacement is r =
|Perlin(n)|. If d − R < r, the point x is inside the pyroclastic sphere
and the density it 1. Otherwise, the density is 0. The absolute value of
the noise is used because it produces sharply cut ”canyons” and smoothly
rounded ”peaks”.

This algorithm is particularly clean because the base shape is a sphere, for
which the mathematics is simple. More general base shapes would require some
method of moving from a point in space x to a suitable corresponding point on
the base shape, xbase in order to sample the displacement noise on the surface
of the shape.

Layering provides an additional complication. For a sphere, you might imag-
ine applying multiple layers of displacements by simply adding multiple displace-
ments by ri = Perlini(n) for multiple choices of Perlin noise. But that would
not really be sufficient, because successive layers should be applied by sampling
the noise on the surface of the previously generated displaced surface, using the
displaced normal to the base shape. For layering, the noise sampling of each
layer should be on the surface displaced by previous layer(s), and the displace-
ment direction should be the normal to the previously displaced surface. This
leads to the same issue that the base shape for a displacement may be very
complex.
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Both of these issues are solved by expressing the algorithm in terms of lev-
elsets.

3.3.2 Displacement of a levelset

Suppose you want to displace a shape that is represented by the levelset `(x).
The displacement will be based on the noise function N(x) which is some ar-
bitrary scalar field. Note that the field `+N is also a levelset for some shape,
but that shape need not resemble the original one in any way because the sum
field can introduce new surface regions that are unrelated to the `. For the
pyroclastic style of displacement, we need to displace only by the value of the
noise function on the surface of `. The procedure is:

1. At position x, find the corresponding point x`(x) on the surface of `. This
is generally accomplished by an iterative march toward the surface:

xn+1
` = xn` − `(xn` )

∇`(xn` )

|∇`(xn` )|
(3.3)

for which typically 3-5 iterations are needed.

2. Evaluate the noise at the surface: N(x`). Note that many locations x in
general map to the same location x` on the surface, and so have the same
surface noise.

3. Create a new levelset field based on displacement by the noise at the
surface:

`N (x) = `(x) + |N(x`(x))| (3.4)

This levelset-based approach produces effectively the same algorithm as the one
for the sphere when the levelset is defined as `(x) = R− |x− xsphere|, although
it is not as computationally efficient for that special case.

This is a very powerful general algorithm that works for problems with huge
ranges of spatial scales. It also provides the solution for layering. Suppose you
want to apply M layers of displacement, with Ni(x), i = 1, . . . ,M being the
displacement fields. Then we can apply the iteration

`Ni+1
(x) = `Ni

(x) +
∣∣Ni+1

(
x`Ni

(x)
)∣∣ (3.5)

to arrive at the final displaced levelset `NM
(x).

In terms of Felt code, this multilayer displacement algorithm is imple-
mented in a function called cumulo, with inputs consisting of the base levelset,
and an array of displacement scalarfields, and implements a loop

func scalarfield cumulo( scalarfield base, scalarfield[] displacementArray,
int iterations )
{

scalarfield out = base;
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for( int i=0; i<size(displacementArray);i++ )
{

vectorfield surfaceX = levelsetsurface( out, iterations );
out += compose(abs(displacementArray[i]), surfaceX );

}
return out;

}

The Felt function levelsetsurface( scalarfield levelset, int iterations ) generates
a vectorfield that performs the iterations in equation 3.3 for the input levelset
scalarfield, and compose(A,B) evaluates the field A at the locations in the vec-
torfield B.

Figure 3.3 illustrates the effect of layering pyroclastic displacements. This
figure displays the geometry generated from the levelset data after layering has
been applied. In this example, successive layers contain higher frequency noise.

3.3.3 Layering strategy

Just as important as the functionality to add layers of displacement, is the strat-
egy for generating and applying those layers to achieve maximum efficiency and
control the look of the layers. While equation 3.5 is implemented procedurally
in the cumulo Felt code, a purely procedural implementation is not always the
most efficient strategy for using cumulo. Judicious choices for when to sam-
ple and what data to sample onto a grid improve the speed without sacrificing
quality.

In this subsection we look at the process of creating the displacement noise
for each layer, and schemes for sampling intermediate levelset data onto grids
to improve efficiency.

Fractal layering

One way to set up the layers of displacement is by analogy with fractal summed
perlin noise[4]. For Noctaves, a base frequency f , frequency jump fjump, and
amplitude roughness r, the fractal sum of a noise field PN(x) is

FS(x) =

Noctaves−1∑
i=0

ri PN
(
x f f ijump

)
(3.6)

This kind of fractal scaling is a natural-looking type of operation for generating
spatial detail. It is also very flexible and easy to apply. Applying this to layering,
each layer can be a scaled version of a noise function, i.e. each layer corresponds
to one of the terms in the fractal sum:

Ni(x) = ri FS
(
x f f ijump

)
(3.7)

In terms of Felt code, we have:
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Figure 3.3: Illustration of layering of pyroclastic displacements. From top to
bottom: No displacements; one layer of displacements; two layers; three layers.
The displacements are applied to the levelset representation of the bunny, and
the displaced bunny was converted into geometry for display.
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// Function to generate and array of displacement layers
func scalarfield[] NoiseLayers( int nbGenerations, scalarfield scale, scalarfield
fjump, scalarfield freq, scalarfield rough )
{

scalarfield[] layerArray;
// Choose a noise function as a field, e.g. Perlin, Worley, etc.
scalarfield noise = favoriteNoiseField();
scalarfield freqScale = freq;
scalarfield ampScale = scalarfield(1.0);
for( int i=0;i<nbGenerations;i++ )
{

layerArray[i] = compose( noise, identity()*freqScale ) * ampScale;
// Fractal scaling of frequency and amplitude
freqScale *= fjump;
ampScale *= rough;

}
return layerArray;

}

This Felt code is more general than equation 3.7 because the fractal parameters
fjump, freq, rough in the code are scalarfields. By setting these parameters
up as scalarfields, we have spatially varying control of the character of the
displacement layers.

Selectively sampling the levelset into grids

The purely procedural layering process embodied in equation 3.5 is compact,
flexible, and powerful, but can also be relatively slow. We can exploit the fractal
layer approach to speed up the levelset evaluation. The crucial property here
is that the each fractal layer represents a range of spatial scales that is higher
frequency that the previous layers. Conversely, an early layer has relatively
large scale features. This implies that sampling the levelset into a grid that has
sufficient resolution to capture the spatial features of one layer still allows sub-
sequent layers to apply higher spatial detail displacements. Suppose we know
that layer m has smallest scale ∆xm. We could build a grid with ∆xm as the
spacing of grid points, sample the levelset `m into that grid, and replace `m
with the gridded version. This replacement would be relatively harmless, but
evaluating `m in subsequent processing would be much faster because the eval-
uation amount to interpolated sampling of the gridded data. This process can
be applied at each level, so that the layered levelset equation 3.5 is augmented
with grid sampling, and the Felt code is augmented to

func scalarfield cumulo( scalarfield base, scalarfield[] displacementArray,
int iterations, domain[] doms )
{

scalarfield out = base;
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for( int i=0; i<size(displacementArray);i++ )
{

vectorfield surfaceX = levelsetsurface( out, iterations );
out += compose(abs(displacementArray[i]), surfaceX );
// Sample the levelset to a cache.
// Each cache has a different resolution in its domain.
scalarcache outCache( doms[i] );
cachewrite(outCache, out);
out = cacheread(outCache);

}
return out;

}

This change can increase the speed of evaluating the levelset dramatically,
and if the domains are chosen reasonably there need be no significant loss of
detail. It also provides a way to save the levelset to disk so that it can be
generated once and reused.

3.4 Clearing Noise from Canyons

Within the ”canyons” in the reference clouds in figure 3.1 the amount of finescale
noisy displacement is much less than around the ”peaks” of the cloud pyroclas-
tic displacements. We need a method of suppressing displacements within those
valleys. It would be very tedious if we had to analyze the structure of the mul-
tiply displaced levelset to identify the canyons for subsequent noise suppression.
Fortunately there is a much simpler way of do it that can be applied efficiently.

If we look at the noise function in equation 3.5, the clearing can happen if we
modulate that expression by a factor that goes to zero in the regions where all
of the previous layers of noise also go to zero. At the same time, away from the
zero-points of the previous layers, we want this layer to have its own behavior
driven by its noise function. Both of these goals are accomplished modifying Ni
to a cleared version N c

i as

N c
i (x) = Ni(x)

(
clamp

(
N c
i−1(x)

Q
, 0, 1

) )billow
(3.8)

In this form, the factor Q is a scaling function that is dependent on the noise
type. The exponent billow controls the amount of clearing that happens. This
additional factor modulates the current layer of noise by a clamped value of the
previous layer, reduces the current layer to zero in regions where the previous
layer is zero. Once the previous layer of noise reaches the value Q, the clamp
saturates at 1 and the current layer is just the noise prescribed for it. Figure
3.4 shows a wedge of billow settings, visualized after converting the levelset into
geometry. These same results are shown as volume renders in figure 3.5. Note
that for large billow values the displacements are almost completely cleared
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over most of the volume, with the exception of narrow regions at the peak of
displacement.

3.5 Advection

Another tool for cloud modeling is gridless advection, which is described in de-
tail in chapter 7. Even the hardest-edged cumulous cloud evolves over time to
have ragged boundaries and softened edges due to advection of the cloud mate-
rial in the turbulent velocity field in the cloud’s environment. We can emulate
that effect by generating a noisy velocity field and applying gridless advection at
render time. The gridless advection also produces very finely detailed structure
in the cloud, as seen in the foreground clouds in figure 3.6 from the produc-
tion work on the film The A-Team. In fact, the detail is sufficient that the
hard-edged cumulo structure could be modeled using layered pyroclastic dis-
placements down to scales of 1 meter, then gridless advection carried the detail
down to the finest resolved structure ( about 1 cm ) rendered in the production.

A suitable noisy velocity field can be built from Perlin noise by evaluating
the noise at three slightly offset positions, i.e.

unoise(x) = (Perlin(x), Perlin(x + ∆x1), Perlin(x + ∆x2)) (3.9)

where ∆xi are two offsets chosen for effect. This velocity field is not incom-
pressible and so might not be adequate for some applications. But for gridlessly
advecting cumulous cloud models, it seems to be sufficient. Figure 3.7 shows
gridlessly advected cloud for several magnitudes of the noisy velocity field. In
the strongest one you can clearly see portions of cloud separated from the main
body. A wide variety of looks can be created by adjusting the setting of each
octave of the noisy velocity field.

3.6 Spatial control of parameters

Clouds have extreme variations in their structure, even within a single cloud
system or cumulous cluster. Even if the basic structural elements were limited
to just the ones we have built in this chapter, the parametric dependence varies
dramatically from region to region in the cloud. To accomodate this variability,
we implemented the Felt script for the noise layers using scalarfields for the
parameters. This field-based parameterization can also be extended to gener-
ating the advection velocity and canyon clearing billow parameter. Figure 3.8
shows a bunny-shaped cloud with uniform density inside, and spatially varying
amounts of pyroclastic displacement of the volume. The control for this was
several procedural fields for ramps and local on-switches to precisely isolate the
regions and apply different parameter settings.

But given this extension, we also need a mechanism for creating these fields
for the basic parameters. An approach that has been successful uses point
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Figure 3.4: Illustration of clearing of displacements in the valleys using the
billow parameter. The bottom of figure 3.3 illustrates the three layers of dis-
placement with no billow applied. The noise is FFT-based, and Q = 1. From
top to bottom: billow=0.33, 0.5, 0.67, 1, 2.
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Figure 3.5: Volume renders with various values of billow. Left to right, top to
bottom: billow=0.33, 0.5, 0.67, 1, 2.
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Figure 3.6: Clouds rendered for the film The A-Team using gridless advection
to make their edges more realistic. Top: foreground clouds without advection;
bottom: foreground clouds after gridless advection.
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Figure 3.7: Volume renders with various setting of advection, for billow=1.
Top to bottom: No advection, medium advection, strong advection.
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Figure 3.8: Volumetric bunny with spatial control over the pyroclastic displace-
ment.
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attributes attached to the base geometry of the cloud shape. The values of each
of the parameters are encoded in the point attributes. Simple fields of these
attribute values are created by adding a spherical volume of the attribute value
to a gridded cache enclosing the cloud. This allows simple control based on
surface properties.



Chapter 4

Warping Fields

Here we explore a procedure for transfering attributes from one shape to
another. This problem is not volumetric per se, but a very nice solution involving
levelsets is presented here.

Suppose you have a complex geometric object with vertices xOi , i = 1, . . . NO

on its surface. For rendering or other purposes you would like to have a vari-
ety of attribute values attached to each vertex, but because of its complexity,
building a smooth distribution of values by hand is a tedious process. A con-
trollable method to generate values would be handy. As an input, suppose that
there is a reference shape with vertices xri , i = 1, . . . Nr and attribute values
already mapped across its surface. The goal then is to find a way to transfer
the attributes from the reference surface to the object surface, even if the two
surfaces have wildly different topology. The approach we illustrate here gener-
ates a smooth function X(x) which warps the reference shape into the object
shape. However, this is not a map from the vertices of the reference to the
vertices of the object, but a mapping between the levelset representations of
the two surfaces. This Nacelle algorithm (it generates warp fields) works well
even when the topology of the two shapes is very different. In the next section
the mathematical formulation of the algorithm is shown, and after that a short
Felt script for it.

4.1 Nacelle Algorithm

The algorithm assumes that the two shapes involved can be converted into
levelset representations. This means that there are two levelsets, one for the
reference shape Lr(x) and one for the object shape LO(x). These two levelsets
are signed distance functions that are smooth (i.e. C2). The nacelle algorithm
postulates that there is a warping function X(x) which maps between the two
levelsets:

LO(x) = Lr(X(x)) (4.1)

26
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The goal of the algorithm is an iterative procedure for approximating the field
X. Each iteration generates the approximate warping field Xn(x). The natural
choice for the initial field is X0(x) = x.

Given the warp field Xn from the n-th iteration, we compute the (n+1)-th
approximation by looking at an error term u(x) with X = Xn+u. Putting this
into the equation 4.1 gives

LO(x) = Lr(Xn(x) + u(x)) (4.2)

Expanding this to quadratic order in Taylor series gives

LO(x)−Lr (Xn(x)) = u(x) ·∇Lr(Xn(x)) +
1

2

∑
ij

ui(x)uj(x)
∂2

∂xi∂xj
Lr(Xn(x))

(4.3)
Define matrix M as

Mij(x) =
∂2

∂xi∂xj
Lr(x) (4.4)

so the Taylor expansion up to quadratic is

LO(x)− Lr(Xn(x)) = u(x) · ∇Lr(Xn(x)) +
1

2
u(x) ·M(Xn(x)) · u(x) (4.5)

Setting u(x) = A(x) ∇Lr(Xn), we get the quadratic equation for the scalar
field A(x)

LO(x)− Lr(Xn(x))

|∇Lr(Xn(x))|2
= A(x) +

1

2
A2(x)

∇Lr(Xn(x)) ·M(Xn(x)) · ∇Lr(Xn(x))

|∇Lr(Xn(x))|2
(4.6)

which has the solution

A(x) =
1

Γ

{
−1 + [1 + 2∆Γ]

1/2
}

(4.7)

with the abbreviations

∆ =
LO(x)− Lr(Xn(x))

|∇Lr(Xn(x))|2
(4.8)

Γ =
∇Lr(Xn(x)) ·M(Xn(x)) · ∇Lr(Xn(x))

|∇Lr(Xn(x))|2
(4.9)

Then the next approximation is

Xn+1(x) = Xn(x) + A(x) ∇Lr(Xn) (4.10)

In practice, this scheme converges in 1-3 iterations even for complex warps
and topology differences.
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4.2 Numerical implementation

Numerical implementation of the nacelle algorithm requires code for equations
4.7 – 4.10. These four equations are implemented in the following six lines (plus
comments) of Felt script:

// Definitions
vectorfield B = compose(grad(Lr), Xn);
matrixfield M = compose(grad(grad(L1)), Xn);
// Equation 4.8
scalarfield del = (Lo - compose(Lr, Xn))/(B*B);
// Equation 4.9
scalarfield Gamma = (B*M*B)/(B*B);
// Equation 4.7
scalarfield A = (scalarfield(-1) + (scalarfield(1) + 2.0*del*Gamma)ˆ0.5)/Gamma;
// Equation 4.10
vectorfield Xnplus1 = Xn + A*B;

The compose function evaluates the field in the first argument at the location
of the vectorfield in the second argument.

There are ways to speed up this implementation, at the cost of some ac-
curacy. For example, the quantities B*B and B*M*B are scalarfields that are
computationally expensive. Significant speed improvements come from sam-
pling them into grids and using the gridded scalarfields in their place. The
modified Felt script to accomplish that is

// Definitions
vectorfield B = compose(grad(Lr), Xn);
matrixfield M = compose(grad(grad(L1)), Xn);
// ============ NEW CODE =====================
// Create scalar caches over some domain “dom”
scalarcache BBc( dom );
scalarcache BMBc( dom );
// Sample B*B and B*M*B onto grids
cachewrite(BBc, B*B);
cachewrite(BMBc, B*M*B);
// Replace fields with gridded versions
scalarfield BB = cacheread(BBc);
scalarfield BMB = cacheread(BMBc);
// ============ END NEW CODE =================
// Equation 4.8
scalarfield del = (Lo - compose(Lr, Xn))/BB;
// Equation 4.9
scalarfield Gamma = BMB/BB;
// Equation 4.7
scalarfield A = (scalarfield(-1) + (scalarfield(1) + 2.0*del*Gamma)ˆ0.5)/Gamma;
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// Equation 4.10
vectorfield Xnplus1 = Xn + A*B;

4.3 Attribute transfer

The mapping function X(x) allows us to do a number of things:

Warp Levelsets
The object levelset is now approximated by Lr(X(x)). For example, figure
4.1(a) shows a complex object shape consisting of two linked torii and a
cone, with the cone intersecting one of the torii. The reference shape in
figure 4.1(b) is a sphere. Both of these shapes have levelset representa-
tions, so that the mapping function can be generated. After one iteration,
the levelset field Lr(X1(x)) was used to generate the geometry shown in
figure 4.1(c), which is essentially identical to the input object shape. In
testing with other complex shapes, no more than five iterations has ever
been needed to get highly accurate convergence of algorithm.

Attribute transfer
The mapping function provides a method to perform attribute transfer
from the reference shape to the object shape. Using the vertices xOi , i =
1, . . . NO on the surface of the object shape, the corresponding mapped
points

xMi ≡ X(xOi ) (4.11)

are points that lie on the surface of the reference shape. Assuming the
reference shape has attributes attached to its vertices, and a method of
interpolating the attributes to points on the surface between the vertices,
the reference shape attributes can be sampled at the locations xMi , i =
1, . . . NO and assigned to the corresponding vertices on the object shape.
Figure 4.2 shows the object shape with a texture pattern mapped onto it.
The texture coordinates were transfered from the reference shape.
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(a)

(b)

(c)

Figure 4.1: Warping of a reference sphere into a complex shape (cone and two
torii). (a) Object shape; (b) Reference sphere; (c) Warp shape output from 1
iteration.
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Figure 4.2: Texture mapping of the object shape by transfering texture coordi-
nates from the reference shape.



Chapter 5

Cutting Up Models

Levelsets and implicit functions in general are particularly excellent, pow-
erful tools for cutting up geometry into many pieces. This is very useful for
models of fracture, surgery, and explosions. The technique was shown in film
application by Museth[3]. Here we introduce the theory in steps by modeling
knives in terms of implicit functions, then cut geometry with a single knife, two
knives, and arbitrarily many knives.

The essential reason that implicit function based cutting works is that im-
plicit functions separate the world into two (non-contiguous) regions: those for
which the implicit function knife is positive, and those for which the implict
function knife is negative. Cutting takes place by separating the geometry into
the parts that correspond to those two regions. To do this, the geometry must
be represented by a levelset, so we assume that has already been done and it is
called `0(x).

5.1 Levelset knives

A knife for our purposes is simply a levelset or implicit function. It can be
procedural or grid-based. The essential feature is that, within the volume of
the geometry you wish to cut, the knife has both positive and negative regions.
The zero-value surface(s) of the knife are the knife-edge, or boundary between
the cuts in the geometry.

For example, a simple straight edge is the signed distance function of a flat
plane:

Kstraight edge(x) = (x− xP ) · n (5.1)

for a plane with normal n and xP on the surface of the plane.
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5.2 Single cut

A knife K(x) separates the geometry `0(x) into two regions. Because we are
using levelsets, the feature that distinquishes the two regions is their signs:
positive in one region, negative in the other. Note that the product function

F (x) = `0(x) K(x) (5.2)

has positive and negative regions, but does not quite sort the regions the way
we would like. This product actually defines four regions:

1. `0 > 0 and K > 0

2. `0 < 0 and K < 0

3. `0 < 0 and K > 0

4. `0 > 0 and K < 0

and lumps together regions 1 and 2, and regions 3 and 4. What we actually
want for a successful cut is to get only regions inside the geometry, separated
into the two sides of the knife.

A useful tool in building this is the mask function, which is essentially a
Heaviside step function for scalarfields. For a scalar field f, the mask is a field
with the value of 0 or 1:

mask(f)(x) =

{
1 f(x) ≥ 0
0 f(x) < 0

(5.3)

With the mask function, we can build two fields that identify the inside and
outside of the levelset geometry l0:

scalarfield inside = mask( l0 );
scalarfield outside = scalarfield(1.0) - mask( l0 );

The next thing to realize is that we only want the knife to cut the levelset inside
the geometry: there is no need to cut when outside the geometry. A good way
to accomplish this is by the product of the scalarfield for the knife and the inside
function:

scalarfield insideKnife = inside * knife;

Now we need to generate a levelset function that is unaffected by the knife
outside of the geometry, but is cut by the knife inside. This scalarfield does
that:

scalarfield cutInside = ( outside + inside*knife ) * l0;

Outside of the geometry, this field has the value of the levelset l0. Inside the
geometry, it has the value of knife*l0. So when interpreted as a levelset, this
field identifies the part of the geometry that is also inside the knife, i.e. the
positive regions of the knife. The complementary field
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scalarfield cutOutside = ( outside - inside*knife ) * l0;

similary generates geometry that is inside the original and outside of the knife.
So cutInside and cutOutside are the two regions of the original geometry that
you get when you cut it with the knife. You can then recover the geometry of
the cut shapes by converting the levelset functions back into geometry:

shape cutInsideShape = ls2shape( cutInside );
shape cutOutsideShape = ls2shape( cutOutside );

You should recognize that the two geometric structures, cutInsideShape and
cutOutsideShape are not necessarily simple, connected shapes. Depending on
the structure of the original geometry, and the shape and positioning of the
knife function, each output shape may have many disconnected portions, or
even be empty.

5.3 Multiple cuts

Suppose we want to cut geometry with more than one knife. The process is an
iteration: the cut with the first knife produces the two levelsets cutInsideShape
and cutOutsideShape. Then cut each of those with the second knife, producing
two for each of those, for a total of four levelsets . Each cut doubles the number
of levelsets, so for N knives, you generate 2N levelsets, each for a collection of
pieces. Figure 5.1 shows the result of cutting a sphere with 5 flat blades, with
the orientation and location of each knife randomly chosen. While 5 blades
produce 25 = 32 levelsets, the output actually contains only 22 actual pieces.
Some of levelsets are empty of geometry.

The question might arise as to whether the results depend on the order in
which knives are applied. Mathematically, the results are identical no matter
what order is used.

For computational efficiency however, it could be useful to examine the out-
put of each cut to see if there are levelsets that are actually empty of pieces
of the geometry. If empty levelsets are found, they can be discarded from fur-
ther cutting, possibly improving speed and memory usage. In this context of
efficiency, the order in which knives are applied may impact the performance.
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Figure 5.1: A sphere carved into 22 pieces using 5 randomly placed and oriented
flat blades. The top shows the sphere with the cuts visible. The bottom is an
expanded view of the pieces.



Chapter 6

Fluid Dynamics

Fluid dynamics is generally associated with high performance computing,
even in graphics applications. Solving the Navier-Stokes equations for incom-
pressible flow is no small task, and computationally expensive. There are a
variety of solution methodologies, which produce visually different flows. The
stability of the various methodologies also varies widely. The two solution meth-
ods known as Semi-Lagrangian advection and FLIP advection are uncondition-
ally stable, and so are very desireable approaches for some graphics-oriented
simulation problems. QUICK is conditionally stable, but has minimal numeri-
cal viscosity and even for small grids generates remarkably detailed flow patterns
that persist and are desireable for some graphics simulation problems as well.

In terms of volumetric scripting, it is possible to create simple scripts that
efficiently solve the incompressible Navier-Stokes equations. Additionally, the
ability to choose when and where to represent a field as gridded data or not can
have a significant impact on the character of the simulation. In this chapter we
look at simple solution methods, based on Semi-Lagrangian advection and gen-
eralizations, and introduce the concept of gridless advection. The next chapter
examines gridless advection in more detail.

6.1 Navier-Stokes solvers

The basic simulation situation we look at in this chapter is the flow of a bouyant
gas. The gas has a velocity field u(x, t) which initially we set to 0. The density
of the gas ρ(x, t) is lighter than the surrounding static medium, and so there
is a gravitational force upward proportional to the density. The equations of
motion are

∂ρ

∂t
+ u · ρ = S(x, t) (6.1)

∂u

∂t
+ u · ∇u +∇p = −g ρ (6.2)

∇ · u = 0 (6.3)
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A Semi-Lagrangian style of solver for this problem splits the problem into
multiple steps:

1. Advect the density with the current velocity

ρ(x, t+ ∆t) = ρ(x− u(x, t) ∆t, t) + S(x, t) ∆t (6.4)

2. Advect the velocity and add external forces

u(x, t+ ∆t) = u(x− u(x, t) ∆t, t)− g ρ(x, t+ ∆t) ∆t (6.5)

3. Project out the divergent part of the velocity, using FFTs, conjugate gra-
dient, or multigrid algorithms

These steps can be reproduced in a Felt script as the following:

// Step 1, equation 6.4
density = advect( density, velocity, dt );
// Write density to cache
cachewrite( density Cache, density );
// Set density to the value in the cache
density = cacheread( density Cache );
// Step 2, equation 6.5
velocity = advect( velocity, velocity, dt ) - dt*gravity*density ;
// Step 3, fftdivfree uses FFTs to remove the divergent part of the field
velocity = fftdivfree( velocity, region );

The function advect evaluates the first argument at a position displaced by the
velocity field (the second argument) and time step dt (the third argument).
There is no need to explicitly write the velocity field to a cache after its self-
advection because the function fftdivfree returns a velocity field that has been
sampled onto a grid.

6.1.1 Hot and Cold simulation scenario

A variation on the bouyant flow scenario is shown in figure 6.1. There are two
density fields, one for hot gas with a red color, and one for cold gas with a blue
color. The cold gas falls from the top, and the hot gas rises from the bottom.
Both are continually fed new density at their point of origin. The two gases
collide in the center and displace each other as shown. The Felt script is

hot = advect( hot, velocity, dt ) + inject(hotpoint, dt );
// Write hot density to cache
scalarcache hotCache(region);
cachewrite( hotCache, hot );
// Set hot density to the value in the cache
hot = cacheread( hotCache );
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cold = advect( cold, velocity, dt ) + inject(coldpoint, dt);
// Write cold density to cache
scalarcache coldCache(region);
cachewrite( coldCache, cold );
// Set cold density to the value in the cache
cold = cacheread( coldCache );

velocity = advect( velocity, velocity, dt ) + dt*gravity*(cold-hot);
// fftdivfree uses FFTs to remove the divergent part of the field
velocity = fftdivfree( velocity, region );

The two densities force the velocity in opposite directions (hot rises, cold sinks).
We have also added a continuous injection of new density via the user-defined
function inject, defined to insert a solid sphere of density at a location specified
by the first argument:

func scalarfield inject( vector center, float dt )
{

vectorfield spherecenter = identity() - vectorfield(center);
// Implicit function of a unit sphere centered at the input location
scalarfield sphere = scalarfield(1.0) - spherecenter*spherecenter;
// mask() function returns 0 outside implicit function, 1 inside
scalarfield inject = mask(sphere);
return inject*dt;

}

The advection process used for this simulation example is Semi-Lagrangian
advection, which is highly dissipative because of the linear interpolation process.
As figure 6.2 shows, the simulation produces a diffusive looking mix of the two
gases. A simulation with higher spatial resolution would produce a different
spatial structure with more of a sense of vortical motion and finer detail, but
still not avoid the diffusive mixing.

6.2 Removing the grids

The power of resolution independent scripting provides a new option, gridless
advection, which we introduce here and expand on in the next chapter. Because
of the procedural aspects of resolution independence, we can rebuild the script
for the hot/cold simulation, and remove the sampling of the densities onto grids.
Removing those steps, you are left with the code:

hot = advect( hot, velocity, dt ) + inject(hotpoint, dt );
cold = advect( cold, velocity, dt ) + inject(coldpoint, dt);
velocity = advect( velocity, velocity, dt ) + dt*gravity*(cold-hot);
// fftdivfree uses FFTs to remove the divergent part of the field
velocity = fftdivfree( velocity, region );
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Figure 6.1: Simulation sequence for hot and cold gases. The blue gas is injected
at the top and is cold, and so sinks. The red gas is injected at the bottom and
is hot, and so rises. The two gases collide and flow around each other. The grid
resolution for all quantities is 50× 50× 50.
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Figure 6.2: Frame of simulation of two gases. The blue gas is injected at the top
and is cold, and so sinks. The red gas is injected at the bottom and is hot, and
so rises. The two gases collide and flow around each other. The grid resolution
for all quantities is 50× 50× 50.
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What happens here is that the evolution of the densities over multiple time steps
is evaluated in a purely procedural processing chain. The history of velocity
fields is implicitly retained and applied to advect the density through a series
of points along a path through the volume. This path-track happens every
time the value of the densities at the current frame are requested (e.g. by the
volume renderer or some other processing). The velocity continues to be sampled
onto a grid because the computation to remove the divergent portion of the
field requires sampling the velocity onto a grid. All of the existing algorithms
for removing divergence require a gridded sampling of the velocity, so there
is presently no method to avoid grids for the velocity field in this situation.
However, the densities in this simulation are never sampled onto a grid.

The hot/cold simulation produced by removing the gridding of the density
is shown in figure 6.3, with a frame shown larger in figure 6.4. The spatial
details and motion timing are dramatically different, as seen in a side-by-side
comparison in figure 6.5. Symmetries in the simulation scenario are better
preserved in the gridless implementation, and the fingers of the flow contain
more vorticity (though not as much as possible, because gridding of the velocity
field continues to dissipate vorticity) and fine filaments and sheets.

The downside of this simulation approach is that the memory grows linearly
with the number of frames, and the time spent evaluating the density grows
linearly with the number of frames. So there is a tradeoff to consider between
achieving fine detail vs computational resources. This is also a tradeoff that
must be addressed in traditional high performance simulation, but the trends in
the tradeoff are different: computational cost is essentially constant per frame in
traditional simulation, whereas gridless advection cost grows linearly per frame.
But traditional simulation has visual detail limited by the resolution of the
grid(s), and gridless advection generates much finer detail.

6.3 Boundary Conditions

In addition to free-flowing fluids, Felt scripting can also handle objects in a
simulation that obstruct the flow of the fluid. This is handled very simply
by reflecting the velocity about the normal of the object. Any objects can be
represented as a levelset, O(x), which we will take to be negative outside of
the object and positive inside. At the boundary and the interior of the object,
if the velocity of the fluid points inward it should be reflected back outward.
The outward pointing normal of the object is −∇O, so the velocity should be
unchanged (1) at points outside the object (O(x) is negative), and (2) if the
component of velocity at the object is outward flowing (i.e. u · ∇O < 0 ).
The mask() function in Felt provides the switching mechanism for testing and
acting on these conditions. When the flow has to be reflected, the new velocity
is

ureflected = u − 2
(u · ∇O)

|∇O|2
∇O (6.6)

The Felt code for this is
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Figure 6.3: Sequence of frames of a simulation of two gases, in which the den-
sities evolve gridlessly. The blue gas is injected at the top and is cold, and
so sinks. The red gas is injected at the bottom and is hot, and so rises. The
two gases collide and flow around each other. The density is advected but not
sampled onto a grid, i.e. gridlessly advected in a procedural simulation process.
The grid resolution for velocity is 50× 50× 50.
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Figure 6.4: Frame of simulation of two gases, in which the densities evolve
gridlessly. The blue gas is injected at the top and is cold, and so sinks. The red
gas is injected at the bottom and is hot, and so rises. The two gases collide and
flow around each other. The density is advected but not sampled onto a grid,
i.e. gridlessly advected in a procedural simulation process. The grid resolution
for velocity is 50× 50× 50.
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Gridded Gridless

Figure 6.5: Simulation sequences with density gridded (left) and gridless (right).
The blue gas is injected at the top and is cold, and so sinks. The red gas is
injected at the bottom and is hot, and so rises. The two gases collide and flow
around each other. The grid resolution is 50× 50× 50.
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vectorfield normal = -grad(object)/sqrt( grad(object)*grad(object) );
scalarfield normalU = velocity*normal;
velocity -= mask(normalU)*mask(object)*2.0*normalU*normal;

To illustrate the effect, figure 6.6 shows a sequence of frames from a simulation
in which a bouyant gas is confined inside a box, and encounters a rectangular
slab that it must flow around. To capture detail, the density was handled with
gridless advection. The slab diverts the flow downward, where the density thins
as it spreads, and the bouyancy force weakens because of the thinner density.
The slab also generated vortices in the flow that persist for the entire simulation
time.

This volume logic is suitable to impose other boundary conditions as well.
For example, sticky boundaries reflect only a fraction of the velocity

usticky = u − (1 + α)
(u · ∇O)

|∇O|2
∇O (6.7)

with 0 ≤ α ≤ 1 being the fraction of velocity retained.



CHAPTER 6. FLUID DYNAMICS 46

Figure 6.6: Time series of a simulation of bouyant flow (green) confined within
a box (blue boundary) and flowing around a slab obstacle (red). Frames 11, 29,
74, 124, 200 from a 200 frame simulation.



Chapter 7

Gridless Advection

In this chapter we examine the benefits and costs of gridless advection in
more detail. For some situations there is only a minor cost with very worth-
while improvements in image quality. In the extreme, gridless advection may
be too expensive. This discussion also points the way to the chapter on Semi-
Lagrangian Mapping (SELMA), which provides an efficient compromise en-
abling detail beyond grid dimensions while returning to a cost that is constant
per frame. SELMA produces nearly the full benefits of gridless advection while
suffering only the cost of gridded calculations.

Note that gridless advection is not a method of simulating fluid dynamics.
It is a method of applying, at render time, the results of simulations in order to
have more control of the look of the rendered volume. For the discussion in this
chapter, we limit ourselves to just the application of velocity fields (simulated
or not) to density fields. Gridless advection is more widely applicable though.

7.1 Spatial Gradients

Before getting into the algorithm for gridless advection, it is worthwhile to
discuss a few concepts that motivate using it in the first place.

The value of fluid simulations in production is the combination of spa-
tial structure and motion that they produce. The underlying physical model,
the Navier-Stokes equations, tightly couple the structure and motion on many
scales, transfering energy and momentum from large scales to small scales in
a process called a cascade. This cascade is an important phenomenon that
identifies the combined structure and motion as being fluid-like.

But fluid simulators have limits to how much spatial detail and motion they
can simulate and cascade, and that limit is readable to observers as artifical
motion or excessing numerical dissipation.

There are models of the energy cascade that are based on statistical argu-
ments. Conceptually the turbulent motion of the fluid can be treated as a ran-
dom process from which correlation functions can be built. While these models
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Figure 7.1: Examples of filaments and sheets forming in fluid flow.

provide very specific predictions of the ensemble fluid behavior, actual motion
in any member of the ensemble is very different from the correlation. Another,
more useful, way of characterizing the cascade is through the size of spatial
gradients of quantities that undergo fluid motion, e.g. the spatial gradients of
smoke density or the velocity field. As a fluid evolves, the density field acquires
spatial structures in the form of one-dimensional filaments and two-dimensional
sheets. As the evolution continues, these filaments and sheets become thinner,
interact, generate new structures with greater spatial gradients, and ultimately
reach the dissipation scale where they are converted into heat. Examples of
these filaments and sheets are show in figure 7.1.

The elongation of filaments and thinning of the sheets have large spatial
gradients in the vicinity of these features. The purpose of gridless advection is
to try to preserved these gradients and prevent their numerical dissipation.

7.2 Algorithm

We begin with a look at the impact of one step of gridless advection. Imagine
you have produced a velocity field u(x, t), which may be from a simulation, from
some sort of procedural algorithm, or from data. Imagine also that you have a
field of density ρ(x) that you want to “sweeten” by applying some advection.
A single step of advection generates the new field

ρ1(x) = ρ(x− u(x, t1) ∆t) (7.1)

where the time step ∆t serves to control the magnitude of the advection to suit
your taste. The advected density ρ1 is not sampled onto a grid. Equation 7.1 is
a procedural algorithm to be evaluated when the density is used during a volume
render or some other application. Figure 7.2 shows a simple spherical volume of
uniform density after advection by a noisy velocity field. For the velocity field
in the example, we generated a noise vector field that is gaussian distributed,
with spatial correlation and divergence-free. Extreme advection like this can
transform simply shaped densities into complex organic distributions.
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This can be extended to two steps of advection:

ρ2(x) = ρ(x− u(x, t2) ∆t− u(x− u(x, t2) ∆t, t1) ∆t) (7.2)

and to three steps of advection:

ρ3(x) = ρ(x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t−u(x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t, t1) ∆t)
(7.3)

The iterative algorithm for n+1 gridless advection steps comes from the results
for n steps as

ρn+1(x) = ρn(x− u(x, tn+1)∆t) (7.4)

but, despite the simplicity of this expression, you can see from equation 7.3 that
the algorithm grows linearly in complexity with the number of steps taken. This
causes the evaluation time to grow linearly as well, so that a large number of
advection steps become impractically slow for productions. In that case, the
alternative SELMA algorithm can be employed (chapter 8).

7.3 Spatial Gradients in Gridless Advection

So how does this algorithm handle the spatial gradients in the fluid motion?
How does it compare to not using gridless advection?

First lets look at not using gridless advection. Supose we have simulated
the motion of a density field ρ on a rectangular grid. Spatial gradients of the
density are determined by the specifics of the advection algorithm employed
in the simulation. For example, for semi-lagrangian advection, the gradient is
bounded by

O (| ∇ρn |) ∼
ρmax
∆x

(semi-lagrangian) (7.5)

where ρmax is the maximum initial value of the density field at any grid point,
and ∆x is the cell size of the grid. This is purely an upper bound that does not
take into account the numerical dissipation that interpolation induces in semi-
lagrangian advection. For a minimally viscous advection scheme like Quick, the
density gradient also depends on the velocity gradient, which in turn is limited
by the CFL stability condition, so that the bound is

O (| ∇ρn |) ∼ ∆t |∇un| |∇ρn−1|

∼ ∆t
uCFL
∆x

|∇ρn−1|

∼ |∇ρn−1|

∼ ρmax
∆x

(quick) (7.6)

Quick spatial gradients stay essentially constant over time and dissipate very
little. Ultimately the gradient limit is the finite difference limit for densities on
a grid. For both examples these estimates are upper bounds, and in practice
numerical dissipation prevents these bounds from being reached.
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How does the gradient for gridless advection look? From the iterative equa-
tion 7.4, the density gradient is exactly

∇ρn+1 = (1−∆t ∇un+1) · ∇ρn (7.7)

where 1 is the 3 × 3 identity matrix. We want to see if gridless advection can
increase the spatial gradient anywhere in the volume. This would be indicated
if the magnitude of any component of ∇ρn+1 is greater than that for the corre-
sponding component of ∇ρn. It is useful to look at the eigenvalues of the matrix
(1−∆t ∇un+1), which are based on the real eigenvalues of the matrix ∇un+1,
which we call λi. The eigenvalues are then

1 − ∆t λi (7.8)

Note that if the fluid velocity is incompressible, then by definition
∑3
i=1 λi = 0.

This means that if any of the eigenvalues λi are not zero (i.e. there is a velocity
gradient), then some of the λi are positive and some are negative. In that
case, in the eigendirection(s) with negative gradient eigenvalue, the component
1 − ∆t λi > 1, which means in those direction(s), the spatial gradient of
the density grows. Physically, the condition that λi < 0 is that the flow is
stretching in that particular direction, and stretching induces higher spatial
gradients. Note that one or two of the λi can be negative, but not all three in
order to keep the flow incompressible. When only one component is negative, a
filament is created; when two components are negative a thin sheet is created.

So where ever a flow creates filaments and sheets, gridless advection amplifies
increased spatial gradients and enhances the visual appearance of the structure.
The amount of increase of the spatial gradients is not limited by any spatial grid
either, and so can grow enormously high. Further, that growth is related to the
spatial structure of the flow field, and so is naturally related to the physical
simulation. The growth can exceed physical limits however, because it dones
not feed back any forcing of the velocity field dynamics, and does not respond
to physical dissipation at very small scales.

7.4 Examples

We can illustrate the impact of advection with some examples. A common use
for gridless advection is to apply it to an existing simulation to sharpen edges.
Figure 7.3 shows a density distribution consisting of a wall of small spheres of
density. Each row has a different color. A fluid simulation unrelated to this
density field has been created, and when we advect the density and sample it to
a grid every time step, then the advected density field after 60 frames looks like
figure 7.4. There has been a substantial loss of density due to numerical dissi-
pation, but also the density distribution looks soft or diffused. Even the density
in the top left and bottom right, which has gone through very little advection,
has blurred substantially. If we used gridded sampling of the advected density
on the first 59 frames, then gridless advection on the last frame via equation
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Figure 7.2: Illustration of the effect of a single step of gridless advection. The
unadvected density field is a sphere of uniform density.
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Figure 7.3: Unadvected density distribution arranged from a collection of spher-
ical densities.

Figure 7.4: Density distribution after 60 frames of advection and sampling to a
grid each frame.



CHAPTER 7. GRIDLESS ADVECTION 53

Figure 7.5: Density distribution after 59 frames of advection and sampling to
a grid each frame, and one frame of gridless advection. The edges of filaments
have been subtley sharpened.

7.1, the result is in figure 7.5. There is a slight sharpening of edges in the gas
structure. This is more noticeable if we advect and sample for 50 frames, then
gridlessly advect for 10 frames, as in figure 7.6. In fact, the image shows a lot of
aliasing because the raymarch step size is not able to pick up the fine details in
the density. This is corrected in figure 7.7 by raymarching with a step size 1/10-
th the grid resolution. Finally, just to carry it to the extreme, figure 7.8 shows
the density field after all 60 frames have been gridlessly advected. The raymarch
is finely sampled to reduce aliasing of fine structures in the field, although some
are still visible. Also very important is the fact that gridless advection gen-
erates structures in the volume that have more spatial detail than the original
density distribution or velocity field. This is a very valuable effect, as it provides
a method to simulate at relatively coarse resolution, then refine at render time
via gridless advection. Further, this refinement does not dramatically alter the
gross motion or features of the density distribution, whereas rerunning a simu-
lation at higher resolution generally produces a completely different flow from
the lower resolution simulation. A variation on this is to gridlessly advect a
volume density with a random velocity field in order to make it more “natural”
looking, as was done in figure 7.9.

We can evaluate the relative performance of various options, e.g. how many
gridless steps to take, using the graph in figure 7.10, showing the amount of
RAM and the CPU time cost for the raymarch render for each option. The
execution time for setting up the gridless advection processing is essentially
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Figure 7.6: Density distribution after 50 frames of advection and sampling to a
grid each frame, and ten frames of gridless advection. The sharpening of details
has increased to the point that the detail is finer than the raymarch stepping,
causing significant aliasing in the render.
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Figure 7.7: Density distribution after 50 frames of advection and sampling to
a grid each frame, and ten frames of gridless advection. The fine detail in the
density field is now resolved by using a finer raymarching step (1/10-th the grid
resolution).

Figure 7.8: Density distribution after 60 frames of gridless advection. The fine
detail in the density field is resolved by using a fine raymarching step.
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Figure 7.9: Clouds rendered for the film The A-Team using gridless advection
to make their edges more realistic. The velocity field was based on Perlin noise.
Top: foreground clouds without advection; bottom: foreground clouds after
gridless advection.
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grows. The steep blue line is gridless advection rendered with the raymarch step
equal to the grid resolution. The red line is a raymarch step equal to one-tenth of
the grid resolution. These results are not from a production-optimized renderer,
so time and memory values should be taken as relative measures only.

negligible compared to the time spent evaluating the fields during the render.
The raymarcher used for this data is a simple one not optimized for production
use, so the results should be indicative of relative behavior only, not actual pro-
duction resource costs. The blue line is the performance for gridless advection
as the number of gridless steps increase, while leaving the raymarch step size
equal to the cell size of the velocity field. Note that RAM increases linearly with
the number of gridlessly advected frames, because the velocity fields of those
frames must be kept available for the evaluation of the advections. With a large
number of advections, the spatial detail generated includes fine filaments and
curved sheets that are so thin that raymarch steps equal to the grid resolution
are insuffient to resolve that fine detail in the render. Using 10 times finer steps
in order to capture detail, the images look much better and the red line per-
formance is produced. The longest time shown is over 80000 seconds, nearly 1
cpu day. This scale of render time is not practicable. In practice using gridless
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advection for more than about 5-10 steps extends the render time, due to the
additional advection evaluations and the finer raymarch stepping, to the limit
that most productions choose to take.

Fortunately there is a practical compromise, called Semi-Lagrangian Map-
ping (SELMA).



Chapter 8

SEmi-LAgrangian MApping
(SELMA)

The key to finding a practical compromise between gridless advection and
sampling the density to a grid at every frame is to recognize that gridless ad-
vection is a remapping of the density field to a warped space. You can see that
by rewriting equation 7.1 as

ρ1(x) = ρ (X1(x)) (8.1)

where the warping vector field X1 is

X1(x) = x− u(x, t1) ∆t (8.2)

Similarly, the equations for ρ2 and ρ3 also have forms involving warp fields:

ρ2(x) = ρ (X2(x)) (8.3)

where
X2(x) = x− u(x, t2) ∆t− u(x− u(x, t2) ∆t, t1) ∆t (8.4)

and
ρ3(x) = ρ (X3(x)) (8.5)

where

X3(x) = x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t−u(x−u(x, t3) ∆t−u(x−u(x, t3) ∆t, t2) ∆t, t1) ∆t
(8.6)

Finally, for frame n, the density ρn has a warp field also:

ρn(x) = ρ (Xn(x)) (8.7)

with an iterative form for the mapping:

Xn(x) = Xn−1 (x− u(x, tn)∆t) (8.8)

59



CHAPTER 8. SEMI-LAGRANGIAN MAPPING (SELMA) 60

So the secret to capturing lots of detail in gridless advection is that the mapping
function X(x) carries information about how the space is warped by the fluid
motion. The gridless advection iterative algorithm is equivalent to executing
the iterative equation 8.8, so the Felt code

density = advect( density, velocity, dt );

is mathematically and numerically equivalent to code that explicitly invokes a
mapping function like:

Xmap = advect(Xmap, velocity, dt);
density = compose(initialdensity, Xmap);

as long as the map Xmap is a vectorfield initialized in an earlier code segment
as

vectorfield Xmap = identity();

The practical advantage of recasting the problem as a map generation is
that it allows us to take one more step. Sampling the density onto a grid at
every frame leads to substantial loss of density and softening of the spatial
structure of the density. But now we have the opportunity to instead sample
the map X(x) onto a grid at each frame. This limits the fine detail within the
map, because it limits structures within the map to a scale no finer than grid
resolution. However, what is left still generates highly detailed spatial structures
in the density. For example, returning to the example of figures 7.3 through 7.8,
applying gridding of the mapping function produces the highly detailed result
in figure 8.1. The change to the Felt code is relatively small:

Xmap = advect(Xmap, velocity, dt);
// Sample map onto into a grid
vectorcache XmapCache(region);
cachewrite( XmapCache, Xmap );
// Replace Xmap with the gridded version
Xmap = cacheread(XmapCache);
density = compose(initialdensity, Xmap);
velocity = advect( velocity, velocity, dt ) + dt*gravity*density ;
velocity = fftdivfree( velocity, region );

where XmapCache is a vectorcache into which we sample the Semi-Lagrangion
mapping function X. This restructuring of the density advection based on a
mapping function that is grid-sampled is given the name SELMA for SEmi-
LAgrangian MApping.

How does SELMA constitute a good compromise between sampling the
density onto a grid at each time step, with relatively low time and memory
resources but limited spatial detail, and gridlessly advection, with higher time
and memory requirements but very high spatial detail? There are benefits
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Figure 8.1: Density distribution after 60 frames of SELMA advection. The
fine detail in the density field is resolved by using a fine raymarching step.

in both memory and speed. Because the mapping function is sampled to a
grid each time step, the collection of velocity fields need no longer be kept in
memory, so the memory requirement for SELMA is both lower than gridless
advection and constant over time (whereas it grew linearly with the number of
time steps in gridless advection). For speed, SELMA has to perform a single
interpolated sampling of the gridded mapping function each time the density
value is queried, and the cost for this is fixed and constant for each simulation
step. Comparatively, gridless advection requires evaluating a chain of values of
each velocity field along a path through the volume, the cost of which grows
linearly with the number of time steps. These improvements in performance are
clear in figure 8.2, which compares the performance of gridless advection and
SELMA. The increase in RAM for the case “SelmaFine” is because the grid for
the SELMA map was chosen to be finer than for the velocity field.

Figure 8.3 shows SELMA as used for the production of The A-Team. An
aircraft passing through cloud material leaves behind a wake disturbance in the
cloud. The velocity field is from a fluid simulation that does not include the
presence of the cloud. The cloud was modeled using the methods in chapter 3,
then displaced using SELMA.
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Figure 8.3: Example of SELMA used in the production of The A-Team to
apply a simulated turbulence field to a modeled cloud volume as an aircraft
passes through.



Appendix A

Appendix: The Ray March
Algorithm

A.0.1 Rendering Equation

The algorithm for ray marching in volume rendering is essentially just the
numerical approximation of the rendering equation for the amount of light
L(xC ,nP ) received by a camera located at position xC , at the pixel that is
looking outward in the direction nP . The rendering equation accumulates light
emitted by the volume along the line of sight of the pixel. The accumulation is
weighted by the volumetric attenuation of the light between the volume point
and the camera, and by the scattering phase function which scatters light from
the light source into all directions. The rendering equation in this context is a
single-scatter approximation of the fuller theory of radiative transfer:

L(xC ,nP ) =

∫ ∞
0

ds CT (x(s)) ρ(x(s)) exp

{
−
∫ s

0

ds′ κ ρ(x(s′))

}
(A.1)

The density ρ(x) is a material property of the volume, representing the amount
of per unit volume present at any point in space. Note that anywhere that the
density is zero has no contribution to the light seen by the camera. The ray
path x(s) is a straight line path originating at the camera and moving outward
along the pixel direction to points in space a distance s from the camera.

x(s) = xC + s nP (A.2)

The total color is a combination of the color emission directly from the
volumetric material, and the color from scattering of external light sources by
the material.

CT (x(s)) = CE(x(s)) + CS(x(s))⊗ CI(x(s)) (A.3)
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Both CE and CS are material color properties of the volume, and are inputs
to the rendering task. The illumination factor CI is the amount of light from
any light sources that arrives at the point x(s) and multiplies against the color
of the material. For a single point-light at position xL, the illumination is the
color of the light times the attenuation of the light through the volume, and
times the phase function for the relative distribution of light into the camera
direction

CI(x) = CL TL(x) P (n · nL) (A.4)

with the light transmissivity being

TL(x) = exp

{
−
∫ D

0

ds′κ ρ(x + snL)

}
(A.5)

where is the distance from the volume position x and the position of the light:
D = |x − xL|, and nL is the unit vector from the volume position to the light
position:

nL =
xL − x

|xL − x|
(A.6)

For N light sources, this expression generalizes to a sum over all of the lights:

CI(x) =

N∑
i=1

CLi TLi (x) P (n · nLi ) (A.7)

The phase function can be any of a variety of shapes, depending on the
material properties of the volume. One common choise is to ignore it as an
additional degree of freedom, and simply use P (n · nL) = 1. Another choice
that introduces only a single control parameter g is the Henyey-Greenstein phase
function

PHG(n · nL) =
1

4π

1− g2

(1 + g2 − 2gn · nL)3/2
(A.8)

This function is plotted in figure A.1 for several values of g. As g → 1, the
phase function becomes sharply peaked in the forward direction,i.e. n · nL ∼ 1.
As g → −1, the strong peak is in the backward direction, n · nL ∼ −1. Phase
functions have been measured and calculated for many natural materials, such
as clouds, water, and tissues [6]. A model phase function called the Fournier-
Forand phase function fits many natural materials well:

PFF (Θ) =
1

4π(1− δ)2δν

[
ν(1− δ)− (1− δν) + (δ(1− δν)− ν(1− δ)) / sin2

(
Θ

2

)]
+

1− δν180

16π(δ180 − 1)δν180

{
3 cos2 Θ − 1

}
(A.9)

δ =
4

3(n− 1)2
sin2

(
Θ

2

)
(A.10)

δ180 =
4

3(n− 1)2
(A.11)
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ν =
3− µ

2
(A.12)

and ν, µ, and n are physical parameters. Figure A.2 illustrates this phase
function for several values of µ, along with plots of Petzold’s phase function
data for 3 ocean water conditions [7].

Finally, recognizing that the volumetric material occupies a finite volume of
space, it is not necessary to integrate along a path from the camera to infinity.
There is a point s0 ≥ 0 where the density starts, and a maximum distrance
smax past which the density is zero. So the render equation can be reduced to
evaluating the integral just within those bounds:

L(xC ,nP ) =

∫ smax

s0

ds CT (x(s)) ρ(x(s)) exp

{
−
∫ s

0

ds′ κ ρ(x(s′))

}
(A.13)
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A.0.2 Ray Marching

Discretizing the rendering equation A.13 leads to the ray march algorithm used
in production volume rendering. The rendering equation A.13 is decomposed
into a set M of small steps of length ∆s, with M∆s = smax − s0. Without
approximation, the rendering equation becomes

L(xC ,nP ) =

M−1∑
j=0

Tj

∫ ∆s

0

ds CT (xj+snP ) ρ(xj+snP ) exp

{
−
∫ s

0

ds′ κ ρ(xj + s′nP )

}
(A.14)

where
xj = xC + j∆snP (A.15)

and the transmissivity factor Tj is

Tj =

j−1∏
k=0

∆Tk (A.16)

and

∆Tk = exp

{
−
∫ ∆s

0

ds κ ρ(xk + snP )

}
(A.17)

Note that we can construct these quantities iteratively through the relationships

xj = xj−1 + ∆snP (A.18)

Tj = Tj−1 dTj−1 (A.19)

with the initial conditions

x0 = xC (A.20)

T0 = 1 (A.21)

which define the ray march process.
One of the first graphics papers on this problem is by Kajiya [5]. In that

paper an approximation for optically thin density is applied, i.e. it is assumed
that the density across a short path segment is relatively small. In these notes
we do not make that assumption. In fact, only one significant assumption is
made here, namely that the color field is constant across the length of a short
path segment. We do not assume the optically thin approximation that Kajiya
chose. This leads to a simple but significant improvement to the algorithm that
solves difficulties in how the edges of clouds/smoke/whatever are handled in
compositing.

The discretization step takes the form of choosing a march step size ∆s that
is sufficiently small that we can assume that the color CT is constant within the
length of the step ∆s. With that single choice, the rendering equation reduces
to

L(xC ,nP ) =

M−1∑
j=0

CT (xj) Tj
1−∆Tj

κ
(A.22)
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This sum also can be handled via an iterative update of L. Combined with the
iterations for xj and Tj the complete iteration is

xj = xj−1 + ∆snP (A.23)

L + = CT (xj) Tj
1−∆Tj

κ
(A.24)

Tj+1 = Tj dTj (A.25)

which is the same as equations 1.1-1.4 when the positions xj and transmissivities
Tj are sored in a single vector and float with running updates.

Comparing to the optically-thin approach chosen by Kajiya, this algorithm
is identical to that one except for the factor (1−∆Tj)/κ, which does not appear
in Kajiya’s treatment. However, if we apply an optically thin approximation,
namely that ∆sκρ � 1, then our factor reduces in the limit to just ∆sρ(xj)
which is the factor that appears in Kajiya’s approach. So this ray march algo-
rithm is an extension of Kajiya’s which removes the optically-thin assumption.
In practical use in production, it also has the benefit that it is easier to com-
posite clouds rendered with this approach, because the edges of the clouds fade
in opacity more correctly than the optically-thin approximation does.

The one item left to work out is the values of ∆Tj . This depends on how
the density varies along the short path segment. The simplest approximation is
to assume that the density is constant along the path. In that case

∆Tj = exp(−κ ρ(xj) ∆s) (A.26)

Another possibility is that the density varies linearly along the short path seg-
ment. Supose the density varies linearly from ρ0(xj) at the beginning of the
path and ρ1(xj) at the end of the segment, then the result is similar to the
constant case, but with the constant density replaced by the average density
along the path.

∆Tj = exp(−κ (ρ0(xj) + ρ1(xj)) ∆s/2) (A.27)

In more general situations with the density having a complex behavior along
the short path segment, we can take inspiration from the linear variation case.
We can evaluate an average density 〈ρ〉(xj) along the path segment, and arrive
at

∆Tj = exp(−κ 〈ρ〉(xj) ∆s) (A.28)

The average density can be evaluated, for example, by sampling the density at
random positions along the path, i.e.

〈ρ〉(xj) =
1

Ns

Ns∑
i=1

ρ(xj + rj∆snP ) (A.29)

where the Ns numbers rj are random numbers between 0 and 1.
If the color cannot be assumed to be constant in the interval ∆s, then one

approach to this is to subdivide the interval further. Here again the random
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sampling idea can be brought to bear. Suppose we decide to subdivide into Ns
subsegments, within each we can assume that the color and density are constant.
The procedure can be as follows

• generate Ns − 1 random numbers rj and order them so that r1 < r2 <
r3 < . . . < rNs−1. For this notation, we can define r0 = 0.

• Accumulate through the subintervals j = 1, . . . , Ns − 1 exacly as for the
primary intervals:

x + = rj ∆s nP

∆T = exp {−(rj − rj−1) ∆s ρ(x) κ}

L + = C(x) T
(1−∆T )

κ
T ∗ = ∆T
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